Материаловедение и ТКМ - файл n1.doc

приобрести
Материаловедение и ТКМ
скачать (64 kb.)
Доступные файлы (1):
n1.doc1637kb.07.12.2007 19:56скачать

n1.doc


Химическая связь.

Ковалентная связь образуется между атомами одного или нескольких химических элементов с близкими ионизационными потенциалами. В чистом виде ковалентная связь реализуется при взаимодействии элементов с наполовину заполненными электронными оболочками. H2 ,C, Si, Ge, Sn. Соседние атомы обмениваются электронами.

Появление между положительно заряженными ионами пары отрицательно заряженных электронов приводит к тому, что оба иона притягиваются к обобществленным электронам и, тем самым, притягиваются друг к другу. Каждый атом взаимодействует с ограниченным числом соседей, причем число соседей равно числу валентных электронов атома. Следовательно, ковалентная связь насыщенна. Кроме того, атом взаимодействует только с теми соседями, с которыми он обменялся электронами, то есть ковалентная связь имеет направление.

Ионная связь образуется при взаимодействии атомов с малым количеством валентных электронов и атомов с большим количеством электронов на валентных оболочках. При этом наружные электроны атомов с низкими потенциалами ионизации переходят на валентные оболочки атомов с высокими ионизационными потенциалами. Ионная связь ненасыщенна, поскольку каждый из отрицательно заряженных ионов притягивает к себе положительно заряженные, а каждый из положительно заряженных ионов притягивает к себе все отрицательно заряженные. Однако ионная связь направлена, поскольку ион притягивает к себе разноименно заряженные ионы и отталкивает одноименно заряженные.

Уменьшение размера иона и увеличение его заряда ведет к росту энергии связи, а следовательно, к росту температуру плавления материала, уменьшению коэффициента теплового расширения и к увеличению модуля упругости.

Металлическая связь образуется между атомами одного или нескольких химических элементов, у которых валентные электронные оболочки застроены меньше чем на половину. Поскольку энергия иона минимальна при полностью заполненной внешней оболочке, атомы отдают внешние валентные электроны и превращаются в положительно заряженные ионы, между которыми находятся свободные электроны (электронный газ).

Металлическая связь не имеет направления и ненасыщенна. Кристаллические решетки металлов упакованы плотно.

Связь Ван-дер-Ваальса образуется при сближении молекул или атомов инертных газов.

Кристаллическая решетка.

Элементарная ячейка кристалла –минимальная конфигурация атомов, кот. сохраняет свойства кристалла и при трансляции которой можно заполнить сколь угодно большой кристалл.

Координационное число – число ближайших соседей атома.

У элементов четвертой группы ковалентная насыщенная и направленная связь, и у каждого атома четыре соседа. К=4. Элементарную решетку можно представить в виде тетраэдра с одним атомом в центре и четырьмя атомами по вершинам тетраэдра. Кристаллическую решетку с такой элементарной ячейкой имеют элементарный кремний, германий, углерод в модификации алмаза. Этот тип кристаллической решетки принято называть решеткой алмаза.




При образовании ионной связи кристаллические решетки получаются более компактными. К=6. NaCl.
При образовании металлической связи кристаллические решетки становятся еще более компактными. К=8 или К=12. ГЦК, ОЦК, ГПУ.

ОЦК решетку имеют такие металлы, как

вольфрам, молибден, ниобий, низкотемпературные модификации железа, титана, щелочные металлы и ряд других металлов. Серебро, медь, алюминий, никель, высокотемпературная модификация железа и ряд других металлов имеют ГЦК решетку. ГП решетка у магния, цинка, кадмия, высокотемпературной модификации титана.


Дефекты кристаллических решеток.

Всякая система стремится к минимуму свободной энергии (F), где F является разностью между внутренней энергией системы U и связанной энергией системы Т·S: F = U – T·S

Внутренняя энергия системы является разностью между энергией атомов в дне потенциальной ямы и истинной энергией системы. Повышение температуры материала или появление упругих напряжений вследствие смещения атомов из равновесного состояния повышает энергию системы. Связанная энергия системы является произведением температуры (Т) на энтропию (S) системы (меру ее беспорядка).

При смещении атома из равновесного положения, с одной стороны, возрастает внутренняя энергия системы, а с другой стороны, растёт связанная энергия, поэтому появление в кристаллической решетке дефектов может оказаться энергетически выгодным.

Все дефекты кристаллической решетки принято делить на две большие группы: геометрические дефекты и энергетические дефекты. При появлении в решетке геометрических дефектов кристаллическая решетка локально искажается. При наличии энергетических дефектов атомы остаются на своих местах, но энергия одного или группы атомов оказывается повышенной.

В свою очередь, геометрические дефекты принято делить на точечные, линейные, поверхностные и объемные. Протяженность точечных дефектов во всех направлениях мала. Протяженность линейных дефектов велика в одном направлении и мала в двух других направлениях. Поверхностные дефекты имеют большую протяженность по двум направлениям и малую по одному, и объемные дефекты имеют большую протяженность по всем направлениям.


Точечные дефекты.

К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки.

Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой.

При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий.

Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом, или пара Френкеля.

В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.

В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью.

Присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.


Линейные дефекты.

Дислокации - линейные дефекты кристаллической решетки.

Краевая дислокация. В кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва.

Винтовая дислокация:

Особенности вектора Бюргерса:

  1. вектор Бюргерса инвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле;

  2. энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса;

  3. при движении решеточной дислокации с вектором Бюргерса, равным периоду трансляции решетки, кристаллическая решетка не изменяется.

При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация.

Влияние дислокаций на свойства:

При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой.

Наличие в материале дислокаций резко повышает скорость диффузии.

Искажение кристаллической решетки за счет присутствия дислокаций повышает удельное электрическое сопротивление металлических материалов и снижает удельное электрическое сопротивление неметаллических материалов.


Поверхностные дефекты.

К поверхностным дефектам решетки относятся дефекты упаковки и границы зерен.

Дефект упаковки. При движении обычной полной дислокации атомы последовательно становятся из одного равновесного положения в другое, а при движении частичной дислокации атомы переходят в новые положения, нетипичные для данной кристаллической решетки. В результате в материале появляется дефект упаковки. Появление дефектов упаковки связано с движением частичных дислокаций.

В том случае, когда энергия дефекта упаковки велика, расщепление дислокации на частичные энергетически невыгодно, а в том случае, когда энергия дефекта упаковки мала, дислокации расщепляются на частичные, и между ними появляется дефект упаковки. Материалы с низкой энергией дефекта упаковки прочнее материалов с высокой энергией дефекта упаковки.

Границы зёрен представляют собой узкую переходную область между двумя кристаллами неправильной формы. Ширина границ зерен, как правило, составляет 1,5-2 межатомных расстояния. Поскольку на границах зерен атомы смещены из равновесного положения, то энергия границ зерен повышена. Энергия границ зерен существенно зависит от угла разориентации кристаллическихрешеток соседних зерен. При малых углах разориентации (до 5 град.) энергия границ зерен практически пропорциональна углу разориентировки. При углах разориентировки, превышающих 5 град., плотность дислокаций на границах зерен становится столь высокой, что ядра дислокаций сливаются.

Зависимость энергии границ зерен (Егр) от угла разориентации (). сп1 и сп2 – углы разориентации специальных границ.

При определенных углах разориентации соседних зерен энергия границ зерен резко снижается. Такие границы зерен называются специальными. Соответственно углы разориентации границ, при которых энергия границ минимальна, называют специальными углами.
Измельчение зерен ведет к росту удельного электрического сопротивления металлических материалов и падению удельного электрического сопротивления диэлектриков и полупроводников.


Объёмные дефекты.

К объёмным, или трехмерным дефектам кристаллической решетки относятся трещины и поры. Наличие трещин резко снижает прочность. Это связано с тем, что острые края трещин являются концентраторами напряжений. Важно отметить, что при одинаковой геометрии трещин пластичность металлических материалов остается выше, чем неметаллических. Присутствие в материале пор также снижает прочность металлических материалов, поскольку уменьшается истинное сечение деталей.

Поскольку энергия атомов на поверхности объёмных дефектов повышена, то они являются источником вакансий.

При нагреве и последующем охлаждении острые трещины превращаются в сферические поры, то есть за счет чередования нагрева с охлаждением можно превращать опасные трещины в менее опасные поры.

Энергетические дефекты.

К энергетическим дефектам решетки относятся: дырки  дополнительно ионизированные ионы, дислоцированные электроны, пары электрондырка или экситоны (возбужденные атомы), фононы  кванты колебаний кристаллической решетки.

При появлении в материале дырок и дислоцированных электронов проводимость диэлектриков и полупроводников возрастает. В металлических материалах существование дырок невозможно, поскольку свободные электроны моментально заполняют их

Сплавы

Это вещества, состоящие из нескольких элементов, взятых в произвольных соотношениях. Сплавы получаются главным образом путем сплавления различных элементов в жидком состоянии, но могут быть получены и за счет диффузии в твердом состоянии, и путем совместной конденсации паров или другими способами.

Компонентами сплава называют химические элементы или химические соединения, входящие в состав сплава. В зависимости от химической природы элементов, размера их ионов и типа кристаллической решетки компоненты могут растворяться друг в друге (ограниченно или неограниченно), могут быть нерастворимыми друг в друге или образовывать новые химические соединения.

Фаза - отдельная однородная часть сплава, отделенная от других частей поверхностью раздела, при переходе через которую химический состав и свойства меняются скачком.

Диаграмма состояния - графическое изображение фазовых равновесий в зависимости от температуры и состава.

Как правило, в жидком состоянии компоненты сплавов хорошо растворяются друг в друге. При понижении температуры и кристаллизации из жидкой фазы выделяются твердые фазы, которые могут быть твердыми растворами либо чистыми компонентами.

Твердые растворы бывают трех видов: замещения, внедрения и вычитания. Твердыми растворами замещения называют фазы, в которых часть узлов кристаллической решетки заполнены атомами одного сорта, а часть узлов атомами другого сорта. Они могут быть ограниченными и неограниченными (непрерывными). Твердыми растворами внедрения называют фазы, в которых атомы растворенного компонента внедрены между атомами второго компонента  растворителя. Твердые растворы внедрения всегда ограниченны. Твердыми растворами вычитания называют фазы на основе химических соединений. В кристаллических решетках таких сплавов часть узлов не занята атомами того или иного сорта, то есть часть атомов как бы вычтена из кристаллической решетки, и в вместо них в решетке остаются вакансии.

Фазовые превращения:

кристаллизация - переход жидкой фазы в твердую;

конденсация - переход газообразной фазы в твердую;

превращения структуры в твердом состоянии;

изменение плотности дислокаций и размера зерен при нагреве деформированных материалов.

Любое фазовое превращение можно рассматривать как результат развития двух процессов: образования зародышей новых фаз и рост этих зародышей. Любое фазовое превращение можно рассматривать как результат развития двух процессов: образования зародышей новых фаз и рост этих зародышей. Термодинамической движущей силой любого фазового превращения является стремление системы к уменьшению свободной энергии F или изобарно-изотермического потенциала G.


Кристаллизация.

Объемная составляющая свободной энергии:

где

U - внутренняя энергия системы,

T·S - связанная энергия системы, представляющая собой произведение температуры T на энтропию S.

С ростом температуры свободная энергия любой системы снижается по кривой направленной выпуклостью вверх.

Энтропия жидкости выше энтропии кристаллов.

Для начала кристаллизации необходимо переохлаждение, а для начала плавления необходим перегрев. Только в этом случае уменьшение объемной составляющей свободной энергии превысит увеличение поверхностной составляющей свободной энергии. Для этого требуются два условия:

1. Температура должна быть ниже температуры кристаллизации

2. Объем, самопроизвольно образующегося зародыша, должен быть достаточно большим.

Кристаллизация жидкости возможна при условии:



Величина переохлаждения чистых жидкостей малого объема, при которых активно образуются устойчивые зародыши кристаллов, достаточно велика  0,2 Тпл. Именно при таких переохлаждениях должна начаться кристаллизация. Но опыт показывает, что в действительности кристаллизация жидкостей начинается при существенно меньших переохлаждениях. что жидкости, как правило, содержат примеси. Наличие поверхностно-активных примесей, растворенных в жидкости, снижает поверхностное натяжение на границе раздела «кристалл-жидкость», и, тем самым, уменьшает объем критического зародыша. Наличие в жидкости нерастворенных частиц, обеспечивает появление готовых поверхностей раздела, от которых начинается кристаллизация.



В России и странах СНГ принята буквенно-цифровая система, согласно которой цифрами обозначается содержание элементов стали, а буквами - наименование элементов. Буквенные обозначения применяются также для указания способа раскисления стали «КП - кипящая сталь, С – полуспокойная сталь, П – спокойная сталь».

Существуют определенные особенности обозначения для разных групп сталей конструкционных, строительных, инструментальных, нержавеющих и др. Общими для всех обозначениями являются буквенные обозначения легирующих элементов:

Н - никель, Х- хром, К - кобальт, М- молибден, В -вольфрам , Т-титан, Д - медь, Г- марганец, С- кремний.

Конструкционные стали обыкновенного качества нелегированные (ГОСТ 380-94) обозначают буквами СТ., например СТ. 3. Цифра стоящая после букв, условно обозначают, процентное содержание углерода стали (КП, ПС, СП, причем буквы СП обычно не проставляют)

Конструкционные нелегированные качественные стали (ГОСТ 1050-88) обозначают двузначным числом, указывающим на среднее содержание углерода в стали (например, СТ. 10).

Качественные стали для производства котлов и сосудов высокого давления согласно (ГОСТ 5520-79) обозначают как конструкционные нелегированные стали, но с добавлением буквы К (например, 20К).

Конструкционные легированные стали согласно (ГОСТ 4543-71) обозначают буквами и цифрами. Цифры после каждой буквы обозначают примерное содержание соответствующего элемента, однако при содержании легирующего элемента менее 1,5% цифра после соответствующей буквы не ставится. Качественные дополнительные показатели пониженное содержание примесей типа серы и фосфата обозначаются буквой - А или Ш, в конце обозначения, например (12 Х НЗА, 18ХГ-Ш) и т. п.

Литейные конструкционные стали согласно (ГОСТ 977-88) обозначаются как качественные и легированные, но в конце наименования ставят букву Л.

Стали строительные согласно (ГОСТ 27772-88) обозначают буквой С и цифрами, соответствующими минимальному пределу текучести стали. Дополнительно применяют обозначения: Т – термоупрочненный прокат, К - повышенная коррозионная стойкость, (например, С 345 Т, С 390 К и т. п.). Аналогично буквой Д обозначают повышенное содержание меди.

Стали подшипниковые, согласно (ГОСТ 801-78), обозначаются также как и легированные, но с буквой Ш в конце наименования. Следует заметить, что для сталей электрошлакового переплава буква Ш обозначается через тире, (например, ШХ 15, ШХ4-Ш).

Стали инструментальные нелегированные согласно (ГОСТ 1435-90) делят на качественные, обозначаемые буквой У и цифрой, указывающей среднее содержание углерода (например, У7, У8, У10) и высококачественные, обозначаемые дополнительной буквой А в конце наименования (например, У8А) или дополнительной буквой Г, указывающей на дополнительное увеличение содержания марганца (например, У8ГА).

Стали инструментальные легированные, согласно (ГОСТ 5950-73), обозначаются также как и конструкционные легированные (например, 4Х2В5МФ и т. п.).

Стали быстрорежущие в своем обозначении имеют букву Р, (с этого начинается обозначение стали), затем следует цифра, указывающая среднее содержание вольфрама, а затем буквы и цифры , определяющие массовое содержание элементов. Не указывают содержание хрома, т. к. оно составляет стабильно около 4% во всех быстрорежущих сталях и углерода, т. к. последнее всегда пропорционально содержанию ванадия. Следует заметить, что если содержание ванадия превышает 2,5%, буква Ф и цифра указываются, (например, стали Р6М5 и Р6 М5Ф3).

Стали нержавеющие стандартные согласно (ГОСТ 5632-72), маркируют буквами и цифрами по принципу, принятому для конструкционных легированных сталей, (например, 08Х18Н10Т или 16Х18Н12С4ТЮЛ). Стали нержавеющие, нестандартные опытных партий обозначают буквами- индексами завода производителя и порядковыми номерами. Буквы ЭИ, ЭП, или ЭК присваивают сталям, впервые выплавленным заводом «Электросталь», ЧС - сталям выплавки Челябинского завода «Мечел», ДИ- сталям выплавки завода «Днепроспецсталь», например, ЭИ-435, ЧС- 43 и др. Для обозначения способа выплавки доводки названия ряда сталей дополняют буквами, (например, 13Х18Н10-ВИ), что означает вакуумно-индукционная выплавка.

Маркировка стали производится несмываемой краской независимо от группы стали и степени раскислення. По соглашению сторон маркировка краской не производится.

Буквенные и цифровые обозначения стали:

Марки углеродистой стали обыкновенного качества обозначаются буквами Ст и номером (СтО, Ст1, СтЗ и т.д.). Качественные углеродистые стали маркируются двухзначными числами, показывающими среднее содержание углерода в сотых долях процента: 05; 08; 10; 25; 40 и т.д. Буква Г в марке стали указывает на повышенное содержание Mn (14Г ; 18Г и т.д.).

Автоматные стали маркируются буквой А (А12, А30 и т.д.). Углеродистые иструментальные стали маркируются буквой У (У8 ; У10 ; У12 и т.д. Здесь цифры означают содержание стали в десятых долях процента).

Обозначение марки легированной стали состоит из букв, указывающих, какие компоненты входят в ее состав, и цифр, характеризующих их среднее содержание:

     

А - азот
Ю - алюминий
Р - бор
Ф - ванадий
В - вольфрам
К - кобальт

С - кремний
Г - марганец
Д - медь
М - молибден
Н - никель
Б - ниобий

С - селен
Т - титан
У - углерод
П - фосфор
Х - хром
Ц - цирконий

Первые цифры марки обозначают среднее содержание углерода в стали (в сотых долях процента для конструкционных сталей и в десятых долях процента для инструментальных и нержавеющих сталей). Затем буквой указан легирующий элемент. Цифрами, следующими за буквой,- его среднее содержание в целых единицах. При содержании легирующею элемента менее 1,5% цифры за соответствующей буквой не ставятся. Буква А в конце обозначения марки указывает на то, что сталь является высококачественной. Буквой Ш - особо высококачественной.

Сталь обыкновенного качества

Ст0; ВСт0, БСт0 - Красный и зеленый

Ст1, ВСт1кп - Желтый и черный

Ст2, ВСт2кп - Желтый

СтЗ, ВСтЗкп, ВСтЗ, БСтЗкп, БСтЗ - Красный

Ст4, ВСт4кп, ВСт4, БСт4кп, БСт4 - Черный

Ст5, ВСт5 - Зеленый

Ст6 - Синий

Углеродистая качественная сталь

08, 10, 15, 20 - Белый

25, 30, 35, 40 - Белый и желтый

45, 50, 55, 60 - Белый и коричневый

Легированная конструкционная сталь

Хромистая - Зеленый и желтый

Хромомолибденовая - Зеленый и фиолетовый

Xромованадиевая - Зеленый и черный

Марганцовистая - Коричневый и синий

Хромомарганцовая - Синий и черный

Хромокремнистая - Синий и красный

Хромокремнемарганцовая - Красный и фиолетовый

Никельмолибденовая - Желтый и фиолетовый

Хромоникелевая - Желтый и черный

Хромоникелемолибденовая - Фиолетовый и черный

Хромоалюминиевая - Алюминиевый

Коррозионностойкая сталь

Хромистая - Алюминиевый и черный

Хромоникелевая - Алюминиевый и красный

Хромотитановая - Алюминиевый и желтый

Хромоникелекремнистая - Алюминиевый и зеленый

Хромоникелетитановая - Алюминиевый и синий

Хромоникелениобиевая - Алюминиевый и белый

Хромомарганценикелевая - Алюминиевый и коричневый

Хромоникелемолибденотитановая - Алюминиевый и фиолетовый

Быстрорежущая сталь

Р18 - Бронзовый и красный

Р9 - Бронзовый

Твердые спеченные сплавы

ВК2 - Черный с белой полосой

ВКЗ-М - Черный с оранжевой полосой

ВК4 - Оранжевый

ВК6 - Синий

ВК6-М - Синий с белой полосой

ВК6-В - Фиолетовый

ВК8 - Красный

ВК8-В - Красный с синей полосой

ВК10 - Красный с белой полосой

ВК15 - Белый

Т15К6 - Зеленый

Т30К4 - Голубой

Определение: Сталь - сплав железа с углеродом (до 2 % С).

По химическому составу сталь разделяют на: углеродистую и легированную.

По качеству сталь разделяют на: сталь обыкновенного качества, качественную, повышенного качества и высококачественную.

Сталь углеродистую обыкновенного качества подразделяют на три группы:

А - поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);

Б - поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их кроме условий обработки определяется химическим составом (БСт0, БСт1 и др.);

В - поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).

Сталь углеродистую обыкновенного качества изготовляют следующих марок:
Ст0,
Ст1кп, Ст1пс, Ст1сп,
Ст2кп, Ст2пс, Ст2сп,
СтЗкп, СтЗпс, СтЗсп, СтЗГпс, СтЗГсп,
Ст4кп, Ст4пс, Ст4сп,
Ст5пс, Ст5сп, Ст5Гпс,
Стбпс, Стбсп.
Здесь буквы Ст обозначают "Сталь", цифры - условный номер марки в зависимости от химического состава, буквы "кп", "пс", "сп" - степень раскисления ("кп" - кипящая, "пс" - полуспокойная, "сп" - спокойная).

Сталь углеродистая качественная конструкционная по видам обработки при поставке делится на: горячекатаную и кованую, калиброванную, круглую со специальной отделкой поверхности - серебрянку.

По требованиям к испытанию механических свойств сталь подразделяют на пять категорий:

Категория 1 - Без испытания механических свойств на растяжение и ударную вязкость. Горячекатаная, кованая, калиброванная, серебрянка.

Категория 2 - С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из нормализованных заготовок размером 25 мм (диаметр или сторона квадрата). Горячекатаная, кованая, калиброванная, серебрянка.

Категория 3 - С испытанием механических свойств на растяжение на образцах, изготовленных из нормализованных заготовок указанного в заказе размера, но не более 100 мм. Горячекатаная, кованая, калиброванная.

Категория 4 - С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из термически обработанных (закалка + отпуск) заготовок указанного в заказе размера, но не более 100 мм. Горячекатаная, кованая, калиброванная.

Категория 5 - С испытанием механических свойств на растяжение на образцах, изготовленных из сталей в нагартованном или термически обработанном состоянии (отожженной или высокоотпущенной). Калиброванная.

Легированную сталь по степени легирования разделяют: низколегированная (легирующих элементов до 2,5%), среднелегированная (от 2,5 до 10%), высоколегированная (от 10 до 50%).

В зависимости от основных легирующих элементов различают сталь 14-и групп.

К высоколегированным относят:

коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;

жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 50 гр. С, работающие в ненагруженном и слабонагруженном состоянии;

жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

Электротехническую тонколистовую сталь разделяют:

а.по структурному состоянию и виду прокатки на классы:

горячекатаная изотропная;

холоднокатаная изотропная;

холоднокатаная анизотропная с ребровой текстурой;

b. по содержанию кремния:

0 - до 0,4 %;

1 - св. 0,4 до 0,8 %;

2 - св. 0,8 до 1,8 %;

3 - св. 1,8 до 2,8 %;

4 - св. 2,8 до 3,8 %;

5 - св. 3,8 до 4,8 %;

химический состав стали не нормируется;

c. по основной нормируемой характеристике на группы:

0 - удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц (P1,7/50);

1 - удельные потери при магнитной индукции 1,5 Тл и частоте 50 Гц (P1,5/50);

2 - удельные потери при магнитной индукции 1,0 Тл и частоте 400 Гц (P1,0/400);

6 - магнитная индукция в слабых магнитных полях при напряженности поля 0,4 А/м (В 0, 4);

7 - магнитная индукция в средних магнитных полях при напряженности поля 10 А/м (В10).

Сталь легированную конструкционную в зависимости от химического состава и свойств делят на качественную, высококачественную А и особо высококачественную Ш (электрошлакового переплава).

По видам обработки при поставке сталь бывает горячекатаная, кованая, калиброванная, серебрянка.

По назначению изготовляют прокат: для горячей обработки давлением и холодного волочения (подкат) и для холодной механической обработки.



Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации