Круговорот углерода в биосфере и антропогенные факторы влияния - файл n1.doc
приобрестиКруговорот углерода в биосфере и антропогенные факторы влиянияскачать (928 kb.)
Доступные файлы (1):
n1.doc
Круговорот углерода в биосфере и антропогенные факторы влияния Содержание Введение В

ся жизнь на Земле основана на углероде, каждая молекула живого организма построена на основе углеродного скелета. Создание органического вещества и его распад обеспечивают постоянный обмен веществ и энергии между живыми организмами и средой их обитания. Эти перемещения названы биогоехимическим (биотическим) круговоротом, или биогеохимическими (рис. 1).
Рис. 1. Круговорот углерода.
В круговороте постоянно находятся огромные массы органических и неорганических соединений. Однако циклы не замкнуты полностью. Так, в наземных экосистемах ежегодно выводится из оборота около 180 т углерода, накапливающегося в осадочных породах.
Круговорот определяет судьбу многих жизненно важных химических элементов: кислорода, углерода и азота, а также к таких элементов, как водород, фосфор, натрий, калий и кальций и др.
1.
Одной из центральных проблем современной экологии является изучение круговорота углерода
2. Интерес к этой проблеме вызван существующей гипотезой о парниковом эффекте - наличием связи между температурой атмосферы и содержанием в ней "парниковых" газов (диоксид углерода, метан, пары воды, окислы азоты, фреоны и др.), которая обусловлена различием в проводимости этими газами коротковолнового и длинноволнового излучения. Считается
3, что среди парниковых газов диоксид углерода оказывает наиболее существенное влияние на климат. Анализ литературы показывает, что в настоящее время среди ученых нет единого мнения относительно наличия или отсутствия парникового эффекта.
1. Круговорот веществ Круговорот веществ на Земле – повторяющиеся процессы превращения и перемещения вещества в природе, имеющие более или менее выраженный циклический характер. Эти процессы имеют определённое поступательное движение, т. к. при так в природе не происходит полного повторения циклов, всегда имеются те или иные изменения в количестве и составе образующихся веществ
4.
Около 5 млрд. лет назад произошла дифференциация вещества Земли, разделение его на ряд концентрических оболочек, или геосфер: атмосферу, гидросферу, земную кору, гранитную, базальтовую и др. оболочки, отличающиеся друг от друга характерным химическим составом, физическими и термодинамическими свойствами. Эти оболочки в последующее геологическое время развивались в направлении дальнейшего наиболее устойчивого состояния. Между всеми оболочками и внутри каждой продолжался обмен веществом.
Вначале наиболее существенную роль играл вынос вещества из недр Земли на поверхность в результате процессов выплавления легкоплавкого вещества Земли и дегазации. В дальнейшем обмен веществом между глубокими областями и поверхностью Земли сократился. В конце докембрия обособились более спокойные области земной коры — платформы и области интенсивной тектонической и магматической деятельности — геосинклинали. С течением времени платформы росли, а геосинклинальные области сужались.
В современный период обмен веществом между геосферами по вертикальному направлению достаточно определенно может наблюдаться на глубине 10—20 км. Не исключено движение вещества и из более глубоких зон Земли, однако этот процесс в настоящее время уже не играет существенной роли в общем круговороте веществ на Земле.
Непрерывный круговорот веществ наблюдается в атмосфере, гидросфере, верхней части твёрдой литосферы и в биосфере. Со времени появления биосферы (около 3,5 млрд. лет назад) круговорот веществ притерпел значительные изменения. К физико-химическим превращениям прибавились биогенные процессы.
Наблюдаемый круговорот веществ на Земле слагается из множества разнообразных повторяющихся в основных чертах процессов превращения и перемещения вещества. Отдельные циклические процессы представляют собой последовательный ряд изменений вещества, чередующихся с временными состояниями равновесия. Как только вещество вышло из данной термодинамической системы, с которой оно находилось в равновесии, происходит его дальнейшее изменение, пока оно не возвратится частично к первоначальному состоянию. Полного возвращения к первоначальному состоянию никогда не происходит.
Отдельные циклические процессы, слагающие общий круговорот веществ на Земле, никогда не являются полностью обратимыми. Часть вещества в повторяющихся процессах превращения рассеивается и отвлекается в частные круговороты или захватывается временными равновесиями, а другая часть, которая возвращается к прежнему состоянию, имеет уже новые признаки.
Выделяют два основных круговорота: большой (геологический) и малый (биотический). Большой круговорот происходит в течение сотен тысяч или миллионов лет. Он заключается в том, что горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе и растворенные в воде вещества, сносятся потоками воды в Мировой океан. Здесь они образуют осадки, морские напластования. Крупные медленные геотектонические изменения, опускание материков и поднятие морского дна, перемещение морей и океанов в течение длительного времени приводят к тому, что накопленные на дне морей и океанов вещества снова возвращаются на сушу (литосферу).
Малый круговорот, являясь частью большого, состоит в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тканей растений, входят в состав органических веществ, обеспечивают жизнедеятельность самих растений, а также организмов-консументов. Продукты распада вещества после гибели растений попадают в распоряжение почвенной микрофлоры и мезофауны (бактерий, грибов, червей, моллюсков, простейших и др.), т.е. вновь вовлекаются в поток вещества (и энергии).
Круговорот химических элементов (или веществ) из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии или энергии химических реакций носит название биогеохимического цикла
5.
Современная продукция органического вещества в биосфере составляет 100 млрд т/год в единицах массы органического углерода. Эта величина соответствует 1000 млрд. т живой массы. Время существования жизни на Земле около 3,5 млрд. лет. Если принять, что средняя продуктивность живой массы за это время равна 500 млрд. т в год, то всего за время существования жизни образовалось приблизительно 2·10
12 млрд т живого вещества. (Это всего лишь втрое меньше массы всей Земли).
Масса биосферы около 1,4·10
9 млрд. т. Таким образом, продукция биоты за время существования Земли превосходит массу биосферы на три порядка (в 1000 раз). Это значит, что все атомы углерода на Земле в среднем приблизительно 1000 раз становились частью синтезируемого органического вещества, а затем столько же раз это вещество подвергалось деструкции.
Поэтому даже малые (казалось бы, пренебрежимо малые), но устойчивые антропогенные воздействия могут приводить к существенным изменениям естественных круговоротов. Отсюда вытекает важнейшая роль деятельности человека в возникновении и усилении несбалансированности круговоротов с серьезными последствиями глобальных размеров
6. Деятельность человеческого общества в настоящее время радикально трансформирует химию биосферы. Антропогенное влияние на биогеохимические циклы проявилось не только на локальном экосистемном, но и на биосферном, а также планетарном и околоземном космическом уровне.
2. Круговорот углерода Углерод — основной биогенный элемент; он играет важнейшую роль в образовании живого вещества биосферы, потому что:
а) Все формы жизни на Земле основаны на соединениях углерода;
б) Реакции окисления и восстановления соединений углерода в экосфере обусловливают глобальное распространение и баланс не только углерода, но и кислорода, а также и многих других химических элементов;
в) Способность атома углерода создавать цепи и кольца обеспечивает разнообразие органических соединений;
г) Углеродсодержащие газы - углекислый газ и метан (СН
4) – играют определяющую роль в антропогенном парниковом эффекте.
Основные экосферные резервуары углерода находятся в гидросфере, биосфере и атмосфере. Между ними происходит активный обмен с интенсивностью в десятки миллиардов тонн углерода в год.
Запас углерода в биосфере составляет около 20 000 000 млрд т, из которых 99% представлены отложениями СаСО
3. Около 10 000 млрд т углерода находится в виде ископаемого топлива (уголь, нефть, газ). Содержание углерода в биомассе (млрд т): наземные растения - 450, поверхностные слои моря - 500, фито-, зоопланктон и рыбы - 10-20, в неживой органике: в океане - 3000, в почве - 700. В атмосфере воздуха в виде СО
2 - около 1000 млрд т.
Запасов углерода очень много, но лишь CO
2 воздуха представляет собой источник углерода, который усваивается растениями в количестве около 35 млрд т в год. Растения поглощают углекислый газ, который в процессе фотосинтеза превращается в разнообразные органические соединения и таким образом включается в структуру растений. Растительные организмы, особенно низшие микроорганизмы, морской фитопланктон, благодаря исключительной скорости размножения продуцируют в год около 1,5·10
11 т углерода в виде органической массы, что соответствует 5,86·10
20дж (1,4·10
20кал)
энергии. Растения частично поедаются животными (при этом образуются более или менее сложные пищевые цепи). В конечном счёте органическое вещество в результате дыхания организмов, разложения их трупов, процессов брожения, гниения и горения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим др. каустобиолитам — каменным углям, нефти, горючим газам (рис. 2). Так, в древесине связанный углерод (всего до 500·10
6т) может сохраняться десятки, а иногда и сотни лет, а в биогенных известняках, каменных и бурых углях – десятки и сотни миллионов лет. То же можно сказать и о залежах нефти и газа.
Рис. 2. Схема круговорота углерода. Содержание углерода дано в г/см2 поверхности Земли. Обмен углерода дан в g (1·10-6 г) на 1 см2 поверхности Земли в год. Возврат углерода в атмосферу происходит в процессе дыхания животных и растений (около 10 млрд т), разложения организмов в почве (в виде СO
2, углеводородов, меркаптанов; около 25 млрд т). В процессах распада органических веществ, их минерализации огромную роль играют бактерии (например, гнилостные), а также многие грибы (например, плесневые).
Сверх биогенного, сбалансированного углерода в атмосферу поступает антропогенный диоксид углерода после сжигания углеродного топлива (уголь, нефть, газ, сланцы, лес и т.п.; 5 млрд т) и природный его диоксид – при извержении вулканов
7.
3. Углерод в атмосфере С

амым важным компонентом природного цикла углерода является газообразный диоксид углерода (углекислый газ, СО
2).
Рис. 3. Тренды концентраций СО
2 в северном и южном полушариях, показывающие изменение градиента. По IPCC (1995).
На рис. 3. показаны среднегодовые значения концентрации СО
2 в атмосфере, измеренные в Мауна Лоа (Гавайи) и на Южном полюсе. Из графика видно, что концентрация атмосферного СО
2 отчетливо возрастала со временем и что это всемирное явление. Скорость прироста несколько изменяется от года к году, составляя в среднем около 0,5% в год.
Д

анные на рис. 3 покрывают период 1958-92 гг., в течение которого использовались надежные аналитические методы. Для того чтобы продлить запись в прошлое, надо привлечь данные измерений, полученные с помощью более грубых (по современным стандартам) методов. Для этого используется выделение и анализ пузырьков воздуха, заключенных в кернах льда, собранного на полярных ледяных шапках. В основе этого метода лежит то, что захваченные пузырьки воздуха отражают состав атмосферного воздуха на момент образования льда. Датируя различные слои кернов, из которых были выделены пузырьки воздуха, можно установить прошлое состава атмосферы. Результаты полученных этим методом измерений на ледниковой шапке в западной Антарктике показаны на рис. 4.
Рис. 4. Измерения содержания СО
2 в воздухе атмосферы и кернов льда. По Crane & Liss (1985).
В середине восемнадцатого столетия, до того как произошла основная индустриализация (и сельскохозяйственное развитие), атмосфера содержала, по-видимому, около 280•10
-4% СО
2. За последующие 250 лет и частично с начала 1850 г. концентрация СО
2 возрастала примерно экспоненциально вследствие сжигания ископаемого топлива человеком и вовлечения земель в сельскохозяйственное использование. В настоящее время (1995 г.) уровень концентрации близок к 360•10
-4%, что отражает превышение почти на 30% над предындустриальной концентрацией.
Д

етальные исследования данных по Мауна Лоа, где измерения проводятся ежемесячно (рис. 5), дают кривую сильных и систематических сезонных изменений концентрации. Подобные сезонные изменения были обнаружены и в других местах, хотя амплитуда колебаний меняется с широтой и между полушариями.
Рис 5. Данные по концентрациям атмосферного СО
2 в Мауна Лоа и ожидаемые концентрации в случае, если бы весь углекислый газ, образующийся при сжигании ископаемого топлива, остался в воздухе.
На рис. 5 показаны также результаты расчетов, по которым концентрация атмосферного СО
2 с 1958 г. предсказана на основе допущения, что весь СО
2, производимый с этого времени в результате сжигания ископаемого топлива, остался в атмосфере. Очевидно, что в атмосфере наблюдается только около половины привнесенного в результате сжигания ископаемого топлива СО
2 — это означает, что оставшаяся часть должна была быть абсорбирована в другом резервуаре. Это упрошенный вывод, поскольку здесь предполагается, что остальные резервуары не изменялись в размерах и что между ними и атмосферой не было обмена в течение обсуждаемого периода. Несмотря на эти упрощения, приведенный расчет побуждает нас исследовать другие резервуары и, таким образом, подчеркивает важность рассмотрения системы как единого целого, а не как не связанных между собой природных составляющих.
Существует три основных источника и стока атмосферного углекислого газа: биосфера суши (включая пресные воды), океаны и антропогенная эмиссия в результате сжигания ископаемого топлива и другой промышленной деятельности. Вулканические эмиссии здесь не учитываются, поскольку считаются несущественными в количественном отношении в короткие временные масштабы.
4. Углерод в биосфере суши По оценкам, суша Земли состоянии обменивается с атмосферой углеродом в количестве около 60 ГтС (гигатонны рассчитаны на углерод; 1 Гт = 109 т = 1015 г) в год. Это сбалансированный двусторонний поток, в котором каждый год 60 ГтС переносится с суши в воздух и такое же количество поступает в обратном направлении. Однако это среднегодовая величина, — в умеренных и полярных областях потоки не одинаковы по сезонам. В таких областях весной и летом, когда растения активно поглощают СО
2 из атмосферы в процессе фотосинтеза, суммарный поток направлен из воздуха на землю. Наоборот, осенью и зимой, когда процессы дыхания и разложения растений доминируют над фотосинтезом, суммарный поток направлен в воздух. В тропиках, где сезонность в биологических процессах выражена слабее, потоки вверх и вниз приблизительно сбалансированы в течение года. Однако следует отметить, что в тропиках, как и на высоких широтах, потоки имеют значительную пространственную изменчивость (пятнистость).
Сезонная асимметричность потоков СО
2 вверх и вниз в средних и высоких широтах дает объяснение сезонному циклу атмосферного СО
2, показанному на рис. 5. Амплитуда такого сезонного рисунка изменяется с широтой, будучи наименьшей на полюсах и экваторе вследствие пониженной биологической активности и сезонных изменений соответственно.
Поскольку человечество уже в течение многих сотен лет превращает леса в обедненные углеродом ландшафты, считается, что этот процесс является существенным источником СО
2 в атмосферу как в прошлом, так и в настоящее время. Однако определить размер этого источника сложно.
5. Участие биосферы в круговороте углерода Важнейшие процессы в биосфере - формирование органического вещества из неорганического при участии солнечной энергии (фотосинтез), расходование органического вещества в процессах аэробной и анаэробной жизнедеятельности биоты и деструкция органического вещества.
В биосфере осуществляются два процесса, связанных с выделением и поглощением углекислого газа: 1) фиксация СО
2 и 2) минерализация органических веществ с выделением СО
2.
Первый процесс осуществляестя за счет фотосинтеза высшими растениями, водорослями и цианобактериями и за счет хемосинтеза хемоавтотрофами (некоторыми бактериями). Он обеспечивает перевод окисленной формы углерода (СО
2) в восстановленную (в этой форме углерод находится в органических веществах).
Фотосинтез протекает в две стадии. В световую фазу электроны хлорофилла поглощают свет, приобретают избыток энергии (возбуждаются, переходят на более высокий энергетический уровень) и покидают молекулу хлорофилла. Хлорофилл отнимает электроны от воды, при этом происходит фотолиз воды – распад ее на протоны, электроны и атомы кислорода. Электроны движутся по цепи переноса электронов внутренней мембраны, при этом выделяется энергия, которая тратится на синтез АТФ. Протоны соединяются с электронами, «выбитыми» из хлорофилла, с образованием «атомарного водорода» в виде НАДФН
2 (2Н
+ + 2е
- + НАДФ ? НАДФН
2). Из атомов кислорода образуется молекулярный кислород.
В темновую фазу происходит фиксация углекислого газа (присоединение СО
2 к пятиуглеродному сахару), синтез глюкозы из полученных продуктов и восстановление полученных веществ с участием НАДФН
2 и АТФ.
Таким образом суммарное уравнение фотосинтеза:
6

СО
2 + 6Н
2О + h? ? С
6Н
12O
6 + 6O
2 Рис. 6. Схема фотосинтеза
Процесс фиксации углекислого газа может осуществляться за счет энергии окисления неорганических веществ (вместо кислорода), такой процесс получил название хемосинтез. Механизм фиксации и восстановления СО
2 такой же как при фотосинтезе.
В зависимости от окисляемого элемента (N, Fe, S пли Н) различают:
1. Нитрифицирующие бактерии: NH
3 + О
2 ? HNО
2 (+Н
2О) + О
2 ? HNО
3 2. Железобактерии
: Fe
2+ + О
2 + Н
2О ? Fe
3+ +ОН
- 3. Серобактерии: H
2S + О
2 ? Н
2О + S
0 4. Водородные бактерии
: Н
2 + О
2 ? Н
2О
8 У некоторых бактерий, например, метанообразующих, углекислый газ ассимилируется другим путем. Обсуждается возможность отнесения к автотрофным организмам бактерий, использующих в качестве источника углерода метан. Основным путем образования метана является окисление молекулярного водорода углекислотой — "карбонатное дыхание":
4Н
2 + СО
2 ?СН
4 + 2Н
2О.
В некоторых случаях могут быть использованы соли муравьиной и уксусной кислот, метиловый спирт и метиламины. Метанобразующие археи широко распространены, 1,0—1,5% углерода, участвующего в круговороте углерода в биосфере, проходит через стадию метана. Образование метана происходит в осадках морей и пресноводных водоемов, болотах, почвах тундры и рисовых полей. Метанобразующие археи входят в состав кишечной микрофлоры, в частности, они развиваются в отделе желудка — рубце жвачных животных
9.
Примерные подсчеты показывают, что годовая продукция органического вещества на Земле достигает 33-10 т. Основную массу этого вещества составляют соединения растительного происхождения. Химический состав растительных остатков весьма сложен: имеются разнообразные органические вещества — белки, аминокислоты, углеродсодержащие соединения (клетчатка, лигнин, гемицеллюлозы), а также жиры, воска и многие другие. Преобладают по массе целлюлоза, гемицеллюлозы и лигнин. Количество и качество клетчатки, гемицеллюлоз и лигнина, образуемых в растительных ассоциациях, может быть весьма различно, что связано с определенными растительными сообществами и геоклиматическими зонами.
В процессе фотосинтеза органических веществ и роста тканей растений, т.е. жизнедеятельности продуцентов, используются энергия Солнца, вода и минеральные вещества. Часть биомассы продуцентов, вода, кислород, некоторые минеральные вещества обеспечивают жизнедеятельность консументов 1 порядка – травоядных животных. Последние, вместе с рядом неорганических веществ – источник жизни консументов 2 порядка –хищников.
После гибели живых организмов их органические вещества попадают обратно в природную среду. В нем участвуют представители разнообразных групп животного и растительного мира, начиная от микроорганизмов и кончая высшими позвоночными животными. Известны два основных типа распада: фитогенный и зоогенный.
Важно отметить, что путь преобразования отмершей биоты - минерализация или гумификация - зависит преимущественно от почвенно-климатических условий. В теплом и влажном климате процессы окисления происходят очень быстро и почти весь растительный опад минерализуется, а гумус в почве не накапливается. В холодном климате трансформация опада замедлена, да и количество его невелико, и содержание гумуса в почве мало. Оптимальные условия для гумификации и сохранения гумусовых веществ в почвах - умеренный климат без переувлажнения
10.
Процесс минерализации идет с поглощением кислорода и прямо или косвенно связан с восстановлением молекулярного кислорода и образованием субстратов для кислородного фотосинтеза — СО
2 и Н
2О.. Биогеохимические циклы носят круговой, примерно на 99% замкнутый характер. Иными словами они почти не имеют отходов. Один процент - это соединения углерода в земной коре (известняк, нефть, уголь), дополнительный кислород в воздухе
7.
Была проанализирована роль различных биоценозов в долговременном извлечении СО
2 из атмосферы. Вопреки достаточно распространенному мнению, что "лес – легкие планеты", оказалось, что роль биоценозов лесов в долговременном связывании СО
2 крайне мала, поскольку практически весь связанный благодаря фотосинтезу углерод возвращается в атмосферу в виде СО
2 вследствие процессов дыхания, гниения отмирающих листьев и древесины, а также лесных пожаров.
Для долговременного извлечения СО, из атмосферы необходимо, чтобы значительная часть связанного в результате процессов фотосинтеза углерода оказывалась недоступна для процессов окисления. Такие условия существуют только в биоценозах болот и биоценозах тропических морей.
В биоценозах болот отмирающая растительность попадает в стоячую воду с крайне низким содержанием растворенного кислорода и накапливается там, практически не разлагаясь (частичное анаэробное разложение с образованием метана не меняет общей картины). Накапливающиеся в болотах частично разложившиеся остатки растительности образуют торфяные пласты, из которых впоследствии формируются месторождения бурого и каменного угля.
За последние 100 лет общая площадь болот на Земле сократилась почти в два раза и продолжает сокращаться в результате их осушения. Соответственно уменьшается количество извлекаемого из атмосферы СО
2. Следует отметить, что зачастую осушение болот сопровождается вымиранием эндемичных видов, приспособленных к существованию в определенных условиях конкретных болот, расположенных в конкретной климатической зоне. Поэтому восстановление площади болот связано сегодня не только с трудностью изъятия земель из сельскохозяйственного оборота, но и невозможностью восстановления в ряде случаев полноценных биоценотических сообществ.
В биоценозах тропических морей изъятие СО
2 из океанической воды, куда он попадает из атмосферы, происходит несколько иным образом. Углекислый газ используется в качестве "строительного материала" гетеротрофными организмами при образовании известковых раковин и чехлов. Практически вес карбонаты земной коры (известняки, доломиты, мрамор, мел и т.д.) имеют биогенное происхождение
11.
6. Углерод в Мировом океане Основной запас углерода, принимающего активное участие в биогеохимическом цикле, находится в Мировом океане, где он содержится в различных формах: в виде частиц неорганических углеродсодержащих веществ, частиц органического нерастворимого углерода, растворенного органического углерода и живых форм. В океан углерод поступает как с суши со стоком рек в результате деструкции органического вещества, так и из атмосферы, откуда углерод поступает вследствие дыхания всего комплекса живых существ. Многие водные организмы, создают свои скелеты на основе карбоната кальция, а после гибели этих организмов из них образуются пласты известняков. Из атмосферы было извлечено и захоронено в десятки тысяч раз больше углекислого газа, чем в ней находится в данный момент. В конечном итоге подавляющая часть углерода в океане отлагается на дне, перекрывается все более молодыми отложениями и таким образом выходит за пределы экосферы, сохраняясь при этом в большом цикле вещества литосферы
12.
Как и биосфера суши, океаны каждый год обмениваются большими количествами СО
2 с атмосферой. В незагрязненной среде потоки воздух-море и море-воздух в целом сбалансированы, и в обоих направлениях каждый год перемещается около 90 ГтС. Такие потоки вверх и вниз управляются изменениями в температуре поверхностного слоя воды в океанах, которая влияет на способность воды растворять углекислый газ, a также потреблением и продукцией газа в процессах фотосинтеза и дыхания/разложения в околоповерхностных водах. Все эти процессы могут в значительной степени варьировать как по сезонам, так и в пространстве. В целом тропические океаны являются суммарными источниками СО
2 в атмосферу, тогда как в более высоких и особенно полярных широтах океаны являются суммарным стоком.
В среднем как глобально, так и в течение годового цикла незагрязненные океаны находятся в близком к устойчивому состоянии относительно захвата/высвобождения СО
2. Однако, это не означает, что за большие периоды времени не происходит изменений в скоростях этих процессов. Действительно, считается, что намного более низкий уровень атмосферного СО
2, который согласно данным по кернам льда существовал в прошлом, являлся причиной, по крайней мере частично, увеличения захвата СО
2 океанами из-за их более холодных по сравнению с настоящим временем вод.
Однако известно, что сжигание ископаемого топлива и остальные вызванные человеком изменения привели к значительному дополнительному привносу СО
2 в атмосферу. Между морской водой и воздухом должно установиться равновесие в отношении СО
2. Здесь появляется второй фактор, который необходимо учитывать, поскольку процесс перемешивания воды в океанах медленный, и это означает, что для достижения равновесия по всей глубине требуются сотни или тысячи лет. В целом скорость захвата СО
2 ограничивается не переносом через поверхность моря, а перемешиванием поверхностных вод с глубинными (средняя глубина 3,8 км, максимальная глубина 10,9 км). На глубине нескольких сотен метров существует область быстрого падения температуры, основной термоклин. Это приводит к повышенной устойчивости столба воды, что препятствует перемешиванию с выше- и нижележащими слоями. Только в некоторых полярных областях, особенно вокруг Антарктики, а также в Гренландском и Норвежском морях в Северной Атлантике из-за отсутствия термоклина возможно непосредственное, и, следовательно, быстрое перемешивание поверхностных вод с глубинными.
В этих условиях прибегают в основном к методам математического моделирования. Лучшая оценка количества антропогенного СО
2, захватываемого в настоящее время океанами, полученная с помощью модельных экспериментов, составляет 2,0 ± 0,8 ГтС·год
-1.
7. Глобальные запасы углерода Упрощенный вариант цикла углерода приведен на рис. 5. Самыми большими резервуарами углерода являются морские отложения и осадочные породы на суше (20 000 000 ГтС), где он находится в основном в виде СаСО
3. Однако большая часть этого материала не взаимодействует с атмосферой и подвергается круговороту через твердую часть Земли в геологических временных масштабах.
Рис. 7. Упрощенный вариант глобального цикла углерода. Цифры в рамках отражают размер резервуара в Гт С. Стрелки представляют потоки, а связанные с ними числа соответствуют размеру потока в Гт - год.
Следующим по величине резервуаром является морская вода (около 39000 ГтС), где углерод находится в основном в растворенной форме в виде HCO
3- и СО
32-. Однако глубинная часть океанов, где содержится основное количество углерода (38100 ГтС), не взаимодействует с атмосферой так быстро.
Запасы углерода в ископаемых топливах и сланцах тоже существенны, и считается, что большую часть их можно добыть — таким образом, он доступен для сжигания.
Самыми небольшими резервуарами являются биосфера суши (2190 ГтС) и атмосфера (750 ГтС). Именно небольшой размер последнего делает его чувствительным даже к небольшим изменениям процентного содержания углерода в других больших резервуарах, где эти изменения приводят к эмиссиям в атмосферу, как, например, при сжигании ископаемых топлив
13.
8. Процессы выветривания и вулканическая деятельность Еще одним источником CO
2 являются вулканы, газы которых состоят главным образом из углекислого газа и паров воды. Некоторая часть углекислого газа и воды, извергаемых вулканами, возрождается из осадочных пород, в частности известняков, при контакте магмы с ними и их ассимиляции магмой. В процессе круговорота углерода происходит неоднократное фракционирование его по изотопному составу (
12C—
13C), особенно в магматогенном процессе (образование CO
2, алмазов, карбонатов), при биогенном образовании органического вещества (угля, нефти, тканей организмов и др.).
Диоксид углерода атмосферы расходуется также на процесс выветривания горных пород, превращая последние сначала в средние, а затем в гидрокарбонаты, которые вымываются водой и накапливаются в океане. Например, при выветривании полевых шпатов, в частности анортита, образуется гидрокарбонат кальция:
Са(Al
2Si
2О
8) + СО
2 ? СаСО
3+А1
2О
3+2SiО
2 СаСО
3+СО
2+Н
2О ? Са(НСО
3)
2 Общее количество СО
2, связываемое ежегодно при выветривании горных пород, достигает 2 млрд. т углерода
14,15.
9. Галактоцентрическая парадигма Галактоцентрическая парадигма постулирует, что эволюция нашей Галактики сопровождается непрерывным разрушением звезд в ее ядре и выносом продуктов их дезинтеграции двумя газопылевыми струйными потоками (рис. 8).

Рис. 8. Современное положение Солнца (кружок с точкой) относительно спиральных ветвей Галактики. Римские цифры - четыре галактических рукава (сплошные линии) по Ж. Балле
16. Арабские цифры - два струйных потока (пунктирные линии). Г.ц. - галактический центр. Малый круг в центре - газопылевой ядерный диск, круг большего радиуса - кольцо Галактики. Стрелки указывают направление движения.
Распространись в экваториальной плоскости Галактики, эти газ и пыль конденсируются в плотные облака, кометы и звезды. Эти процессы резко усиливаются в зонах пересечения струйных потоков с галактическими рукавами. Солнце обращается вокруг центра Галактики по эволюционирующей эллиптической орбите, пересекая через каждые 20-37 млн. лет струйные потоки и галактические рукава. В такие эпохи длительностью 1-5 млн. лет планеты Солнечной системы подвергаются интенсивным бомбардировкам галактическими кометами.
Кометы отдают Земле свою кинетическую энергию, а также приносят на планету большие количества воды, углерода и других химических элементов. Энергия комет затем выделяется в геологических процессах (тектонических, вулканических, сейсмических и др.), а кометный материал в ходе глобального геохимического круговорота перераспределяется по внешним геосферным оболочкам планеты.
Согласно
17 в эпохи кометных бомбардировок на Землю выпадает большая масса космического материала, включая углерод, который активно поглощается организмами и включается в глобальный круговорот вещества на планете. Перераспределяясь в биосфере по разным уровням системы, поступающее вещество нарушает сложившееся на Земле геохимическое равновесие.
Возврат системы в устойчивое состояние происходит за счет освобождения от «ненужных» веществ, в первую очередь, избытка воды и углерода, которые выводятся системой из активного круговорота. Основная масса воды поступает в Мировой океан, что объясняет известный ступенчатый характер изменения его уровня
18. Вместе с водой в океан сносятся углерод и остальной космический материал.
Однако, из космоса, сквозь атмосферу на поверхность Земли выпадает примерно 40 млн. тонн метеоритного вещества в год. Процессы обмена веществом внутри экосферы отличаются значительно большими размерами. Поэтому можно сказать, что Земля — это закрытая система.
Заключение Круговорот углерода, будучи неразрывно связан с климатом, круговоротом воды и биогенных элементов, а также производством биомассы путем фотосинтеза на суше и в мировом океане, является главным для Земной системы. Правильное понимание глобального круговорота углерода очень важно для понимания истории окружающей среды нашей планеты, для населяющих ее людей и для того, чтобы предсказывать их совместное будущее и управлять им.
Человеческое вмешательство в глобальный круговорот углерода продолжается уже тысячи лет. Однако, только на протяжении двух последних веков антропогенные потоки стали по своей величине сравнимы с основными природными потоками углерода, и в последние годы 20-го века человечество полностью осознало угрозу неблагоприятных последствий и приступило к совместным действиям. Такой поворот событий добавляет новую обратную связь в глобальный круговорот углерода, которая окажет большое влияние на будущее Земной системы, так как человечество начинает браться за проблему управления окружающей средой своей планеты.
Перед научным сообществом стоит задача наблюдения (количественного определения), изучения (установления причинно-следственных связей) и предсказания изменений круговорота углерода в масштабах всей Земной системы, включая обратную связь с человеческим фактором. Это требует новых научных подходов и обобщений, которые преодолеют междисциплинарные барьеры и географические границы, и подчеркнут значение цикла углерода как неотъемлемой части совокупной системы углерод-климат-человек.
В настоящее время три международные исследовательские программы объединили свои усилия по координации исследований в этой области: Международная программа по Геосфере и Биосфере (IGBP), Международная программа по изучению роли человечества в глобальных изменениях окружающей среды (IHDP), и Программа по изучению Мирового климата (VVCRP). В результате появился Проект по Изучению Глобального Углерода (GCP). Этот отчет определяет схему научных исследований по проекту и стратегию его внедрения. Отчет предназначен для широкого круга научных организаций и государственных учреждений, включая различные области естественных и социальных наук, а также для политиков. Цель GCP состоит в том, чтобы прийти к комплексному, политически актуальному, описанию круговорота глобального углерода, которое охватывало бы природную и человеческую компоненты в их взаимодействии.
GCP будет осуществлять свой план исследований в сотрудничестве с национальными и международными программами по изучению углерода и финансирующими организациями, а также инициируя ограниченное количество новых исследовательских проектов повышенной сложности, и требующих междисциплинарных усилий, но которые можно завершить в течение 3-5 лет
19.
Список литературы 1. Андруз Дж., Бримблскумб П., ДжикелзТ., Лисе П. Введение в химию окружающей среды. – М: Мир, 1999. – 271 с.
2. Бареибаум АА. О поступлении космического углерода и его круговороте на Земле // Экосистемные перестройки и эволюция биосферы. М.: ПИН РАН. 1998. Вып.З. С. 15-29.
3. Батенков В.А. Охрана биосферы. – Барнаул: Изд-во Алт. ун-та. 2002. – 193 с.
4. Биохимия: Учебник / Под ред. Е.С. Северина. — М.: ГЭОТАР-МЕД, 2004. — 784 с.
5. Вейл П.Р., Митчем P.M., To.vncon С.Ш. Глобальные циклы относительных изменений уровня моря // Сейсмическая стратиграфия. М: Мир. 1982. Т.1. С.160-183.
6. Вернадский В. И., Очерки геохимии, 4 изд., М.— Свердловск, 1934.
7. Виноградов А. П. Введение в геохимию океана, М., 1967.
8. Громов Б.В. Удивительный мир архей // Соросовский Образовательный Журнал. 1997. № 4. С. 23—26.
9. Карнаухов А.В. Роль биосферы в формировании климата земли. Парниковая катастрофа. // Биофизика, 2001, том 46, вып.6, с.1138-1149.
10. Кондратьев К.Я., Крапивин В.Ф. Моделирование глобального круговорота углерода - М.: Физматлит, 2004. 336 с.
11. Коровин Н.В. Общая химия.- М.: Высшая школа, 2005.
12. Николайкин Н. И. Экология. – М.: Дрофа, 2003. — 624 с.
13. Салтыков А.В. Биоэкология: Учебное пособие. - Ульяновск: УлГТУ, 2000. - 88 с.
14. Степин Б.Д, Цветков А.А. Неорганическая химия.- М: Высшая школа, 1994.-612.
15. Tapкo A.M. Можем ли мы затормозить глобальное потепление? Россия в окружающем мире – М.: МНЭПУ. 2008. – 328 с.
16. Холин Ю. В. Гумусовые кислоты как главные природные комплексообразующие вещества // Научно-популярный журнал Университеты: наука и просвещение. 2001. No 4.
17. Чибисова Н.В., Долгань Е.К. Экологическая химия. – Калининград, 1998. – 113 с.
18. The Global Carbon Project A framework for Internationally Coordinated Research on the Global Carbon Cycle Based on Global Carbon Project (2003) Science Framework and Implementation. ESSP Report No. 1; Global Carbon Project Report No. 1, 69 pp, Canberra.
19. Vallee J.P. Metastudy of the spiral structure of our home Galaxy // Astrophys. J. 2002. V.566. №l.P.261-266.
Круговорот углерода в биосфере и антропогенные факторы влияния