Соколов В.С. Газотурбинные установки - файл n1.doc

приобрести
Соколов В.С. Газотурбинные установки
скачать (2766.5 kb.)
Доступные файлы (1):
n1.doc2767kb.14.09.2012 18:59скачать

n1.doc

  1   2   3   4   5   6
в. с. соколов

Газотурбинные

установки

f, Одобрено Ученым советом Государственного комитета СССР по профессионально-техническому образованию в качестве учебного пособия для средних Г профессионально-технических училищ






МОСКВА «ВЫСШАЯ ШКОЛА» 1986
ББК 31.373

С59 УДК 621.438

Рецензенты: д-р техн. наук Л. П. Сафонов (Научно-производственное объединение «Центральный котельный теплотехнический институт им. И. И. Ползунова»); канд. техн. наук А. Г. Левачев , (Московский энергетический институт)

Соколов В. С.

С59 Газотурбинные установки: Учеб. пособие для сред. ПТУ. — М.: Высш. шк., 1986. — 151 с: ил.

В книге приведены основы энергетической газотурбинной техники и энерготехнологии, описаны принципы действия в конструкции газовых турбин, компрессоров, камер сгорания в вспомогательного оборудования газотурбинных установок. Под­робно рассмотрены обслуживание и эксплуатация газотурбинных установок при нор­мальных режимах работы, а также при возникновении неполадок и аварийных си­туаций.

2303030000—463

С ------------36—86

052(01)—86

ББК 31.373 6П2.23
Предисловие

В настоящее время в энергетике, а также других отраслях на­родного хозяйства наряду с паротурбинными установками и двигателями внутреннего сгорания все шире используются газотурбинные установки (ГТУ). Совершенствование конструкций ГТУ, повышение их эксплуатационных параметров и надежности явля­ются важнейшими задачами, которые предстоит решить на пути интенсификации научно-технического прогресса в нашей стране.

В Основных направлениях экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года говорит­ся о необходимости эффективного развития топливно-энергетиче­ского комплекса и реализации Энергетической программы СССР. При этом намечается увеличить добычу газа в 1,6—1,8 раза.

Увеличение добычи газа приведет к новому расширению сети магистральных газопроводов, возрастет потребность в газопере­качивающих агрегатах, одним из основных приводов которых яв­ляются ГТУ.

Решение проблемы удовлетворения потребностей народного хозяйства в энергии предъявляет высокие требования к подготовке обслуживающего персонала для энергетических объектов, в том числе и для таких, на которых применяются ГТУ.

Надежная и экономичная работа ГТУ прежде всего зависит от дисциплинированности и грамотности обслуживающего персона­ла. Машинист газотурбинной установки должен не только знать принцип ее действия и правила технической эксплуатации (ПТЭ), но и понимать сущность протекающих в отдельных элементах физических процессов, ясно представлять, к каким изменениям режима работы приведут отклонения тех или иных физических, параметров.

• Назначение настоящей книги — помочь рабочим овладеть необходимым комплексом знаний.

Автор

Издательство «Высшая школа», 1986


Введение

Принцип действия ГТУ был известен уже в XVIII в., а первый газотурбинный двигатель был построен в России инженером П. Д. Кузьминским в 1897—1900 гг. и тогда же прошел предварительные испытания. Полезная мощность от ГТУ была впервые получена в 1906 г.на установке французских инженеров Арменго и'Лемаля.

На первых этапах развития. ГТУ в них для сжигания топлива применяли два типа камер сгорания. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изме­нялось. В камеру сгорания, второго типа топливо и окислитель (воздух) подавались порциями. Смесь поджигалась и сгорала в замкнутом объеме, а затем продукты сгорания поступали в тур­бину. В такой камере сгорания температура и давление не посто­янны: они резко увеличиваются в момент сгорания топлива.

Со временем выявились несомненные преимущества камер сго­рания первого типа. Поэтому в современных ГТУ топливо в большинстве случаев сжигают при постоянном давлении в камере сгорания.

Первые ГТУ имели -низкий кпд, так как газовые турбины и компрессоры были несовершенны. По мере совершенствования этих -агрегатов увеличивался кпд газотурбинных установок и "они становились конкурентоспособными по отношению к другим видам тепловых двигателей.

В настоящее время газотурбинные установки являются основ­ным видом двигателей, используемых в авиации, что обусловлено простотой их конструкции, способностью быстро набирать нагруз­ку, большой мощностью при малой массе, возможностью полной автоматизации управления. Самолет с газотурбинным двигателем впервые совершил полет в 1941 г.

В энергетике ГТУ работают в основном в то время, когда резко увеличивается потребление электроэнергии, т. е. во время пиков нагрузки. Хотя кпд ГТУ ниже кпд паротурбинных установок (при мощности 20—100 МВт кпд ГТУ достигает 20—30%), исполь­зование их в пиковом режиме оказывается выгодным, так как пуск занимает гораздо меньше времени.

В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиа­ционные турбореактивные двигатели, отслужившие свой срок в авиации Значительной экономии следует ожидать от парогазовых установок (ПГУ), в которых совместно работают паротурбинные ■ газотурбинные установки. Они позволяют на несколько процен­тов сократить расход топлива по сравнению с лучшими паротур­бинными установками.

Наряду с паротурбинными установками и двигателями внут­реннего сгорания ГТУ применяют в качестве основных двигателей на передвижных электростанциях.

В доменном производстве энергия уходящих газов используется в газовых турбинах, предназначенных для привода воздушных компрессоров, подающих воздух в рабочее пространство домен.

В технологических процессах нефтеперегонных и химических производств горючие отходы используются в качестве топлива для газовых турбин.

Газотурбинные установки находят также широкое применение на железнодорожном, морском, речном и автомобильном транс­порте. Так, на быстроходных судах на подводных крыльях и воз­душной подушке ГТУ являются двигателями. На большегрузных автомобилях они могут использоваться в качестве как основного, так и вспомогательного двигателя, предназначенного для подачи воздуха в 'основной двигатель внутреннего сгорания и работаю­щего на его выхлопных газах.

Кроме того, ГТУ служат приводом нагнетателей природного газа на магистральных газопроводах, резервных электрогенераторов пожарных насосов.

Основное Направление, по которому развивается газотурбиностроение, это повышение экономичности ГТУ за счет .увеличения температуры и давления газа перед газовой турбиной. С этой Целью разрабатываются сложные системы охлаждения наиболее напряженных деталей турбин или применяются новые, высокопрочные материалы — жаропрочные на основе никеля, керамика и др.

Газотурбинные установки обычно надежны и просты в эксплуа­тации при условии строгого соблюдения установленных правил и режимов работы, отступление от которых может вызвать разру­шение турбин, поломку компрессоров, взрывы в камерах сгорания и др.

Глава первая


Основные элементы газотурбинных установок

§ 1. Общие сведения о газотурбинных установках

Газотурбинная установка состоит из трех основных элементов: газовой турбины, камер сгорания и воздушного компрессора.

На рис. 1, а показана газотурбинная установка, компрессор 1, камеры сгорания 2 и газовая турбина 3 которой расположены в едином сборном корпусе. Роторы 6 и 5 компрессора и турбины жестко соединены друг с другом и опираются на три подшипника. Четырнадцать камер сгорания располагаются вокруг компрессора каждая в своем корпусе. Воздух поступает в компрессор через входной патрубок и уходит из газовой турбины через выхлопной патрубок. Корпус газотурбинной установки опирается на четыре опоры 4 и 8, которые расположены на единой раме 7.

Тепловая схема такой газотурбинной установки показана на рис. 1, б. В камеры сгорания топливным насосом подаются топли­во и сжатый воздух после компрессора. Топливо перемешивается с воздухом, который служит окислителем, поджигается и сгорает. Чистые продукты сгорания также смешиваются с воздухом, что­бы температура газа, получившегося после смешения, не превы­шала заданного значения. Из камер сгорания газ поступает в га­зовую турбину, которая предназначена для преобразования его потенциальной энергии в механическую работу. Совершая работу, газ остывает и давление его уменьшается до атмосферного. Из газовой турбины газ выбрасывается в окружающую среду.

Из атмосферы в компрессор поступает чистый воздух. В ком­прессоре его давление увеличивается и температура растет. На привод компрессора приходится отбирать значительную часть мощности турбины.

Газотурбинные установки, работающие по такой схеме, назы­вают установками открытого цикла. Большинство современных ГТУ работает по этой схеме.

Кроме того, применяются замкнутые ГТУ (рис. 2). В замкну­тых ГТУ также имеются компрессор / и турбина 2. Вместо камеры сгорания используется источник теплоты 4, в котором теплота передается рабочему телу без перемешивания с топливом. В ка­честве рабочего тела может применяться воздух, углекислый газ, пары ртути или другие газы.

Рабочее тело, давление которого повышено в компрессоре, в источнике теплоты 4 нагревается и поступает в турбину 2, в которой отдает свою энергию. После турбины газ поступает в промежуточный теплообменник 5 (регенератор), в котором он подогревает воз­дух, а затем охлаждается в ох­ладителе 6, поступает в компрессор /, и цикл повторяется, В качестве источника теп- лоты могут использоваться специальные котлы для нагрева рабочего-тела энергией сжигаемого топлива или атомные реакторы.



Охладитель Рис. 2. Схема замкнутой ГТУ:

5-регенератор, в-охладитель

§ 2. Устройство газовой турбины и компрессора

Газовая турбина представляет собой тепловой двигатель, в котором потенциальная энергия газа преобразуется в механиче­скую энергию.

Продольный разрез простейшей газовой турбины показан на рис. 3. На вал / насажен диск 2, в котором укреплены рабочие

лопатки 4. Вал с диском и ло­патками в сборе называют ро­тором. Ротор турбины распо­ложен внутри корпуса 5 и опи­рается на подшипники сколь­жения 6. Газ поступает к ро­тору турбины через сопла, об­разованные сопловыми лопат­ками 3. Сопла предназначены для преобразования потен­циальной энергии газа в ки­нетическую. Внутри сопла дав­ление газа уменьшается, а его скорость увеличивается. Перегородки, разделяющие сопла, называют сопловыми лопатка­ми, а все сопловые лопатки, расположенные на одной окружности, — сопловой решет­кой.

После сопловой решетки газ поступает к рабочим ло­паткам. Промежутки между рабочими лопатками называют рабочими каналами, а все рабочие лопатки на диске — рабочей решеткой. Сопловую решетку и рас­положенную за ней по ходу газа рабочую решетку называют степенью. Рабочие лопатки изготовлены так, что каналы между ними имеют определенную форму. За счет изменения количества дви­жения газа в рабочих каналах часть его энергии преобразуется в механическую, заставляя вращаться ротор. Ротор соединяется с потребителем механической энергии, которым на электрических станциях является электрический генератор, а на газоперекачивающих—- нагнетатель газа.


Рис. 3. Простейшая турбина:

' 'Г*' <Гсопло»"е н рабочие

a

Поступает газ в турбину через входной патрубок Ј, а уходит из нее отработавший газ через выхлопной патрубок 8.

Корпус турбины состоит из входного и выхлопного патрубков и той части, где расположены сопловые и рабочие лопатки. Та­ким образом корпус отделяет газ повышенного давления от окру­жающей среды. Однако в местах выхода ротора из корпуса име­ются зазоры, и чтобы предотвратить утечку газа, в корпусе уста­навливают уплотнения 7. Корпус турбины внутри или снаружи обязательно покрывают теплоизоляцией.

Компрессор служит для сжатия газа (воздуха) и повыше­ния его энергии и температуры. При малых степенях сжатия в ГТУ в основном используют осевые компрессоры.

Простейший одноступенчатый компрессор состоит из тех же элементов, что и простейшая турбина, поэтому его устройство можно пояснить, используя рис. Ь. Так же как и турбина, ком­прессор имеет ротор* состоящий из вала /, диска 2 и рабочих ло­паток 4. На внутренней поверхности корпуса компрессора распо­лагаются направляющие лопатки 3. Решетку направляющих ло­паток и следующую за ней рабочую решетку называют ступенью компрессора.

Воздух засасывается в компрессор через входной патрубок 9. Каналы между направляющими и рабочими лопатками имеют такую форму, что скорость воздуха в них уменьшается, а давление растет. Чтобы производилась работа сжатия воздуха, от турбины отбирается значительная часть мощности, необходимой для вра­щения ротора компрессора.

Выхлопной патрубок 8 (диффузор) служит для вывода воздуха из компрессора. Давление воздуха за диффузором значительно выше, чем во входном патрубке, и является наибольшим давлени­ем в ГТУ.

Корпус компрессора состоит из входного патрубка, цилиндри­ческой части, в которой расположены направляющие лопатки, и диффузора. Так же как в турбине, в местах выхода ротора из корпуса компрессора располагаются уплотнения 7 Турбины и компрессоры, имеющие одну ступень, называют од­ноступенчатыми. Турбины и компрессоры большой мощности с одной ступенью сконструировать обычно не удается. В этом случае на роторе приходится располагать несколько ступеней одну за другой. Такие турбины и компрессоры называют многоступен­чатыми.
§ 3. Роторы газовых турбин и компрессоров

Роторы газовых турбин и компрессоров работают в сложных условиях: температура воздуха перед компрессором в зимнее время может снижаться до —50° С, а температура газа перед тур­биной быть более 1000° С. При слишком низких температурах ме­таллы становятся хрупкими и проявляется такое их свойство, как хладноломкость, а при высоких температурах в результате боль­шой пластичности — ползучесть.

В газотурбинных установках используют цельнокованые, свар­ные и сборные роторы.

Роторы турбины и компрессора ГТУ могут выполняться как самостоятельные элементы или собираться в единый ротор. Цель­нокованые роторы турбины и компрессора показаны на рис, 4, а—г.

Ротор, показанный на рис. 4, а, состоит из роторов турбины и компрессора, изготовленных из одной поковки. В настоящее вре­мя такие роторы в мощных ГТУ не применяют. Основной их недо- статок состоит в том, что роторы турбины и компрессоры прихо­дится изготавливать из одного металла.



Рис. 4. Цельнокованые роторы:

а — из одной поковки (турбины и компрессора), б, в — ба­рабанного и дискового типов (компрессора), г — турбины; 1, 6 — шейки ротора, 2, 5 — концевые уплотнения, 3 — иазы (места установки лопаток компрессора), 4 — диски турбины. 7 — центральное сверление, S — фланец, S — расточка, 10 — диски с лопатками компрессора; /—// — компрессорная и турбинная части

Это невыгодно, так как ротор турбины работает при высокой температуре и для него тре­буется металл высокого качества, а ротор компрессора может быть изготовлен из более дешевого металла. Однако на примере этого ротора удобно рассмотреть назначение основных его элементов. . Ротор можно, разделить на две части: компрессорную 7 и турбинную //. На концах ротора выполняются шейки 1 и 6, которыми он опирается на подшипники. За шейками располагаются места установки концевых уплотнений 2 и 5. В компрессорной части ро­тора протачиваются специальные пазы 3, в которых крепятся ра­бочие лопатки компрессора, а в турбинной — диски 4, на цилинд­рической части которых также выполняются пазы, необходимые для крепления рабочих лопаток турбины.

Вдоль оси ротора для контроля качества металла протачива­ется центральное отверстие 7. Через него обнаруживают язвы, трещины, пустоты, которые могут возникнуть при ковке заготовки ротора.

Цельнокованые роторы барабанного типа (рис. 4, б) приме­няют в компрессорах. Так как внутри ротора выполнена большая полость (расточка) 9, он получается относительно легким и жест­ким. На правом конце такого ротора имеется фланец 8, к которо­му может крепиться концевик с шейкой под подшипник и конце­выми уплотнениями или ротор газовой турбины.

Цельнокованые роторы дискового типа (рис. 4, в) чаще всего используются в компрессорах. Рабочие лопатки компрессора рас­полагаются в пазах, выполненных на цилиндрической части дис­ков 10. Если число ступеней в газовых турбинах невелико, в них также применяют цельнокованые роторы. На рис. 4, г показан цельнокованый ротор двухступенчатой газовой турбины, который фланцем 8 крепится к ротору компрессора.

Роторы компрессоров изготавливают также сварными (рис. 5). Такие роторы состоят из нескольких сваренных, друг с другом дис­ков 6. К первому (левому) диску приварен концевик 2 с концевы­ми уплотнениями 3 и шейкой У, последний (правый) диск имеет выступ, который заканчивается фланцем 5. Сварные роторы обла­дают большой прочностью и жесткостью.

В газотурбинных установках часто используются сборные ро­торы турбин и компрессоров: с насадными дисками, а также из сплошных дисков и из дисков с центральными отверстиями, скреп­ляемых стяжками.

Роторы с насадными дисками (рис. 6) в основном применяют в компрессорах. Диски 1 насаживают на вал 2 с натягом, для чего их предварительно нагревают, чтобы диаметр внутренней расточки увеличился. После остывания диски плотно охватывают вал. Роторы такой конструкции можно использовать при относи­тельно небольших температурах.

Роторы турбины и компрессора, состоящие из отдельных дис­ков и концевиков без центрального отверстия, показаны на рис. 7, а, б. Диски имеют отверстия 10, расположенные вдали от оси вращения ротора. Через эти отверстия пропущены стяжки 4. С по­мощью гаек 2 и 6, которые навинчиваются на стяжки, диски и концевики плотно прижимаются друг к другу. Центровка дисков и концевиков обеспечивается окружными поясками 5 (рис. 7, а) или специальным зубчиковым (хиртовым) соединением 8 (Рис.7, б).


Рис. 5. Сварной ротор компрессора: / — шейка, 2 — концевик, 3 — концевые уп­лотнения, < —места установки лопаток, 5 —фланец, 6 — диски



Рис. 6. Ротор компрессора с насадными дисками: / — диски, 2 — вал, 3 — концевые уплотнения, 4 — шейка



Рис. 7. Сборные роторы:

^'„-J~6es Центрального отверстия (компрессора и турбины), в —с цент­ральным отверстием (турбины); /, 7-концевики, 2, S - гайки, 3-дискв, 4 —стяжки, 5 —пояски, в — зубчнковые (хиртовые) соединения » — ступица, toотверстия в диске

Применяются также роторы с одной центральной стяжкой 4 (рис. 7, в), которая должна быть большого диаметра, чтобы обес­печивать необходимое усилие натяга гайками. При этом в дисках приходится выполнять центральное отверстие, что снижает их механическую прочность. Чтобы избежать уменьшения прочности дисков, в центральной части их утолщают.— создают ступицу Р.

Применяют также другие конструкции сборных роторов. Так, ротор турбины (рис. 8) собирают из сплошных дисков 4, соеди­ненных штифтами 2, пропущенными через специальные уголки 3, выточенные заодно с дисками. На рис. 9 показан ротор турбины, собранный из дисков 4, соединенных призонными болтами 2, про­пущенными через буртики 3 на ступицах соседних дисков.

Все конструкции роторов, приведенные на рис. 4—9, изобра­жены без рабочих лопаток.

Рабочие лопатки (рис. 10) крепятся на периферии дисков или цилиндрической поверхности ротора и состоят из пера 3 и хвосто­вика 2. Между соседними лопатками образуются каналы для прохода газа. Хвостовик необходим для крепления лопатки в дис­ке. Полки 4 образуют дно каналов, ограниченных перьями сосед­них лопаток.

Хвостовик лопатки, образующий зубчиковое соединение с дис­ком, показан на рис. 11. Зубцы / представляют собой опоры, на которые распределяется нагрузка от сил, возникающих при вра­щениях и стремящихся вырвать рабочую лопатку из диска 6. Зубцы опираются на выступы 5 диска.

Рабочие лопатки располагаются по всей окружности перифе­рии диска в пазах 7 на точно заданных друг от друга расстояниях (шагах). Если пазы 7 параллельны оси вращения ротора, такое расположение хвостовика называют осевой заводкой. Этот тип хвостовиков широко применяется для крепления рабочих лопаток газовых турбин. В роторах компрессоров чаще применяют косую заводку, при которой пазы расположены под углом к оси враще­ния ротора.

Рабочие лопатки компрессоров имеют хвостовики более про­стых конструкций (рис. 12, а—е). На рис. 12, а показан хвостовик типа «ласточкин хвост». Боковые скошенные поверхности хвосто­вика 2 лопатки опираются на расположенные под таким же углом поверхности паза_ в роторе 3. На рис. 12, б показан зубчиковый хвостовик постоянной ширины. При шарнирном соединении рабо­чей лопатки компрессора с диском 6 (рис. 12, в) ее хвостовик 2 имеет отверстие 8, через которое проходит палец 7, укрепленный в диске. Лопатка занимает рабочее положение при вращении ро­тора. Такой тип крепления используется редко.

Для крепления лопаток с помощью зубчиковых хвостовиков или шарнирного соединения на наружной цилиндрической поверх­ности дисков вытачиваются пазы в плоскости, перпендикулярной оси вращения ротора. Такое расположение хвостовиков рабочих лопаток называют тангенциальной заводкой.

Рабочие лопатки устанавливают на роторе («облопачивают ротор») до установки его в турбину.





15



Рис. 10.' Рабочая лопатка турбины:

1 — зубцы, 2 — хвостовик, 3 — перо, 4 — полка



Рис. 8. Сборный ротор турбины из сплошных дисков:

1- 5 — концевнки, 2 — штифты, 3 — полки, 4 — диски

Рис. 9. Сборный ротор турбины из дисков с центральным отверстием:

/, 5 — концевикй ротора, 2 — призои-ные болты, 3 — буртики, 4 диски



Рис. 11. Хвостовик рабочей лопатки:

/ — зубцы, 2 — тело, 3 — перо лопатки, 4 — полка, 5 — высту­пы диска, 6 — диск, 7 — паз диска



-хв^тоГик хвостовик

Рис. 12. Типы креплений рабочих лопаток компрессоров: хвост, б зубчнковый хвост, в шарнирное соединение; / — перо лопатки, 3 — ротор, 4 — зубцы, S выступе ротора, 6 — диск, 7 — палец, * — отверстие, 9 — теле вилка

Кроме того, до установки в турбину обязательно проводят статическую и динамическую ба­лансировку как необлопаченного, так и облопаченного ротора.

При статической неуравновешенности (рис. 13, с) центр тя­жести ротора не совпадает с осью вращения, а при динамической (рис. 13, б) совпадает, так как одинаковые небалансы расположе­ны в разных плоскостях вдоль оси ротора.

Статическую неуравновешенность (рис. 13, а) можно обнару­жить в поле сил тяжести. Если установить ротор на специальные опоры 3, он займет такое положение, при котором его центр тяже­сти 4 окажется внизу.
7 кР



Рис. 13. Схемы неуравновешенности ротора:

а — статической, . б — динамической; / — небаланс, 2 — ротор, 3 — опоры, 4 — центр тяжести ротора

Динамическую неуравновешенность (рис. 13, б) нельзя обна­ружить, если ротор не вращается. На рис. 13, б показаны два одинаковых небаланса /, расположенные на окружностях равных радиусов напротив друг друга, но в разных местах по длине ро­тора. В этом случае центр тяжести 4 совпадает с осью вращения ротора, который в поле сил тяжести будет неподвижен. Однако если начать вращать ротор, то появятся силы Р, развиваемые не­балансами /, которые создадут момент на плече /. Под действием пары сил Р ротор начнет вибрировать. При балансировке доби­ваются, чтобы небаланс укладывался в установленные нормы. Балансировку проводят с помощью специальных приспособлений и станков.
§ 4. Подшипники роторов

Роторы турбин и компрессоров опираются на опорные подшипники, которые воспринимают их вес. В свою очередь, на ротор действуют силы, возникающие при работе турбины или компрес­сора. Эти силы возникают при воздействии газа, который стре­мится сдвинуть ротор в осевом направлении в сторону меньшего давления. По направлению действия эти силы называют осевыми. Перемещению ротора в осевом направлении препятствует упор­ный подшипник.

При больших нагрузках длительно работают подшипники скольжения, которые в мощных ГТУ используются в качестве опорных и упорных. Для смазывания подшипников применяют турбинное масло.

В опорном подшипнике (рис. 14) шейка 3 ротора рас­полагается в цилиндрической полости, образованной верхним 2 и нижним / неподвижными вкладышами. Направление вращения ротора показано стрелкой 4. Масло под небольшим давлением по­дается в зазор между шейкой и вкладышами, омывает шейку в верхней части, проходя по" полости 8 в верхнем вкладыше, и си­лами трения о поверхность вращающегося ротора увлекается в

Д 8.



Рис. 14. Устройство опорного подшипника: 1, 2 — нижний в верхний вкладыши, 3 — шейка ротора, 4 — на­правление вращения, 5 — баббитовая заливка, 6 — ось расточки вкладышей, 7 — ось ротора, 8 — полость для прохода масла .

зазор между шейкой и нижним вкладышем. Таким образом между шейкой ротора и нижним вкладышем подшипника создается тон­кая пленка масла (масляный клин). Давление масла в масляном клине резко повышается. В результате создается усилие, равное весу той части ротора, которая приходится на данный подшипник, и ротор как бы «плавает» на масляной пленке.

При работе ГТУ ротор «всплывает» на масляной пленке так, что центр расточки подшипников и ось 7 шейки ротора не совпа­дают. Расстояние между ними "составляет 0,5—0,7 мм. Коэффици­ент трения при нормальной работе подшипника составляет 0,002—0,005; Но даже при таком малом коэффициенте трения вы­деляется большое количество теплоты и масло нагревается на ,20—25° С. Чтобы уменьшить трение при пуске и останове ГТУ, поверхность вкладышей заливают баббитом 5 — легкоплавким спла­вом, обладающим низким коэффициентом трения.

Этот сплав состоит из 83% олова, 11% сурьмы и 6% меди (мар­ка Б-83).

В простейшем опорном подшипнике (рис. 15) нижний вкла­дыш 7, установленный' в корпус /, обычно опирается на него через три колодки 8 и установочные прокладки 9. Изменяя толщину этих прокладок, устанавливают нижний вкладыш в требуемое по­ложение, что необходимо при центровке ротора. Вследствие тре­ния вращающейся шейки ротора о масляную пленку на вкладыши действуют силы, стремящиеся сдвинуть их по окружности (про­вернуть). Нижний вкладыш фиксируется от поворота планками 6.

Шейка ротора 10 накрывается верхним вкладышем, который шпильками крепится к нижнему. Сверху, устанавливается крышка 4, которую соединяют болтами с корпусом подшипника через фланцы 3. Между крышкой и верхним вкладышем также разме­щают колодку с установочными прокладками. Масло поступает к подшипнику по трубе 2, размещенной в корпусе, через отверстие в колодке, установочной прокладке и нижнем вкладыше.

Так как при работе турбин и компрессоров их роторы враща­ются в прогнутом состоянии, подшипники устанавливают с учетом этого прогиба, возникающего под действием сил тяжести. Однако положение ротора относительно подшипников может изменяться и по другим причинам, например из-за изменения осевого усилия или деформации корпуса. Чтобы уменьшить перекосы шейки ротора относительно подшипника, применяют подшипники со сфери­ческими вкладышами (рис. 16).
Рис. 15. Поперечный разрез опор­ного подшипника: / — корпус, 2 —труба (подвод масла), 3 — фланец, 4 — крышка, 5, 7 — верх­ний н нижний вкладыши, 6 — планки, 8 — колодка, 9— установочная про­кладка, /0 —шейка ротора, // — кар­тер


Рис. 16. Опорный подшип­ник со сферическими вкладышами:

1, 4 — обоймы, 2, 3 — нижний и верхний вкладыши, 5 —"подвод масла, в — сферическая поверх­ность, 7 —канал подвода масла от аварийного бачка

В этом случае наружную поверхность нижнего 2 и верхнего 3 вкладышей, соединенных между собой болтами, обтачивают по сфере радиусом R. Аналогично обрабатывают внутреннюю поверх­ность также соединенных между собой болтами верхней 4 и ниж­ней 1 половинок обоймы. Детали обрабатываются так, чтобы центр сферы радиусом R находился точно на оси вращения ротора. Сопрягающиеся сферические поверхности обойм и вкладышей смазываются маслом, поступающим в каналы 5 и 7. Основным назначением канала 5 является подвод масла в подшипник. Канал 7 заполняется маслом из аварийного бачка. Обоймы 4 ъ 1 крепятся в корпусе подшипника неподвижно, а нижний и верхний вкладыши могут поворачиваться относительно точки О при изме­нении положения ротора относительно подшипника.

В настоящее время в опорных подшипниках почти не применяют круговую расточку (см. рис. 14), так как при этом велики рас­ходы масла, возникает низкочастотная вибрация ротора и замет­ное смещение вала в работающем подшипнике по отношению к неработающему.

Другие формы расточки опорных подшипников позволяют из­бавиться от тех или иных недостатков. На рис. 17, а—в показаны круговая расточка со смещением верхнего вкладыша относительно нижнего; овальная и трехклиновая (по числу масляных «клинь­ев», возникающих при работе подшипника).


Рис. 17. Опорные подшипники: а — с круговой расточкой со смещением верхней половины относительно ниж­ней, б, в — с овальной и трехклиновой расточкой, г — с. качающимися сегмен­тами, /, 3— верхний и нижний вкла­дыши, 2 — сегменты; Oi O2 — оси верх­него и нижнего вкладышей, RB — ра­диус вала, R, — радиусы расточек вкла­дышей

Используются также подшипники с качающимися сегментами (рис. 17, г), на которые опираются шейки ротора, сегменты 2 в свою очередь опираются на поверхность внутренней расточки верхнего / и нижнего 3 вкладышей. При вращении ротора они самоустанавливаются так, что давление в масляном клине компен­сирует ту часть ротора, которую воспри­нимает данный сегмент.

На рис. 18 показана схема работы подшипника с качающимися сегментами. Сегменты 1 устанавливаются под неко­торым углом к поверхности вала 5. Мас­ло увлекается силами трения о поверх­ность вращающегося вала в зазор между сегментами и валом. Давление в масля­ном клине 3 повышается и препятствует смещению ротора вниз.

Как уже отмечалось, кроме опорных применяются упорные подшипники, наз­начение которых препятствовать смеще­нию ротора относительно корпуса вдоль оси вращения под действием осевого усилия.



Рис. 18. Схема работы опор-ноге подшипника с качаю­щимися сегментами: / — сегменты, 2 — шейка рото­ра, 3 —масляный клин (распре­деление давления), 4 — направ­ление вращения ротора, 5 — вал

Сегментный упорный подшипник (рис. 19) имеет. корпус, состоящий из верхней 8 и нижней Г половин, соединенных друг с другом по горизонтальному разъему. Внутри на корпус опираются упорные колодки 2. На валу ротора выточен упорный диск -(гребень) 6. Осевое усилие с вала 3 передается через упор­ный диск 6 колодкам 2, а через них — верхней половине 8 корпуса

подшипника.

Полость, в которой расположены упорные колодки 2, заполне­на маслом, поступающим вдоль поверхности вала. Нагретое мас­ло удаляется из подшипника через отверстия 5. Упорные колодки

А-А - работают по тому же принципу, что и сегменты трехклинового подшипника.



Рис. 19. Сегментный упорный подшипник: 1,8 — нижняя и верхняя половины корпуса, 2, 4 — упор­ные и установочные колодки, 3 — вал, 5 — отверстия для выхода масла, 6 — упорный диск (гребень), 7— места опирания колодок

Масляный клин создается между упорными колодка­ми 2 и поверхностью упорного диска 6. Давление, возникающее в масляном клине, позволяет компенсировать осевое усилие.

г г



1 2.










У,

\ f

) \ ^




\

У/////,

V

5

ч




9

«'■

4

Рис. 20. Виды опирания колодок:

а — на ребро, б — на штифт, в — на плоские пружины,

г — на рычажную систему; t — колодка, 2 — упорный

диск, 3 — ребро, 4 — корпус подшипника, 5 — штифт, 6 —

пружина, 7 — пята, 8 — опора, 9 — рычаг

С противоположной стороны упорного диска расположены уста­новочные колодки 4

Осевой разбег (перемещение) ротора при работе не должен превышать 0,3—0,5 мм. При сборке, когда в подшипнике нет мас­ла, разбег ротора заметно больше, так как упорный диск упира­ется непосредственно в упорные колодки без масляного клина.

Наиболее широко распространено опирание упорных колодок на ребро и на штифты (рис. 20, а, б). В этих случаях, для равно­мерной загрузки упорных колодок необходимо точно выдерживать размер а. Чтобы добиться равномерного распределения усилий по упорным колодкам без точной подгонки, применяют различные способы опирания упорных колодок на корпус подшипника, на­пример через плоские пружины' и рычажную систему (рис. 20, в, г). Оба способа позволяют автоматически перераспределить на­грузки на колодки до полного выравнивания.

Упорные поверхности упорных колодок заливают баббитом.
  1   2   3   4   5   6


в. с. соколов
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации