Реферат - Динамическая модель межотраслевого баланса - файл n1.doc

Реферат - Динамическая модель межотраслевого баланса
скачать (93.5 kb.)
Доступные файлы (1):
n1.doc94kb.15.09.2012 02:25скачать

n1.doc



Содержание

Введение


2

1. Макроэкономические модели в прогнозировании


4

2. Модель межотраслевого баланса Леонтьева


6

3. Динамическая модель межотраслевого баланса Леонтьева


9

Заключение


13

Список использованной литературы


15



Введение
Экономический рост в любой стране невозможен без реализации новых крупномасштабных проектов, инвестиций и инноваций, без политической стабильности и устойчивости финансово-банковской системы, уверенности инвесторов и собственников капитала в твердости реализуемого политического курса, нацеленности на эффективность развития производства, разумности правил налогообложения. Экономико-математическое моделирование, являясь одним из эффективных методов описания сложных социально-экономических объектов и процессов в виде математических моделей, превращается тем самым в часть самой экономики.

В данном реферате рассмотрена экономико-математическая модель межотраслевого баланса.. Это прикладная, макроэкономическая, аналитическая, балансовая, матричная модель; при этом существуют как статические, так и динамические МОБ.

Одной из важных задач исследователей в области экономической мысли является изучение действующих экономических механизмов и поиск путей возможного их совершенствования.

Ценный вклад в методику численного решения экономических моделей был сделан в 1940-х годах Василием Васильевичем Леонтьевым, американским экономистом российского происхождения создавшим метод затраты - выпуск. Развитие любого общества неизбежно связано с изменениями объёмов производства и структуры межотраслевых поставок продукции. Изменение объёмов и структуры поставок продукции может иметь различные последствия для функционирования национальной экономики.

Отныне стало возможным численное решение больших систем уравнений. Современный компьютер способен с феноменальной скоростью решить систему из тридцати уравнений с таким же числом неизвестных. Метод затраты - выпуск вполне себя оправдывает, по крайней мере в теоретическом плане. Как заметил Леонтьев, имеется определенная связь между, скажем, продажей автомобилей в Нью-Йорке и спросом на хлеб в Детройте. По сути дела, всю страну можно рассматривать как единую систему учета, где каждый сектор имеет собственный "бюджет" экономической активности.

В процессе совершенствования и усложнения модели «затраты--выпуск» был создан динамический вариант системы, учитывавший технический прогресс, перестройку промышленности, изменения ценовых пропорций. Модель была переведена на гибкие коэффициенты. Эта работа оказалась весьма успешной еще и потому, что параллельно с научным поиском совершенствовалось компьютерное обеспечение.


1. Макроэкономические модели в прогнозировании
Экономико-математические модели в прогнозировании широко используются при составлении социально-экономических прогнозов на макроэкономическом уровне. К таким моделям относятся:

 однофакторные и многофакторные модели экономического роста;

 модели распределения общественного продукта (ВВП, ВНП, НД);

 структурные модели;

 межотраслевые модели;

 модели воспроизводства основных фондов;

 модели движения инвестиционных потоков;

 модели уровня жизни и структуры потребления;

 модели распределения заработной платы и доходов и др.

При использовании этих моделей необходимо учитывать воздействие факторного, лагового и структурного аспектов сбалансированности экономики и их синтеза на основе принципа оптимальности.

Факторный аспект сбалансированности экономики основывается на взаимосвязи между объемом выпуска продукции и затратами факторов производства. Он сводится к определению такой пропорции между факторами производства, которая позволяет обеспечить заданный выпуск продукции. Для определения таких количественных пропорций используются показатели эффективности затрат живого и овеществленного труда и объемы этих затрат.

Лаговый аспект сбалансированности основан на распределении во времени затрат факторов производства и достигаемого при их взаимодействии эффекта. Главные лаговые характеристики связаны с воспроизводством основных фондов, а значит и с затратами капитальных вложений. Лаг – это запаздывание, временной интервал между двумя взаимозависимыми экономическими явлениями, одно из которых является причиной, а второе – следствием.

Структурный аспект сбалансированности основывается на пропорциях между I и II подразделениями общественного производства и взаимосвязях межотраслевых потоков продукции с элементами конечного потребления. Структурные межотраслевые модели широко используются для составления прогноза отраслевой структуры производства, основных производственных фондов, производственных капитальных вложений и трудовых ресурсов. Структурная сбалансированность народного хозяйства основывается на пропорциях между производством и распределением продукции. Производство общественного продукта может быть обеспечено при различной интенсивности потоков взаимозаменяемых предметов труда, а следовательно при разном соотношении между промежуточной и конечной продукцией.

2. Модель межотраслевого баланса Леонтьева

Межотраслевой баланс представляет собой экономико-математическую модель, образуемую перекрестным наложением строк и колонок таблицы, то есть балансов распределения продукции и затрат на ее производство, увязанных по итогам. Главные показатели здесь – коэффициенты полных и прямых затрат.

Динамическая модель межотраслевого баланса характеризует производственные связи народного хозяйства на ряд лет, отражает процесс воспроизводства в динамике. По модели межотраслевого баланса выполняются два типа расчетов: первый тип, когда по заданному уровню конечного потребления рассчитывается сбалансированный объем производства и распределения продукции; второй тип, включающий смешанные расчеты, когда по заданным объемам производства по одним отраслям (продуктам) и заданному конечному потреблению в других отраслях рассчитывается баланс производства и распределения продукции в полном объеме.

Наибольшее распространение получила матричная экономико-математическая модель межотраслевого баланса. Она представляет собой прямоугольную таблицу (матрицу), элементы которой отражают связи экономических объектов. Количественные значения этих объектов вычисляются по установленным в теории матриц правилам. В матричной модели отражается структура затрат на производство и распределение продукции и вновь созданной стоимости.

Уравнение строк матрицы записывается следующим образом:

n

Хij + Уi = Хi

j =1

i= 1,2,…m;

Хij – поставка продукции отрасли i в отрасль j;

У i – конечная продукция отрасли i;

Хi – валовая продукция отрасли i.

Элементы строк представляют собой баланс распределения продукции, произведенной в различных отраслях экономики. Сумма внутренних производственных поставок и конечного продукта составляет валовой выпуск отрасли.
Уравнение столбцов матрицы выглядит следующим образом:

n

Хij + Zj = Хj, где

j=1

Хij – затраты продукции отрасли i на производство продукции отрасли j;

Zj – затраты первичныхресурсов и вновь созданная стоимость в отрасли j;

Хj – валовые затраты включая вновь созданную стоимость в отрасли j.

Хi = Хj при i=j. При этом равенство одноименных строк и столбцов означает, что стоимость распределенных и накопленных материальных благ и услуг равна сумме стоимостей произведенных затрат и вновь созданной стоимости.

Межотраслевой баланс известен в науке и практике как метод “затраты – выпуск”, разработанный В.В. Леонтьевым. Этот метод сводится к решению системы линейных уравнений, где параметрами являются коэффициенты затрат на производство продукции. Коэффициенты выражают отношения между секторами экономики (коэффициенты текущих материальных затрат), они устойчивы и поддаются прогнозированию. Решение системы уравнений позволяет определить, какими должны быть выпуск и затраты в каждой отрасли, чтобы обеспечить производство конечного продукта заданного объема и структуры. Для этого составляется таблица межотраслевых потоков товаров. Неизвестными выступают выпуск и затраты товаров, произведенных и использованных в каждой отрасли. Их исчисление с помощью коэффициентов и означает объемы производства, обеспечивающие общее равновесие. В случае выявления диспропорции с учетом заказов потребителей, в том числе и государственных, составляется план-матрица выпуска всех видов материальных благ и затрат на их производство.

Метод “затраты – выпуск” стал универсальным способом прогнозирования и планирования в условиях, как рыночной, так и директивной экономики. Он применяется в системе ООН, в США и других странах для прогнозирования и планирования экономики, структуры производства, межотраслевых связей.




3. Динамическая модель межотраслевого баланса Леонтьева


Межотраслевой баланс представляет собой экономико-математическую модель, образуемую перекрестным наложением строк и колонок таблицы, то есть балансов распределения продукции и затрат на ее производство, увязанных по итогам. Главные показатели здесь – коэффициенты полных и прямых затрат.

В процессе совершенствования и усложнения статической модели был создан динамический вариант системы, учитывавший технический прогресс, перестройку промышленности, изменения ценовых пропорций. Модель была переведена на гибкие коэффициенты. Эта работа оказалась весьма успешной еще и потому, что параллельно с научным поиском совершенствовалось компьютерное обеспечение.

В отличие от статических динамическая модель призвана отразить не состояние, а процесс развития экономики, установить непосредственную взаимосвязь между предыдущими и последующими этапами развития и тем самым приблизить анализ на основе экономико-математической модели к реальным условиям развития экономической системы.

В рассматриваемой ниже динамической модели (которая является развитием статической межотраслевой модели) производственные капитальные вложения выделяются из состава конечной продукции, исследуется их структура и влияние на рост объёма производства. В основе построения модели в виде динамической системы уравнений лежит математическая зависимость между величиной капитальных вложений и приростом продукции. Решение системы, как и в случае статической модели приводит к определению уровней производства, но в динамическом варианте в отличие от статистического эти искомые уровни зависят от объёмов производства в предшествующих периодах.

Ниже приведена схема первых двух квадрантов динамического межотраслевого баланса (таблица 1).

Производящие отрасли

Потребляющие отрасли

Межотраслевые потоки текущих затрат

Межотраслевые потоки капитальных вложений

Конечный продукт

Валовый продукт

1

2



n

1

2



n

Y

X

1

x11

x12



x1n

∆Ф11

∆Ф12



∆Ф1n

Y1

X1

2

x21

x22



x2n

∆Ф21

∆Ф22



∆Ф2n

Y2

X2



. . .
































n


xn1

xn2



xnn

∆Фn1

∆Фn2



∆Фnn

Yn

Xn
Таблица 1. Динамическая модель МОБ

Модель содержит две матрицы межотраслевых потоков. Матрица текущих производственных затрат с элементами xij совпадает с соответствующей матрицей статистического баланса. Элементы второй матрицы ∆Фij показывают, какое количество продукции i-той отрасли направлено в текущем периоде в j-ую отрасль в качестве производственных капитальных вложений в её основные фонды. Материально это выражается в приросте в потребляющих отраслях производственного оборудования, сооружений, производственных площадей, транспортных средств и др.

Для сравнения, в статистическом балансе потоки капиталовложений не дифференцируются по отраслям-потребителям и отражаются общей величиной в составе конечной продукции Yi каждой i-той отрасли. В динамической схеме конечный продукт Yi включает продукцию i-той отрасли, идущую в личное и общественное потребление, накопление непроизводственной сферы, прирост оборотных фондов, незавершённого строительства, на экспорт. Таким образом, сумма потоков капиталовложений и конечного продукта динамической модели равна конечной продукции статистического баланса (1,141):

?∆Фij + Yi’= Yi

поэтому уравнение распределения продукции вида (1.2) преобразуется в динамическом балансе в следующее (11,257):

Xi =?xij +?∆Фij + Yi’ i=1…n (3.1)

Межотраслевые потоки текущих затрат выражают как и в статической модели через валовую продукцию отраслей с помощью коэффициентов прямых материальных затрат:

xij = aijXj

полагая, что прирост продукции пропорционален приросту производственных фондов, можно записать (11,257):

∆Фij =?ij∆Xj i,j =1…n (3.2)

?ij – коэффициенты пропорциональности, экономический смысл их заключается в том, что они показывают, какое количество продукции i-той отрасли должно быть вложено в j-тую отрасль для увеличения производственной мощности j-той отрасли на единицу продукции. Предполагается, что производственные мощности используются полностью и прирост продукции равен приросту мощности. Коэффициенты ?ij называются коэффициентами вложений, или коэффициентами приростной фондоёмкости.

Они образуют квадратную матрицу n-го порядка (13):

||?11 ?12 … ?1n ||

||?21 ?22 … ?2n ||

(?ij) =

|| . . … . ||

||?n1 ?n2 … ?nn ||

Эта матрица коэффициентов приростной фондоёмкости даёт значительный материал для экономического анализа и планирования капитальных вложений.

Далее, с помощью коэффициентов прямых материальных затрат и коэффициентов вложений ?ij систему уравнений (3.1) можно представить в следующем виде (11,257):

Xi = ?aijXj + ??ij∆Xj + Yi’ i=1…n (3.3)

Учитывая, что все объёмы валовой и конечной продукции относятся к некоторому периоду t, а прирост валовой продукции определён в сравнении с (t-1)-м периодом (11,258):

Xi(t) = ?aijXj(t) + ??ij(Xj(t) – Xj(t-1)) + Yi’(t)

Отсюда можно записать следующие соотношения:

Xi(t) = ?(aij+ ?ij) Xj(t) - ??ij Xj(t-1) + Yi’(t) , i=1…n (3.4)

Пусть нам известны уровни валовой продукции всех отраслей в предыдущем периоде (величины Xj(t-1) и конечный продукт отраслей в t-м периоде. Тогда соотношения (3.4) представляют собой систему n линейных уравнений с n неизвестными уровнями производства t-го периода.

Таким образом, решение динамической системы линейных уравнений позволяет определить выпуск продукции в последующем периоде в зависимости от уровня, достигнутого в предыдущем периоде. Связь между периодами устанавливается через коэффициенты вложений ?ij, характеризующие фондоёмкость единицы прироста продукции.

Эти более сложные по своему экономическому содержанию выводы из анализа динамической модели В. Леонтьева были опубликованы в форме дифференциальных уравнений в СССР в 1958 г. книге «Исследование структуры американской экономики».

Заключение

Межотраслевой баланс - это способ представления статистической информации об экономике страны. Он строится на основе агрегирования результатов деятельности отдельных предприятий.

Статистические межотраслевые модели используются для разработки планов выпуска и потребления продукции и основываются на соотношениях межотраслевого баланса.

В процессе совершенствования и усложнения модели «затраты--выпуск» был создан динамический вариант системы, учитывавший технический прогресс, перестройку промышленности, изменения ценовых пропорций. Модель была переведена на гибкие коэффициенты.

Подводя итоги реферата, следует отметить, что метод Леонтьева отличает ясность и простота, универсальность и глобальность, другими словами пригодность для экономики отдельных стран и регионов, для мирового хозяйства в целом.

По мнению В. Леонтьева, межотраслевой анализ может служить основным инструментом стратегического планирования.

В настоящее время в национальной экономике существуют и продолжают возникать сложные проблемы, требующие межотраслевых обоснований. Использование же метода “затраты-выпуск” межотраслевого баланса позволяет не только изучить взаимозависимость между различными отраслями экономики, проявляющуюся во взаимовлиянии цен, объемов производства, капиталовложений и доходов, но и решать следующие задачи:

- прогноз основных макроэкономических показателей (выпуск валового и конечного продукта, чистая продукция, материальные затраты, производственное потребление продукции и др. в разрезе отраслей материального производства) в зависимости от изменения как внешних, так и внутренних факторов; - прогноз оптовых цен продукции отраслей материального производства, уровня инфляции, стоимости потребительской корзины;

- прогноз уровня безработицы;

- прогноз экологической обстановки и оценка затрат на проведение природоохранных мероприятий; - оценка эффективности конкретных предложений по размещению производительных сил;

- оценка эффективности межтерриториальных экономических связей;

- и многих других.

Таким образом, на основе моделей В. Леонтьева может быть разработан комплекс моделей функционирования экономики с целью определения рациональных стратегий управления социально-экономическим развитием региона и страны в целом.

Итак, в заключении реферата можно сделать вывод, что в отличие от статических динамическая модель призвана отразить не состояние, а процесс развития экономики, установить непосредственную взаимосвязь между предыдущими и последующими этапами развития и тем самым приблизить анализ на основе экономико-математической модели к реальным условиям развития экономической системы.



Список использованной литературы.

1. Гальперин В.М., Гребенников П.И., Леусский А.И., Тарасевич Л.С. Макроэкономика. Учебник. СПб.: СПбГУЭФ., 1999. – 656 с.

2. Гранберг А. Г. Динамические модели народного хозяйства: Учебное пособие / М.: Экономика, 1985. — 240 с.

3. Гранберг А. Г. Математические модели социалистической экономики: Учебное пособие / М.: Экономика, 1988. — 352 с.

4. Леонтьев В.В. и др. Исследования структуры американской экономики: Теорет. и эмпир. анализ по схеме "затраты - выпуск" / Пер. с англ. М.: Госстатиздат, 1958. 640 с.

5. Мэнкью Н.Г. Макроэкономика / Пер. с англ. – М.: Изд-во МГУ, 1994. – 736 с.



Содержание Введение
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации