Министерство науки и высшего образования
Федеральная государственная бюджетная образовательная организация высшего образования
Вологодский государственный университет
Институт машиностроения, энергетики и транспорта
Кафедра электрооборудования
Тема «Ветроэлектрические станции, построенные в России»
13.03.02 Электроэнергетика и электротехника
Руководитель Бабарушкин В.А
Выполнил студент Сухарев Ю.А
Группа ЭО-21
Дата сдачи 12.01.21
Дата защиты
Оценка по защите
Вологда
2020
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
1 ИСТОРИЯ РАЗВИТИЯ ВЕТРОЭНЕРГЕТИКИ В РОССИИ 4
2 ЭНЕРГИЯ ВЕТРА И ЕЕ ХАРАКТЕРИСТИКИ 5
2.1 Ветер как источник энергии 6
2.2 Энергетические характеристики ветра 7
2.3 Принципы преобразования энергии ветра 10
3 ВЕТРОЭНЕРГЕТИКА СЕГОДНЯ В РОССИИ 11
ЗАКЛЮЧЕНИЕ 13
СПИСОК ЛИТЕРАТУРЫ 15
ВВЕДЕНИЕ
Цель данной курсовой работы: изучение ветроэнергетики в системе альтернативных способов получения энергии.
Реализация данной цели обусловила необходимость решения следующих задач:
-Изучить историю развития ветроэнергетики.
-Изучить энергию ветра и ее характеристики.
-Определить отрицательные аспекты ветроэнергетики.
-Выявить положительные и отрицательные стороны развития ветроэнергетики сегодня в России и за рубежом.
1 ИСТОРИЯ РАЗВИТИЯ ВЕТРОЭНЕРГЕТИКИ В РОССИИ
Конструкции первых ветряных мельниц в России были, по-видимому, заимствованы в Германии, и их называли немецкими. К началу ХVIIIв. число мельниц стало значительным, и их применение приобрело государственное значение. Многое для их распространения в России сделал Петр 1. В ХVIII– ХIХ вв. мельницы сооружались практически повсеместно, и к началу первой мировой войны в России эксплуатировалось более 200 тыс. мельниц, которые ежегодно перемалывали 2/3 всего товарного зерна.
В связи с началом электрификации сельского хозяйства были организованы работы по созданию ветроэлектрических станций (ВЭС). В 1930 году была спроектирована, а в 1931 году сооружена в Крыму самая крупная в мире ВЭС Д-30 мощностью 100 кВт. Станция работала до 1942 года и давала электроэнергию в сеть Севастополь энергонапряжением 6300 В. Среднегодовая выработка энергии ВЭС превышала 270 МВт/ч .
Уже в середине 50-х годов резко возрос выпуск ветроэнергетического оборудования различных типов только в 1956 г. было произведено 9 тыс. ветродвигателей. Были изобретены новые системы регулирования ветродвигателей, разработаны эффективные методы использования ВЭС, конструкции ветроагрегатов различного назначения, в том числе для пастбищного водоснабжения «Беркут» с электронасосом повышенной частоты, УВЭУ-(1-4)-6 (ныне АВЭУ-6), снабженный погружным электронасосом с двигателем промышленной частоты, ВБ-3Т с насосом вибрационного типа и ряд других. В 1971 году на ряде заводов был организован выпуск опытных партий агрегатов четырёх типов и проведена их эксплуатационная проверка на пастбищах Чёрных земель Кизлярских степей ив других зонах. Продолжались работы над созданием ветроагрегата Вихрь с пневматическим насосом, электрических агрегатов Сокол и УВЕУ-(8-16)-12 мощностью 15 кВт а так же разрабатывались проекты более мощных экспериментальных ВЭС до 100кВт предназначенных для комплексного использование. [1]
2. ЭНЕРГИЯ ВЕТРА И ЕЕ ХАРАКТЕРИСТИКИ
Ветер в приземном слое образуется вследствие неравномерного нагрева земной поверхности Солнцем. Поскольку поверхность Земли неоднородна, то даже на одной и той же широте суша и водные пространства, горы и лесные массивы, пустыни и болотистые низины нагреваются по-разному. В течение дня над морями и океанами воздух остается сравнительно холодным, поскольку значительная часть энергии солнечного излучения расходуется на испарение воды или поглощается ею. Над сушей воздух прогревается больше, расширяется, снижает свою массовую плотность и устремляется в более высокие слои над землей. Его замещают более холодные, а следовательно, более плотные воздушные массы, располагавшиеся над водными пространствами, что и приводит к возникновению ветра как направленному перемещению больших масс воздуха. Эти местные ветры, образующиеся в прибрежных зонах, носят название бризов. Годовые изменения температуры в береговых районах больших морей и океанов вызывают циркуляцию более крупного масштаба, чем бризы, называемые муссонами. Они делятся на морские и материковые, отличаются, как правило, большими скоростями и в течение ночи меняют свое направление. Аналогичные процессы происходят в гористых местах и долинах вследствие разных уровней нагрева экваториальных зон и полюсов Земли и многих других факторов. Характер циркуляции земной атмосферы усложняется вследствие сил инерции, возникающих при вращении Земли. Они вызывают различные отклонения воздушных течений, образуется множество циркуляции, в большей или меньшей мере взаимодействующих между собой.
Сила и направление ветра в различных зонах по-разному изменяются в зависимости от высоты над поверхностью Земли. Так, на экваторе близко к земной поверхности расположена зона с относительно небольшими и переменными по направлению скоростями ветра, а в верхних слоях возникают достаточно большие по скорости воздушные потоки в восточном направлении. На высоте от 1 до 4 км от поверхности Земли, в зоне между 30° северной и южной широт образуются достаточно равномерные воздушные течения, называемые пассатами. В северном полушарии ближе к поверхности Земли их средняя скорость составляет 7 — 9 м/с.
Вокруг зоны пониженного давления образуются крупномасштабные циркуляции воздушных масс — в северном полушарии против направления движения часовой стрелки, а в южном — по направлению ее движения. Вследствие наклона 23,5° оси движения Земли к плоскости ее вращения относительно Солнца происходят сезонные изменения тепловой энергии, получаемой от него, величина которых зависит от силы и направления ветра над определенной зоной земной поверхности.
На относительно большой высоте над поверхностью Земли (в среднем 8-12 км) в тропосфере возникают достаточно равномерные и мощные воздушные течения, получившие название струйных. Их образование вызвано особенностями высотной атмосферной циркуляции, поэтому характеристики струйных течений существенно отличаются от параметров приземного ветра.
Размеры струйных течений в поперечнике достигают 400-600 км, а протяженность - до 1000 км. Обычно они не подвержены большим сезонным изменениям, но могут менять свое расположение по высоте. Так, над Восточной Сибирью и Чукоткой они иногда опускаются до высоты 3-4 км от поверхности Земли. Скорости воздушных масс в ядре струйного течения составляют 30-80 км/ч, но часто доходят до 200 км/ч.
Таким образом, тепловая энергия, непрерывно поступающая от Солнца, преобразуется в кинетическую энергию движения в атмосфере огромных масс воздуха, циркуляция которых и называется ветром. [2]
2.2 Энергетические характеристики ветра
Ветер является одним из наиболее мощных энергетических источников, который издавна используется человеком, и при благоприятных условиях может быть утилизован в интересах народного хозяйства в значительно больших масштабах, чем это имеет место в настоящее время. По ориентировочным оценкам, энергия, которая непрерывно поступает от Солнца, соответствует суммарной мощности, превышающей 1011ГВт. Это определяет возможную годовую выработку энергии ветроагрегатами, равную 1,18 • 1013кВт /ч, что во много раз превышает количество энергии, потребляемой сегодня в мире. По оценкам МИРЭК, ежегодно в мире потребляется около 3 млрд. т условного топлива. В развитых странах потребление достигло 0,6 т условного топлива в год на одного человека, в развивающихся - в 3 раза меньше. [2]
Энергетические установки обычно используют ветер в приземном слое на высоте до 50 - 70 м, реже - до 100 м от поверхности Земли, поэтому наибольший интерес представляют характеристики движения воздушных потоков именно в этом слое. В дальнейшем, по мере создания соответствующих технических средств, могут оказаться практически ценными также струйные течения, характерные для тропопаузы.
Важнейшей характеристикой, определяющей энергетическую ценность ветра, является его. скорость. В силу ряда метеорологических факторов (возмущения атмосферы, изменения солнечной активности, количества тепловой энергии, поступающей на Землю, и других причин), а также вследствие влияния рельефных условий непрерывная длительность ветра в данной местности, его скорость и направление изменяются по случайному закону. Поэтому мощность, которую может вырабатывать ветроустановка в различные периоды времени, удается предсказывать с очень малой вероятностью. В то же время суммарную выработку агрегата, особенно за длительный промежуток времени, можно рассчитать с высоким уровнем достоверности, так как средняя скорость ветра и частота распределения скоростей в течение года или сезона изменяются мало.
Единицами измерения скорости в РФ являются метр в секунду (м/с) и километр в час (км/ч), за рубежом применяют также миля в час(1 миля/ч = 0,44 м/с). Направление вектора скорости измеряется в градусах или румбах и показывает его угловое положение относительно направления (обычно северного), принятого за начало отсчета.
Для измерения мгновенной скорости ветра, т.е. пути воздушного потока, пройденного им за промежуток времени, измеряемый секундами или даже долями секунд, пользуются анемометрами различных конструкций. Чем меньше интервал времени усреднения скорости, тем менее инерционным должно быть ветроприемное устройство анемометра. Поэтому для подобных измерений используют специальный класс приборов - малоинерционные.
Мгновенная скорость ветра часто определяет динамическое воздействие воздушного потока на ветродвигатель. Динамические характеристики потока, его порывы влияют на работу автоматических систем регулирования и ориентации. Количество энергии, которую может выработать ветроагрегат, зависит в первую очередь от усредненной скорости ветра за определенный интервал времени и по всему сечению потока, равному площади поверхности, ометаемой ветроколесом. Именно эта скорость в основном определяет также режимы работы агрегата.
Важной характеристикой является вертикальный профиль ветра, т.е. изменения его скорости по высоте в приземном слое. Влияние земной поверхности на скорость и направление ветра уменьшается по мере увеличения высоты. Поэтому скорость обычно возрастает, а порывистость и ускорения потока снижаются. Градиент скоростей летом, как правило, меньше, чем зимой, когда вертикальный перепад температур относительно небольшой. [3]
Важнейшее значение для надежности и долговечности ветроэнергетической установки имеют значения предельных скоростей ветра в зоне. Они определяют принимаемые расчетные нормативы при проектировании узлов и конструкций установки на прочность, параметры регуляторов, аэродинамические характеристики лопастей.
Линии, соединяющие точки на карте, имеющие равные величины К', называются изоплетами.
Энергия Е воздушного потока с поперечным сечением F, Дж:
v—скорость движения
F—сила
Таким образом, энергия ветра изменяется пропорционально кубу его скорости. Ветроколесо может преобразовать в полезную работу только часть этой энергии, которая оценивается коэффициентом использования энергии ветра.Для идеального крыльчатого ветроколеса максимально достижимая величина,рассчитанная по классической теории Н.Е. Жуковского и теории Г.Х. Сабинина, равна соответственно 0,593 и 0,687. Современные ветродвигатели при работе в номинальном (расчетном) режиме преобразуют в механическую работу не более 45 — 48% кинетической энергии ветрового потока, что вызвано различными потерями и другими причинами. [3]
Следовательно, секундная энергия, или мощность воздушного потока, пропорциональна его плотности, плошали поперечного сечения и кубу скорости.
Часть полной энергии потока, воспринятой ветроколесом, которую ветродвигатель преобразует в механическую энергию, оценивается коэффициентом использования энергии ветра, который зависит от типа ветродвигателя и режима его работы.
Более совершенными двигателями являются так называемые крыльчатые ветродвигатели с горизонтальной осью вращения ветроколеса, рабочий момент на котором создается за счет аэродинамических сил, возникающих на лопастях, которые в простейших конструкциях представляют собой плоскости.В современных агрегатах применяют лопасти, имеющие специальный аэродинамический профиль. Они появились примерно вIV—IIIв. до н. э. в Александрии [4]
3 ВЕТРОЭНЕРГЕТИКА СЕГОДНЯ В РОССИИ
У России есть обширные возможности для того, чтобы развивать возобновляемую энергетику. Однако несмотря на это, на сегодняшний день она, если доверять статистике, занимает только 64 место в мире по объему общей электрической мощности ветропарков. Говоря иначе, в России налицо почти полное отсутствие интереса к потенциалу данной сферы энергетики.
Согласно разным источникам суммарная мощность ветроэлектростанций в России составляет не более 16-17 МВт электроэнергии. При этом согласно данным Bloomberg в Китае мощность всех ветроэлектростанций составляет около 76 ГВт. А это значит, что российская ветроэнергетика производит за год примерно столько же энергии, сколько китайская ветроэнергетика может выдать за 2 часа.
Специалисты утверждают, что главная проблема развития альтернативной энергетики в России состоит в том, что подобные проекты нуждаются в значительных финансовых влияниях, хотя проведение, скажем, Олимпийских игр в Сочи, доказывает тот факт, что для реализации больших энергетических вливаний хватает возможностей, необходимо только желание. Согласно информации из интернета, если учитывать расходы на приобретение, монтаж и применение соответствующего оборудования в Российской Федерации, себестоимость 1 кВт/ч «ветряного» электричества составит от 6 до 18 рублей. При этом так называемая традиционная энергетика продает 1 кВт/ч за 2-4 рублей. Казалось бы, это показывает, что ветроэнергетика не является выгодным делом. Но при этом стоит сделать пару поправок. Во-первых, газ, нефть и другие ископаемые источники энергии рано или поздно закончатся. Во-вторых, благодаря стремительному развитию данной области энергетики и техническому прогрессу себестоимость вырабатываемой энергии продолжает ощутимо снижаться
На текущий момент на 70% территории Российской Федерации бензиновые или дизельные электростанции являются чуть ли не единственными источниками энергии. К примеру, на Крайнем Севере, где живет более 10 миллионов человек, каждый год расходуется 6-8 миллионов тонн топлива. При этом себестоимость вырабатываемой электрической энергии составляет от 10 до 12 руб. за кВт/час. Согласно оценкам экспертов, Применение ветродизельных установок в данном регионе позволит сократить расход топлива в два-три раза, что снизит цену электроэнергии.
На сегодняшний день Россия производит примерно 16 МВт ветряной энергии. Самая большая ветроэлектростанция располагается в районе поселка Куликово (Зеленоградского район Калининградской области), также большие электростанции находятся на Чукотке, в Коми, Калмыкии и Башкортостане. На северо-западе, востоке и юге страны существуют пригодные для строительства ветроэлектростанций площадки мощностью около 2500 МВт, а также площадки, ожидающие проектных работ по вводу мощностей более 3000 МВт. При этом на долю ветровой энергетики в Российской Федерации сейчас отводится 0,5-0,8% в общем энергетическом балансе страны.
Стоит отметить, что развитие ветровой энергетики было также обозначено в числе основных задач в рамках госпрограммы "Энергоэффективность и развитие энергетики", которая определяет ввод 6,2 ГВт генерации на основе ВИЭ до 2020 года. Ожидается, что это позволит увеличить долю такой генерации в текущем энергетическом балансе с 0,8% до 2,5%. Согласно планам полномочия по контролю за локализацией производства оборудования для ВИЭ в Российской Федерации будут даны Министерству торговли и промышленности. Премьер-министр Дмитрий Медведев ранее отметил, что если в России не будет создана нормативная база для стимулирования ВИЭ, страна станет заложником существующей ныне углеводородной модели энергетики.
ЗАКЛЮЧЕНИЕ
ветер энергия электростанция ветроколесо
В данной курсовой работе рассматривался вопрос изучения ветроэнергетики в системе альтернативных способов получения энергии.
В ходе данной работы были решены следующие задачи:
Неоспорима роль энергии в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы–прямо или косвенно–больше энергии, чем ее могут дать мускулы человека.
Потребление энергии–важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около8МДж энергии. После овладения огнем эта величина возросла до 16МДж: в примитивном сельскохозяйственном обществе она составляла 50МДж, а в более развитом– 100МДж.
За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.
Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма».
Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.
И вот новый виток в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.
В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.
Но времена изменились. Сейчас, начинается новый, значительный этап земной энергетики. Появилась энергетика «щадящая». Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.
Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.
Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.
Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, кликов радости и побед. Тернист, непрост, непрям энергетический путь человечества. Но мы верим, что мы на пути к Эре Энергетического Изобилия и что все препоны, преграды и трудности будут преодолены.
Очевидно, что мировая ветроэнергетика на сегодняшний день является основным направлением стратегии развития возобновляемых источников энергии, которые должны рано или поздно заменить традиционные углеводороды. [5]
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
2. Максимов, И.Г. Альтернативные источники энергии / И.Г. Максимов - Москва: Эко-Тренд, 2005. - 387 с
3. Шейдлин А. Е. Новая энергетика. – М.: Наука, 1987. – 463 с.
4. Богуславский Э.И., Виссарионов В.И., Елистратов В.В., Кузнецов М.В. Условия эффективности и комплексного использования геотермальной солнечной и ветровой энергии //Международный симпозиум “Топливно-энергетические ресурсы России и др. стран СНГ". Санкт-Петербург, 1995.