Первое условие - файл

приобрести
скачать (37.9 kb.)


Чтобы множество Q+ положительных рациональных чисел являлось расширением множества N натуральных чисел, необходимо выполнение ряда условий.

Первое условие - это существование между N и Q+ отношения включения

Отношение между множествами N и Q+ Числа, которые дополняют множество натуральных чисел до множества положительных рациональных, называются дробными.

Второе условие, которое должно быть выполнено при расширении множества натуральных чисел, - это согласованность операций, т.е. результаты арифметических действий, произведенных по правилам, существующим для натуральных чисел, должны совпадать с результатами действий над ними, но выполненных по правилам, сформулированным для положительных рациональных чисел. Нетрудно убедиться в том, что и это условие выполняется.

Пусть а и b - натуральные числа, а + b - их сумма, полученная по правилам сложения в N. Вычислим сумму чисел а и b по правилу сложения в Q+.

Третье условие, которое должно быть выполнено при расширении множества натуральных чисел - это выполнимость в Q+ операции, не всегда осуществимой в N. И это условие соблюдено: деление, которое не всегда выполняется в множестве N, в множестве Q+ выполняется всегда.

Сделаем еще несколько дополнений, раскрывающих взаимосвязи между натуральными и положительными рациональными числами.


Пусть неправильная дробь. Тогда т > п. Если т кратно n, то в этом случае дробь является записью натурального числа. Если число т не кратно n, то разделим т на n с остатком: т = nq + r, где r < n.

Например, сумму натурального числа и првильной дроби принято записывать без знака сложения: т.е. вместо пишут и называют такую запись смешанной дробью.

Справедливо также утверждение: всякую смешанную дробь можно записать в виде неправильной дроби. Например: В практической деятельности широко используются дроби, знаменатели которых являются степенями 10. Их называют десятичными.

Определение. Десятичной называется дробь вида, где т и п - натуральные числа.

Десятичные дроби принято записывать без знаменателя. Например, дробь записывают в виде 3,67, а дробь - в виде 0,007

Как известно, сравнение десятичных дробей и арифметические действия над ними легко выполнять, если дроби имеют один и тот же знаменатель.

В основе приведения десятичных дробей к общему знаменателю лежит следующее утверждение: если к десятичной дроби приписать справа любое число нулей, то получится десятичная дробь, равная данной.

Это свойство позволяет приводить десятичные дроби к общему знаменателю следующим образом: если у одной дроби после запятой стоит n цифр, а у другой р цифр, причем n < р, то для приведения их к общему знаменателю достаточно к первой дроби приписать справа р - n нулей. Тогда у обеих дробей после запятой будет стоять поровну цифр, а это значит, что они имеют один и тот же знаменатель.

Пользуясь этим правилом, легко выполнять сравнение десятичных дробей, так как оно сводится к сравнению натуральных чисел: чтобы сравнить две десятичные дроби, надо уравнять в них число десятичных знаков после запятой, отбросить запятые и сравнить получившиеся натуральные числа.

Как известно, для дробей, имеющих одинаковые знаменатели, сложение и вычитание сводится к соответствующим операциям над их числителями. Это позволяет свести сложение и вычитание десятичных дробей к действиям над натуральными числами.

Например, Умножение и деление десятичных дробей не требует приведения их к общему знаменателю, но они также сводятся к соответствующим действиям над натуральными числами.

Среди десятичных дробей выделяют и часто используют дробь 0,01. Ее называют процентом и обозначают 1%. Запись р% обозначает.

Например, 25% - это дробь, или 0,25.

Проценты были введены, когда не существовало десятичных дробей. Чтобы производить расчеты по займам, определяли прирост капитала из расчета 100 денежных единиц. Этот прирост и называли числом процентов (рго сеntum - на сто).

Простота сравнения и выполнения действий над десятичными дробями приводит к следующему вопросу: любую ли дробь вида можно записать в виде конечной десятичной дроби, т.е. дроби, у которой после запятой стоит конечное число цифр? Ответ на него дает следующая теорема.



Теорема. Для того чтобы несократимая дробь была равна десятичной, необходимо и достаточно, чтобы в разложение ее знаменателя п на простые множители входили лишь простые числа 2 и 5.

Так, например, дробь можно записать в виде десятичной: она несократима и 80 = 24·5. Дробь - несократима, но 15 = 3·5. Поскольку в разложение знаменателя этой дроби входит множитель, отличный от 2 и 5, то дробь нельзя записать в виде десятичной.



Дробь нельзя представить в виде конечной десятичной дроби.

Любую конечную десятичную дробь можно записать в виде бесконечной, приписав к ней справа последовательность нулей. Например, дробь 0,25 можно записать так: 0,25000...0....



Бесконечные десятичные дроби, которые получаются при записи положительного рационального числа, обладают особенностью - они являются периодическими. Это значит, что, начиная с некоторой цифры, они образуются бесконечным повторением одной и той же группы цифр

Теорема. Любое положительное рациональное число представимо бесконечной периодической десятичной дробью.

Одним из источников появления десятичных дробей является деление натуральных чисел, другим - измерение величин.

Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации