Преимущества ультразвукового (УЗ) способа обработки перед другими заключаются в возможности обрабатывать непроводящие и непрозрачные материалы, а также в отсутствии после обработки остаточных напряжений, приводящих при использовании других способов к образованию трещин на обрабатываемой поверхности.
Ультразвуковой способ обработки представляет собой разновидность обработки долблением – хрупкий материал выкалывается из изделия ударами зерен более твердого абразива, которые направляются торцом рабочего инструмента, колеблющегося с ультразвуковой частотой. Применение ультразвуковых колебаний позволяет интенсифицировать процесс хрупкого разрушения обрабатываемого материала за счет создания сетки микротрещин и выколов на поверхности.
Технология ультразвуковой обработки заключается в подаче абразивной суспензии в рабочую зону, т.е. в пространство между колеблющимся с высокой частотой торцом рабочего инструмента и поверхностью обрабатываемого изделия. Зерна абразива под действием ударов колеблющегося инструмента ударяют по поверхности обрабатываемого изделия и проводят его разрушение. В качестве абразива обычно используются карбид бора или карбид кремния, в качестве транспортируемой жидкости – обычная вода.
Вследствие воздействия частичек абразива на поверхность рабочего инструмента происходит его разрушение. Для уменьшения износа рабочего инструмента его обычно выполняют из вязких материалов, не разрушающихся под действием ударных нагрузок.
Частицы абразива под действием ударов раскалываются. Поэтому в зону обработки непрерывно подается абразивная суспензия, несущая зерна свежего абразива и удаляющая частицы снятого материала и размельченный абразив.Для уменьшения шумового воздействия от работающих ультразвуковых аппаратов, рабочая частота выбирается достаточно высокой, обычно это 22 КГц или более.
Подача рабочего инструмента в направлении колебаний обеспечивает формирование полости, копирующей форму рабочего инструмента. Таким образом, ультразвуковая размерная обработка базируется на двух основных процессах:
При использовании сплошных инструментов и достаточном запасе мощности применяемых генераторов (что было ранее) рассматриваемое предположение не подтверждается экспериментально. Однако, при использовании трубчатых инструментов с тонкой стенкой в комплекте с маломощными генераторами амплитуда колебаний инструмента уменьшается и скорость обработки падает. Второе предположение, основанное на результатах многочисленных экспериментов, объясняет уменьшение скорости обработки с увеличением глубины, ухудшением условий подачи свежего абразива в зону обработки и удаления продуктов обработки. Экспериментально установлено, что при отсутствии подачи свежего абразива, имеющийся разрушается так, что за 0,5...0,6 секунд размеры частиц уменьшаются в пять раз. В начале 70-х годов были детально изучены основополагающие физические принципы ультразвуковой обработки хрупких материалов. Одновременно с исследованиями физических процессов шло создание УЗ станков для промышленного использования.
Первые сведения о разработке оборудования и использовании УЗ станков относятся к 1955 г. Эти станки выполнялись на базе традиционных сверлильных и фрезерных станков и характеризовались очень малой эффективностью и надежностью.
Параллельно шло создание опытных образцов промышленных универсальных и специализированных ультразвуковых станков, и исследовались методические особенности их эксплуатации при решении различных задач. Типичная конструктивная схема станка для ультразвуковой обработки имеет ряд специфических узлов, отличающих его от традиционных металлорежущих станков (см. рисунок 1.1).
Ультразвуковой станок содержит генератор электрических колебаний ультразвуковой частоты 1, ультразвуковую колебательную систему 2, обеспечивающую преобразование электрических колебаний в механические ультразвуковые и их введение в обрабатываемое изделие 3. Для перемещения ультразвуковой колебательной системы используется механизм подачи 4. Система подачи абразивной суспензии включает в себя насос 5 и устройство подачи 6 суспензии в зону обработки.
Кроме того, ультразвуковой станок имеет ряд узлов, используемых в обычных металлорежущих станках: стол 7, станину 8. Ультразвуковая колебательная система содержит электромеханический преобразователь (ранее обычно использовался преобразователь магнитострикционного типа), концентратор - усилитель амплитуды ультразвуковых колебаний и рабочий инструмент. Применение концентратора обеспечивает необходимую амплитуду колебаний рабочего инструмента (10...70 мкм) на заданной рабочей частоте. Механизм подачи прижимает рабочий инструмент к обрабатываемому изделию, укрепленному на столе, с небольшим усилием (до 3 ...-5 кг) и по мере съема материала осуществляет подачу инструмента, поддерживая течение процесса.
Акустическим институтом АН СССР был разработан экспериментальный образец ручного УЗ станка модели УЗ - 45 на основе электрического генератора мощностью 200 Вт. Созданный станок работал в диапазоне рабочих частот 23...29 КГц, обеспечивал амплитуду колебаний рабочего инструмента 15...20 мкм. Габаритные размеры ультразвуковой колебательной системы составляли 195х20 мм и масса 0,5 кг. Станок использовался для ручной обработки (гравирование и маркировка). Следует отметить, что УЗ установки первой группы для обработки деталей из твердых хрупких материалов до настоящего времени не получили широкого развития. Обусловлено это было низкой надежностью и эффективностью самих установок, выполненных на основе ламповых генераторов, и использованием магнитострикционных преобразователей, требующих принудительного водяного охлаждения, с одной стороны, и практически полным отсутствием до 90-х годов потребностей в таких станках из-за отсутствия индивидуальных потребителей, малых предприятий и мелкосерийных производств.
Наибольшее количество установок и станков, созданных и использующихся как в нашей стране, так и за рубежом, относились ко второй группе. Эти станки традиционно выполнялись с жесткой станиной и массивной фундаментной плитой, а по внешнему виду напоминали и на практике выполнялись на базе вертикальных или радиально-сверлильных и вертикально-фрезерных станков. Ультразвуковая колебательная система таких станков выполнялась на основе магнитострикционного преобразователя, имела значительные габариты (более 400х150 мм), требовала принудительного водяного охлаждения (расход воды не менее 1 л/мин) и жестко соединялась со станком.
Станки мощностью 0,4 кВт (модель 4771А) обеспечивали выполнение отверстий диаметром от 0,5 до 15 мм с производительностью до 500 мм3/мин, что соответствовало энергоемкости процесса - 50 Дж/мм3. Станки мощностью 1,5 кВт (например, модели 4772А и Диатрон фирмы "Лефельдт") при собственной массе в 1000 кг обеспечивали выполнение отверстий диаметром до 40 мм и характеризовались энергоемкостью процесса, равной 75 Дж/мм3. Станки большой мощности получили незначительное распространение. Они были изготовлены в единичных экземплярах и применялись только в крупносерийном производстве для обработки деталей из твердых сплавов, твердой керамики, изготовления небольших матриц и заточки инструментов. Типичный представитель этой категории станков - станок модели 4773А массой 1500 кг., мощностю на входе преобразователя 4 кВт (потребляемая мощность более 10 кВт). Станок обеспечивал выполнение отверстий диаметром не более 60 мм и характеризовался энергоемкостью процесса прошивки, превышающей 70 Дж/мм3 (по стеклу).
Таким образом, разработанные в нашей стране и за рубежом ультразвуковые прошивочные станки обеспечили выполнение отверстий диаметром до 60 мм (обычное сверление алмазосодержащим инструментом - не более 25 мм). Сам технологический процесс обработки характеризовался энергоемкостью, превышающей 50...75 Дж/мм3 (энергоемкость снизилась в 25...40 раз по сравнению с алмазным сверлением).
Кроме того, практически все станки использовали сплошные ультразвуковые инструменты, что приводило к нерациональному использованию абразивных материалов (вместо выполнения отверстий путем вырезки по контуру осуществлялся съем полного объема материала выполняемого отверстия).
Большое число нерешенных проблем, высокие энергоемкость процесса и стоимость использовавшихся станков, не достаточно рациональное использование абразивных материалов, непрерывное появление новых задач, новых материалов и комплектующих не позволяют считать процесс совершенствования технологических процессов и создания многофункциональных малогабаритных, достаточно надежных и экономичных ультразвуковых станков завершенным. Кроме того, до настоящего времени не были преодолены некоторые существенные технологические трудности, возникающие при обработке хрупких материалов на УЗ станках и установках. Это в первую очередь, связано с невозможностью выполнения отверстий большого диаметра (более 60...80 мм) и отсутствием станков с переносными малогабаритными колебательными системами.
В связи с этим возникает необходимость существенного повышения КПД станков для снижения энергоемкости технологического процесса ультразвуковой прошивки.
Однако ультразвуковая обработка алмазным инструментом с одновременным вращением пока не получила широкого распространения из-за недостаточного уровня теоретических знаний и экспериментальных результатов о физических процессах, происходящих при такой обработке, а главное, из-за отсутствия лабораторных и промышленных установок для проведения необходимых экспериментальных работ и промышленного применения. Известно, что при воздействии УЗ колебаний в зоне контакта алмаза с образцом, на поверхности последнего образуется зона повышенной трещиноватости - зона предварительного разрушения. Роль УЗ колебаний заключается в интенсификации процесса хрупкого разрушения обрабатываемого материала за счет создания сетки трещин и выколов на его поверхности.
Основным механизмом локального разрушения хрупких материалов при абразивных методах обработки является возникновение и распространение на некоторую глубину микро - и макротрещин. Эти микротрещины, пересекаясь между собой, создают механически ослабленный слой, легко разрушающийся при повторном воздействии абразивных зерен. При вдавливании алмазного зерна вначале образуется кольцевая трещина, переходящая в дальнейшем (на второй стадии разрушения) в конусообразную трещину. Глубина распространения трещин определяется величиной приложенной нагрузки, состоянием поверхностного слоя и свойствами обрабатываемого материала. Изучение кольцевых трещин под микроскопом и в поляризованном свете показало, что на первой стадии (возникновение кольцевых трещин) действие ультразвука незначительно. Наибольший эффект от воздействия ультразвуковых колебаний наблюдается во второй стадии. На этой стадии ультразвуковые колебания способствуют расклиниванию микротрещин, ускоряя процесс обработки в десятки раз.
Глубина проникновения микротрещин при алмазном сверлении без ультразвукового воздействия оказалась на 10...15% меньше, чем с применением ультразвукового воздействия. В ходе исследований было выявлено, что производительность зависит от удельной статической нагрузки на инструмент и достигает максимума при определенной нагрузке для каждого материала, прочности и площади используемого инструмента. Производительность также возрастала при увеличении частоты вращения инструмента от 600 до 2500 оборотов в минуту.
Большое влияние на эффективность процесса УЗ обработки оказывает концентрация алмазов, их зернистость и тип связки. Наилучшие результаты были получены при использовании инструментов из природных и синтетических алмазов марки АСК на металлических связках М5-10 и М5-6 при обработке твердых материалов (металлокерамика, рубин и т.п.). Для обработки менее твердых материалов (например, технического стекла) целесообразным оказалось использование инструментов из алмазов марок АСВ и АСР на тех же связках. Величина оптимального размера алмазных зерен различна для различных материалов и обычно изменяется в пределах от 50 до 250 мкм.
В связи с тем, что ультразвуковая обработка алмазным инструментом с обеспечением вращения рабочего инструмента является наиболее эффективной, возникает необходимость в создании простых, надежных и эффективных малогабаритных устройств для ультразвуковой обработки. Устройства должны быть пригодны для комплектации стандартных станков. Также необходимы изучение процессов такой обработки, отработка технологии и промышленное применение разработанных устройств. В связи с тем, что ультразвуковая прошивка является наиболее эффективной при амплитуде колебаний не менее 30 мкм, а алмазосодержащие инструменты разрушаются при амплитуде более 15 мкм, очевидным было бы использование процесса ультразвуковой прошивки металлическим вращающимся рабочим инструментом с применением традиционных абразивных материалов. Однако этот, очевидно эффективный, способ до настоящего времени на практике не реализуется из-за отсутствия специализированного оборудования и методических рекомендаций по его применению.
Таким образом, требования современных производств обуславливают необходимость дальнейшего совершенствования технологии УЗ обработки и создания малогабаритных, высокоэффективных и многофункциональных станков, пригодных как для стационарного использования, так и для обработки различных изделий без их перемещения на рабочий стол станка. Из анализа современного состояния ультразвуковой техники, накопленного опыта, современного уровня развития электроники и в связи с созданием новых материалов для излучателей УЗ колебаний следует, чтобы преодолеть вышеуказанные недостатки разработанных ранее станков и апробированных способов обработки необходимо использовать следующие перспективные направления развития: