Шпоры по физике, оптика - файл n1.docx

приобрести
Шпоры по физике, оптика
скачать (25812.3 kb.)
Доступные файлы (1):
n1.docx25813kb.18.09.2012 13:28скачать

n1.docx

1   2
62. Дифракційна природа оптичного зображення

.1. Критерій Релея

Дослід Аббе свідчить про дифракційну природу оптичного зображення, якщо на капронову сітку направляти розширений пучок лазерного випромінювання на екрані спостерігають її зображення. Потім за сіткою встановлюють лінзу з фокусною відстанню F=50 мм. В фокусі цієї лінзи вертикально розміщують щілину. При зменшенні ширини щілини помічають, що вертикальні смуги на екрані зникають. Далі щілину встановлюємо горизонтально. Наслідком цього є поява на екрані вертикальних смуг. Якщо ж щілину поставити під кутом 450 до горизонту, на екрані з’являться смуги під кутом 1350 до горизонту.

Які обмеження накладає хвильова природа світла на розрізнене сприймання двох джерел? Під роздільною здатністю оптичної системи розуміють її властивість давати роздільне зображення дрібних деталей об’єкта без порушення подібності їх предмету. Два точкових джерела сприймаються роздільно, якщо вони попадають, насамперед, на різні світлочутливі клітини на сітківці ока, роздільна здатність ока, в свою чергу, обмежується дифракційними явищами і зв`язана з розмірами зрачка. Зображення предметів складається із зображення сукупності точок і створюється за допомогою оптичних приладів. Вони складаються з оптичних деталей, розміри яких обмежені. Тому, наприклад, будь-який об`єктив, по суті, слугує дифракційним отвором.

У відповідності з двома схемами спостереження дифракції розрізняють оптичні прилади, у яких зображення створюються незалежно від присутності людини, і прилади, що працюють разом з оком людини. В першому випадку приймачами світла можуть бути фотопластинки, фотоопори, екрани, на яких дістають дійсне зображення. У другому випадку приймачем світла є око людини, яке може сприймати уявне зображення. Щоб узгодити ці прилади, треба знати той єдиний критерій, за яким дані, одержані в дійсній і уявній картині, будуть співпадати.

Нехай ми спостерігаємо досить віддалені точкові джерела світла S1 i S2 (фари автомобіля, що наближається, або дві зірки, на які направили об`єктив телескопа) з такої відстані, що їх дифракційні картини майже перекриваються або перекривають одна одну так, що їх максимуми співпадають. Тоді точки S1 i S2 зливаються і роздільно не сприймаються. Навіть якщо вони і попадають на різні світлочутливі точки ока, ми не бачимо їх нарізно. При наближенні автомобіля наступає момент, коли ми можемо сказати, що бачимо не одне, а два зображення. Щоправда, для різних спостерігачів він наступає дещо по-різному.

Тому загальноприйнятим став критерій розділення Релея. Він стосується в однаковій мірі всіх приладів, бо зумовлюється роздільною здатністю ока. Дві точки ми бачимо нарізно, якщо вони сприймаються різними світлочутливими клітинами на сітківці ока, а це наступає, коли, як встановив Релей, центр дифракційного диска однієї співпадає з мінімумом на дифракційній картині другої. Іншими словами, умовою або межею розділення (можливості бачити нарізно) стала кутова півширина першого мінімуму дифракції від щілини (3) і отвору ( ). На розділення двох джерел не впливає зміна їх розмірів, якщо мінімальна відстань між ними підтримується постійною: роздільна здатність визначається дифракцією світла від внутрішніх шарів. Тим самим, дифракція обмежує збільшення оптичними приладами, бо в межах будь-яке збільшення означає лише збільшення дифракційної картини без збереження подібності об`єкта. Однак, хоча дифракція обмежує збільшення і роздільну здатність, завдяки їй установлюється чітка межа розділення дифракційних зображень оптичними приладами.

63. Роздільна здатність мікроскопа і телескопа

Ми розглянули критерій Релея, який дає змогу розрізнити предмети за їх дифракційними зображеннями, не торкаючись питання про те, як утворюються зображення самих предметів. Критерій Релея в однаковій мірі відноситься до всіх оптичних приладів, основне призначення яких полягає у створенні зображень предметів, і стосується самосвітних і освітлювальних об’єктів. Теорію роздільної здатності для мікроскопа розробив німецький учений Ернст Аббе (1840-1905), який указав на різницю між утворенням зображення освітлених точок, і тих, що світяться. Завдяки його працям і діяльності організатора оптичного виробництва Карла Цейса (1816-1888) інструментальний арсенал оптики вийшов на той рівень, який відомий нам і сьогодні. Що нового приносить теорія Аббе до критерію Релея? Коротко про це можна сказати так. Для того , щоб розрізнити дві світні некогерентні точки в телескопі, достатня участь променів нульового максимуму, а щоб побачити дві освітлювані когерентні точки в мікроскопі, необхідна участь принаймні і променів першого максимуму.

Якщо для ока і телескопа мінімальна кутова відстань між точками, які можуть бути розділені як окремі, становить , то при тій же кутовій відстані точок у мікроскопі ми їх не побачимо, поки кожна з них, просто кажучи, не утворить у ньому зображення. Пояснити це означає вияснити:

  1. за рахунок чого утворюється зображення предметів у мікроскопі;

  2. як забезпечити подібність зображення його об’єкту.

21.Кільця Ньютона.

Інтерференційна картина від клина змінної товщини вперше була вивчена Ньютоном. Схема спостереження так званих кілець Ньютона зображена на рис.8. Плоскоопукла лінза з великим радіусом кривизни (10 .100 м) притискається опуклою поверхнею до плоскої пластинки так, що між ними утворюється повітряний клин змінної товщини d, яка залежить від розташування точки В, що описується радіусом r. З прямокутного трикутника АВС маємо:

r 2 = R2 – (R – d)2 = (2r –d) d = 2Rd

або d = r2 / 2R (18).

Пучок паралельних променів падає нормально на лінзу. Промінь, що досяга. Точки В, частково відбивається, а частково проходить у повітряний клин( практично вертикально, тому що кривизна лінзи дуже мала). Відбиваючись у точці Д від пластинки, він повертається назад і інтерферує з променем, відбитим у точці В. У точці Д відбувається відбивання від оптично більш густого середовища (лінза), тому шлях збільшується на півхвилі, і оптична різниця ходу обох інтерферуючих відбитих променів дорівнює:

? = 2d + ?0/2 = r2/R + ?0/2 . (19)

При освітленні системи монохроматичним світлом у відбитому світлі будуть спостерігатись світлі та темні кільця сталих радіусів r , які чергуються (рис.8). Радіуси темних кілець визначаються за умовою мінімумів інтерференції : ? = (2m + 1)?/2, тобто r2/R + ?/2 = m? + ?/2,

тому радіус m – го темного кільця дорівнює: rm = (m?R)1/2 . (20)

Радіуси послідовних світлих кілець знаходяться за умовою максимумів:

? = 2m?/2, тому радіус m - світлого кільця rm = ((m – 1/2) ?R)1/2 . (21)

Відлік темних кілець починається з m = 0, тобто від самого центру інтерференційної картини, а відлік світлих кілець – з m =1. Радіуси кілець зростають пропорційно корню квадратному з їх номера m, тобто з віддаленням від центру кільця розміщуються густіше (рис.8.б). При освітленні приладу білим світлом світлі кільця стануть різнокольоровими.

http://ua.textreferat.com/images/referats/222/image009.gif

Вимірюючи радіуси кілець, можна, якщо відомий радіус кривизни R, визначити довжину хвилі світла ?, яким освітлюється прилад, і навпаки, знаючи ?, знайти радіус кривизни лінзи R.

Правильна форма кілець Ньютона легко спотворюється при будь-яких, навіть незначних, дефектах в обробці опуклої поверхні лінзи і верхньої поверхні пластини. Тому спостереження форми кілець Ньютона дає можливість здійснювати швидкий і дуже точний контроль якості шліфування плоских пластин і лінз, а також близькість поверхонь останніх до сферичної форми.
1   2


62. Дифракційна природа оптичного зображення
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации