Атанов И.В. Автоматизированный электропривод - файл n1.doc

приобрести
Атанов И.В. Автоматизированный электропривод
скачать (2945.5 kb.)
Доступные файлы (1):
n1.doc2946kb.18.09.2012 11:46скачать

n1.doc

1   2   3   4   5   6   7   8   9   10

Блокировки и сигнализация в ЭП



Электрические блокировки в схемах ЭП служат для обеспечения заданной последовательности операций при управлении, предотвращения нештатных и аварийных ситуаций, а также для предотвращения последствий неправильных действий оператора, что значительно повышает надежность работы ЭП и технологического оборудования. Так, например, перекрестное включение размыкающих контактов контакторов КМ1 и КМ2 в цепи катушек не допускает включения одного из них при включенном другом. Такая блокировка применяется в реверсивных ЭП, где недопустима одновременное включение двух контакторов, или в ЭП с электрическим торможением двигателя, где торможение может начаться только после отключения двигателя от сети.


Рисунок 7 – Примеры блокировок
Одновременное включение двух контакторов можно предотвратить также, используя двухцепные кнопки управления, имеющие: размыкающий и замыкающий контакты. Как видно из рисунка нажатие любой из кнопок приводит к замыканию цепи катушки oдного из контакторов и одновременному размыканию цепи другого контактора.

На рисунке 7 приведена схема некоторой технологической блокировки двух ЭП, работающих совместно. Она допускает включение контактора КМ1 одного ЭП только после включения контактора КМ2 другого ЭП и при нажатом путевом выключателе SQ. Некоторые другие виды блокировки будут рассматриваться далее в конкретных схемах управления.

Сигнализация в схемах управления ЭП применяется при контроле хода технологического процесса, последовательности выполнения операций, состояния защиты ЭП, наличия напряжения питания.

Применяется сигнализация, которая может бы световой (сигнальные лампы, табло, звуковой (звонок, сирена) и визуально (указательные реле, измерительные приборы).




QF

QF


HL1

R1




HL2

R2

KM




FA




HL3

R3




HL4

R4

SQ



Рисунок 8 – Примеры сигнализации в ЭП
На рисунке 8 представлена возможная сигнализация в схемах управления ЭП. Здесь лампа HL1 сигнализирует о подаче напряжения на схему (включение автоматического выключателя QF), лампа HL2 - о включении контактора КМ, лампа HL3 - о срабатывании реле максимальной токовой защиты FA, лампа HL4 - о срабатывании конечного выключателя SQ.


Лекция №7

Типовые узлы и схемы управления ЭП с двигателями ПТ
Вопросы

  1. Типовая схема пуска ДПТ НВ в функции времени

  2. Типовая схема пуска двигателя ПТ в две ступени в функции ЭДС и динамического торможения в функции времени

  3. Типовая схема пуска двигателя с последовательным возбуждением в функции тока




    1. Типовая схема пуска двигателя постоянного тока с независимым возбуждением в функции времени


Данная схема (рис.1) содержит кнопки управления SB1 (пуск) и SB2 (останов, стоп ДПТ), линейный контактор КМ1, обеспечивающий подключение ДПТ к сети, и контактор ускорения КМ2 для выключения (закорачивания) пускового резистора Rд. В качестве датчика времени в схеме использовано электромагнитное реле времени КТ. При подключении схемы к источнику питания происходит возбуждение ДПТ и срабатывает реле КТ, размыкая свой размыкающий контакт в цепи контактора КМ2 и подготавливая двигатель к пуску.

Пуск ДПТ начинается после нажатия кнопки SB1, в результате чего получает питание контактор КМ1, который своим главным контактом подключает ДПТ к источнику питания. Двигатель начинает разбег с резистором в цепи якоря. Одновременно замыкающий блок-контакт контактора КМ1 шунтирует кнопку SB1 и она может быть отпущена, а размыкающий блок-контакт КМ1 разрывает цепь питания катушки реле времени КТ. Через интервал времени ?tкт после прекращения питания катушки реле времени, называемый выдержкой времени, размыкающий контакт КТ замкнется в цепи катушки контактора КМ2, последний включится и своим главным контактом закоротит пусковой резистор Rд в цепи якоря.

Таким образом, при пуске ДПТ в течение времени ?tкт разгоняется по искусственной характеристике 1 (рис.2,б), а после шунтирования резистора — по естественной 2. Величина сопротивления резистора Rд выбрана таким образом, что в момент включения двигателя ток I в цепи якоря и соответственно момент М не превосходят допустимого уровня. За время ?tкт после начала пуска скорость вращения двигателя достигает величины ?1, а ток в цепи якоря снижается до уровня I2. После шунтирования Rд происходит бросок тока в цепи якоря от I2 до I1 который не превышает допустимого уровня. Изменение скорости, тока и момента во времени происходит по экспоненте и может быть рассчитано. Время изменения скорости от нуля до установившегося определяется настройкой реле времени.


Рисунок 1 - Схема (а) пуска двигателя постоянного тока независимого возбуждения в функции времени, (б) механические характеристики

2 Типовая схема пуска двигателя ПТ в две ступени в функции ЭДС и динамического торможения в функции времени
В схеме (рис.2) в качестве датчика скорости (ЭДС) использован якорь М, к которому подключены катушки контакторов ускорения КМ1 и КМ2. С помощью регулировочных резисторов Ry1 и Ry2 эти контакторы могут быть настроены на срабатывание при определенных скоростях двигателя.

Для осуществления торможения в схеме предусмотрен резистор Rд3, подключение и отключение которого осуществляется контактором торможения КМЗ. Для обеспечения выдержки времени используется электромагнитное реле времени КТ, размыкающий контакт которого включен в цепь контактора торможения КМ3.

После подключения схемы к источнику питания происходит возбуждение ДПТ, причем аппараты схемы остаются в исходном положении. Пуск ДПТ осуществляется нажатием кнопки SB1, что приводит к срабатыванию линейного контактора КМ и подключению ДПТ к источнику питания.

Двигатель начинает разбег с включенными резисторами в цепи якоря Rд1 и Rд2 по искусственной характеристике. По мере увеличения скорости ДПТ растет его ЭДС и соответственно напряжение на катушках контакторов КМ1 и КМ2. При скорости ?1 срабатывает контактор КМ1, закорачивая своим контактом первую ступень пускового резистора Rд1, и двигатель переходит на характеристику 2. При скорости ?2 срабатывает контактор КМ2, закорачивая вторую ступень пускового резистора Rд2. Двигатель выходит на естественную характеристику 3 и заканчивает свой разбег в точке установившегося режима, определяемой пересечением естественной характеристики 3 двигателя и характеристики нагрузки.

Для перехода к режиму торможения нажимается кнопка SB2. Катушка контактора КМ теряет питание, размыкается замыкающий контакт КМ и ДПТ отключается от источника питания. Размыкающий контакт КМ в цепи контактора торможения КМЗ замыкается, последний срабатывает и своим главным контактом подключает резистор Rд3 к якорю М, переводя ДПТ в режим динамического торможения. Одновременно размыкается замыкающий контакт контактора КМ в цепи реле времени КТ, оно теряет питание и начинает отсчет времени. Через интервал времени, который соответствует снижению скорости ДПТ до нуля, реле времени КТ отключается и своим контактом разрывает цепь питания контактора КМЗ. Резистор Rд3 отключается от якоря ДПТ, торможение заканчивается, и схема возвращается в свое исходное положение.






Рисунок 2 - Схема пуска двигателя постоянного тока в две ступени в функции ЭДС и динамического торможения в функции времени (а), механические характеристики (б)

3 Типовая схема пуска ДПТ с последовательным возбуждением

в функции тока
В данной схеме (рис.3 ) используется реле тока КА, катушка которого включена в цепь якоря М, а размыкающий контакт — в цепь питания контактора ускорения КМ2.




Рисунок 3 – Схема пуска ДПТ ПВ в функции тока
Реле тока настраивается таким образом, чтобы его ток отпускания соответствовал току I2 (рис.1). В схеме используется также дополнительное блокировочное реле KV с временем срабатывания большим, чем у реле КА.

Работа схемы при пуске происходит следующим образом. После нажатия на кнопку SB1 срабатывает контактор КМ1 и двигатель подключается к источнику питания, в результате чего он начинает свой разбег. Бросок тока в якорной цепи после замыкания главного контакта контактора КМ1 вызовет срабатывание реле тока КА, которое разомкнет свой размыкающий контакт в цепи контактора КМ2. Через некоторое время после этого срабатывает KV и замыкает свой замыкающий контакт в цепи контактора КМ2, подготавливая его к включению.

По мере разбега ДПТ ток якоря снижается до значения тока переключения I2. При этом отключается реле тока и замыкает свой размыкающий контакт в цепи контактора КМ2. Последний срабатывает, его главный контакт закорачивает пусковой резистор Rд в цепи якоря, а вспомогательный контакт шунтирует контакт реле тока КА. Поэтому вторичное включение реле тока КА после закорачивания Rд и броска тока не вызовет отключения контактора КМ2 и двигатель продолжает разбег по естественной характеристике.

Для унификации схемных решений электротехническая промышленность выпускает стандартные станции, блоки и панели управления, специализированные по видам ЭП рабочих машин и механизмов, функциональным возможностям, условиям эксплуатации, роду тока и т. д.

Лекция №8

Типовые узлы и схемы управления ЭП с

асинхронными двигателями



Вопросы

1) Типовые схемы управления асинхронным двигателем с короткозамкнутым ротором

2) Типовые схемы управления асинхронным двигателем с фазным ротором
1 Типовые схемы управления асинхронным двигателем

с короткозамкнутым ротором
Типовые схемы релейно-контакторного управления АД строятся по тем же принципам, что и ДПТ.

Двигатели этого типа малой и средней мощности обычно пускаются прямым подключением к сети без ограничения пусковых токов. В этих случаях они управляются с помощью магнитных пускателей, которые одновременно обеспечивают и некоторые виды их защиты.



Рисунок 1 - Схема управления короткозамкнутым АД с магнитным пускателем
Схема управления асинхронным двигателем с использованием магнитного пускателя (рис.1) включает в себя магнитный пускатель, состоящий из контактора КМ и трех встроенных в него тепловых реле защиты КК. Схема обеспечивает прямой (без ограничения тока и момента) пуск АД, отключение его от сети, а также защиту цепей управления от коротких замыканий (предохранители FU), а электродвигателя от коротких замыканий (автоматический выключатель QF) и перегрузки (тепловые реле КК). Для пуска АД замыкают выключатель QF и нажимают кнопку пуска SB1. Получает питание катушка магнитного пускателя КМ и силовыми контактами в цепи статора АД подключает его к источнику питания, а вспомогательным контактом шунтирует кнопку SB1. Происходит разбег АД по его естественной характеристике. Для отключения АД нажимается кнопка остановки SB2, контактор КМ теряет питание и отключает АД от сети. Начинается процесс торможения АД выбегом под действием момента нагрузки на его валу.

Реверсивная схема управления асинхронным двигателем. Основным элементом этой схемы является реверсивный магнитный пускатель, который включает в себя два линейных контактора КМ1 и КМ2 и тепловое реле КК (рисунок 2).



Рисунок 2 - Схема управления короткозамкнутым АД с

реверсивным магнитным пускателем
Схема обеспечивает прямой пуск и реверс АД, а также торможение противовключением при ручном (неавтоматическом) управлении.

В схеме предусмотрена защита от перегрузок АД (реле КК) и коротких замыканий в цепях статора (автоматический выключатель QF) и управления (предохранители FU). Кроме того, схема управления осуществляет нулевую защиту от исчезновения напряжения сети (контакторы КМ1 и КМ2).

Пуск двигателя в условных направлениях «Вперед» или «Назад» осуществляется нажатием соответственно кнопок SB1 или SB2. Это приводит к срабатыванию контактора КМ1 или КМ2 и подключению АД к сети (при включенном автоматическом выключателе QF).

Для реверса или торможения АД вначале нажимается кнопка SB3, что приводит к отключению включенного до сих пор контактора (например, КМ1), после чего нажимается кнопка SB2. Это приводит к включению контактора КМ2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Магнитное поле АД изменяет свое направление вращения и начинается процесс реверса, состоящий из двух этапов—торможения противовключением и разбега в противоположную сторону.

В случае необходимости только затормозить АД, должна быть нажата кнопка SB3, что приведет к отключению АД от сети и возвращению схемы в исходное положение.

Во избежание короткого замыкания в цепи статора, которое может возникнуть в результате одновременного ошибочного нажатия кнопок SB1 и SB2, в реверсивных магнитных пускателях иногда предусматривается специальная механическая блокировка. Она представляет собой рычажную систему, которая предотвращает втягивание одного контактора, если включен другой. В дополнение к механической блокировки в схеме используется типовая электрическая блокировка, применяемая в реверсивных схемах управления. Она предусматривает перекрестное включение размыкающих контактов аппарата КМ1 в цепи катушки аппарата КМ2 и наоборот.

Отметим, что повышению надежности и удобства в эксплуатации способствует использование в схеме воздушного автоматического выключателя QF. Его наличие исключает возможность работы привода при обрыве одной фазы, при однофазном коротком замыкании, как это имеет место при установке предохранителей, а также он не требует замены элементов (как в предохранителях при сгорании их плавкой вставки).

Схема управления многоскоростным асинхронным двигателем обеспечивает получение двух скоростей АД путем соединения секций обмотки статора в треугольник или двойную звезду.

Типовая схема управления асинхронным двигателем, обеспечивающая прямой пуск и динамическое торможение в функции времени.

Пуск двигателя осуществляется нажатием кнопки SB1 (рис. 3), после чего срабатывает линейный контактор КМ, подключающий двигатель к источнику питания. Одновременно с этим замыкание контакта КМ в цепи реле времени КТ вызовет его срабатывание и замыкание его контакта в цепи контактора торможения КМ1. Однако последний не срабатывает, так как перед этим разомкнулся в этой цепи размыкающий контакт КМ.




Рисунок 3 - Схема управления пуском и динамическим торможением

короткозамкнутого АД
Для остановки АД нажимается кнопка SB2. Контактор КМ отключается, размыкая свои контакты в цепи статора АД и отключая тем самым его от сети переменного тока. Одновременно с этим замыкается контакт КМ в цепи аппарата КМ1 и размыкается контакт КМ в цепи реле КТ. Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя VD через резистор RT и переводу двигателя в режим динамического торможения. Реле времени КТ, потеряв питание, начинает отсчет выдержки времени. Через интервал времени, соответствующий времени останова АД, реле КТ размыкает свой контакт в цепи контактора КМ1, тот отключается, прекращая подачу постоянного тока в цепь статора. Схема возвращается в исходное положение.

Интенсивность динамического торможения регулируется резистором RT, с помощью которого устанавливается необходимый постоянный ток в статоре АД.

Для исключения возможности одновременного подключения статора к источникам переменного и постоянного тока в схеме использована типовая блокировка с помощью размыкающих контактов КМ и КМ1, включенных перекрестно в цепи катушек этих аппаратов.
1   2   3   4   5   6   7   8   9   10


Блокировки и сигнализация в ЭП
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации