Девятко И.Ф. Методы социологического исследования - файл n2.doc

приобрести
Девятко И.Ф. Методы социологического исследования
скачать (364.3 kb.)
Доступные файлы (3):
n1.doc484kb.09.11.2002 11:51скачать
n2.doc492kb.09.11.2002 11:52скачать
n3.doc686kb.09.11.2002 11:52скачать

n2.doc

  1   2   3   4   5   6   7   8   9   10
Русский Гуманитарный Интернет Университет

Библиотека
Учебной и научной литературы

WWW.I-U.RU


щего собой — в согласии с нуль-гипотезой — среднее гипотетического распре­деления разностей средних, t-распределения. Для этого полученную в экспери­менте разность групповых средних нужно перевести в t-единицы (т. е. единицы стандартного отклонения для t-распределения). Для данной разности средних величину t можно высчитать по формуле:



Полученное значение t нужно сравнить с соответствующим значением из таблицы t-распределения для избранного уровня значимости = 0,05 или 0,01) и числа сте­пеней свободы, соответствующего количеству наблюдений в каждой группе (или подвыборке). Число степеней свободы — довольно сложное статистическое поня­тие, анализ которого выходит за пределы этого учебника (в самом общем виде оно обсуждается в гл. 7). На практике число степеней свободы можно рассматривать как величину, равную числу наблюдений (испытуемых, опрошенных, баллов и т. п.) минус число оцениваемых параметров. Для разности средних двух групп это со­ставит число наблюдений в экспериментальной группе минус один (nэ  1) плюс число наблюдений в контрольной группе минус один (пk  1):

Nст.своб. = (nэ  1) + (пk  1)

Таблицы t-распределения можно найти в любом учебнике или справочнике по статистике (см. «Дополнительную литературу» к данной главе, а также к гл. 8). Здесь мы приводим лишь фрагмент такой таблицы.

Таблица 4.1


Сокращенная таблица t-распределения

Стьюдента (W. Gosset, 1908)

Число степеней свободы


Р = 0,05

Р = 0,01

1

t = 12,706

t = 63,657

2

t = 4,303

t = 9,925

5

t = 2,571

t = 4,032

8

t = 2,306

t = 3,355

10

t = 2,228

t = 3,169

14

t = 2,145

t = 2,977

16

t = 2,120

t = 2,921

20

t = 2,086

t = 2,845

30

t = 2,042

t = 2,750

60

t = 2,000

t = 2,660

120

t = 1,980

t = 2,617



t = 1,960

t = 2,576


Рассмотрим пример вычисления t для описанного выше эксперимента, в кото­ром изучалось воздействие антивоенного фильма на изменение установок сту­дентов. Пусть для контрольной и экспериментальной групп при итоговом тес­тировании по шкале пацифистских установок были получены следующие ре­зультаты:

Контрольная группа

Экспериментальная группа


nk = 28 чел.

Nэ = 34 чел.





Sk = 5,6

Sэ= 3,4


Наша статистическая задача заключается в том, чтобы определить, отличаются ли средние двух групп настолько, чтобы можно было отвергнуть нулевую гипо­тезу о том, что эти средние взяты из одной генеральной совокупности. Вос­пользуемся приведенной выше формулой для вычисления значения t1:


Число степеней свободы в приведенном примере: (28  1) + (34  1) = 60.

Полученное значение t = 3,4760 заведомо превосходит табличные значения и для p < 0,05, и для р < 0,01 (на 5%-м уровне значение t для 60 степеней свободы составит 2,00, а на 1%-м — 2,660). Следовательно, мы можем отклонить нуле­вую гипотезу и сделать вывод, что существует статистически значимая разница между средними уровнями пацифизма в группе студентов, посмотревших ан­тивоенный фильм, и в контрольной группе.

Важно, однако, всегда помнить о том, что статистическая значимость результа­тов совершенно отлична от их содержательной значимости! Даже высокая ста­тистическая значимость результатов эксперимента не гарантирует, что эти результаты будут иметь сколько-нибудь интересную интерпретацию и повлияют на состояние современного социологического знания. Содержательная значимость зависит прежде всего от нашей способности увязать экспериментальную гипотезу с существующими социологическими теориями.
Многомерные и факторные эксперименты:

общий обзор

В описанных выше экспериментах с контрольной группой каждый раз используются лишь два типа условий — «есть воздействие» либо «нет воздействия». Эти два типа условий по сути можно рассматривать как два уровня независимой переменной, которым можно присвоить условные числовые значения — например, «1» и «0». Иными словами, с точки зрения уровня измерения незави­симая переменная является номинальной, качественной. В контрольной группе ее значение равно нулю, в экспериментальной — единице. Однако исследователь часто располагает значительно большей информацией о независимой переменной и способен измерить и проконтролировать ее по крайней мере на трех-четырех уровнях значений. Соответственно экспериментальная гипотеза может быть сформулирована в терминах более или менее интенсивного воздей­ствия либо наличия-отсутствия «отклика» зависимой переменной при конкрет­ных уровнях независимой переменной.

В психологии хорошо известен закон «оптимума мотивации», так называ­емый закон Йеркса-Додсона.

В начале нашего века Р. Йеркс изучал, как влияет негативное подкрепле­ние в форме удара электрическим током на выработку элементарных на­выков у животных. В частности, в опытах с «танцующими мышами» (раз­новидность домашней мыши, имеющая генетический дефект, который заставляет ее двигаться по кругу или по восьмерке) он использовал три уровня силы тока — «сильный» (500 усл. ед.), «средний» (300 усл. ед.) и «слабый» (125 усл. ед.). Мышь должна была научиться выбирать один из двух туннелей. В конце туннеля ее в любом случае ожидало «вознаграждение» — мышь противоположного пола. При ошибочном выборе (белый туннель) мышь испытывала удар током, при правильном выборе (черный туннель) негативное подкрепление отсутствовало. Местоположение туннелей (слева-справа) менялось случайным образом от пробы к пробе. Выяснилось, что быстрее всего обучение происходит при «средней» вели­чине стимуляции. Обнаруженный в этом эксперименте нелинейный ха­рактер связи между величиной стимула к решению определенной задачи и успешностью решения был затем неоднократно подтвержден и во многих других экспериментах, в том числе с испытуемыми-людьми и с пози­тивной стимуляцией. Чрезмерная мотивация и чрезмерная величина под­крепления, как и слабая мотивация, всякий раз оказывали меньшее воз­действие на успешность выполнения различных задач.

Эксперименты, в которых используется несколько (более двух) уровней незави­симой переменной, называются многоуровневыми. Схема вышеописанного эксперимента с рандомизацией и тремя уровнями независимой переменной 1 Х2, Х3 ) такова:

R

X1

O1


R

X2

O2

R

X3


O3
  1   2   3   4   5   6   7   8   9   10


Русский Гуманитарный Интернет Университет
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации