Ответы на 40 экзаменационных вопросов - файл n1.doc

приобрести
Ответы на 40 экзаменационных вопросов
скачать (628 kb.)
Доступные файлы (1):
n1.doc628kb.12.09.2012 15:15скачать

n1.doc

1.Определение эконометрики. Название “эконометрика” было введено в 1926 году Рагнаром Фришем. В буквальном переводе этот термин означает “измерения в экономике”.

Эконометрика - это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приёмов, методов и моделей, предназначенных для того, чтобы на базе (I) экономической теории, (II) экономической статистики, (III) математико-статистического инструментария придавать конкретные количественные выражения общим (качественным) закономерностям, обусловленным экономической теорией.

Таким образом, эконометрика занимается эмпирическим выводом экономических законов. Эконометрика также формулирует экономические модели, основываясь на экономической теории или на эмпирических данных, оценивает неизвестные величины (параметры) в этих моделях, делает прогнозы (и оценивает их точность) и даёт рекомендации по экономической политике.
2.Взаимосвязь эконометрики с другими дисциплинами». Эконометрика (или эконометрия) входит в обширное семейство дисциплин, посвященных измерениям и применению статистических методов в различных областях науки и практики. Эконометрика — это не тоже самое, что экономическая статистика. Она на идентична и экономической теории, хотя значительная часть этой теории носит количественный характер.Экономическая теория — дисциплина экономической науки. Представляет собой теоретическое и философское основание экономической науки. Состоит из множества школ и направлений. Экономическая теория не стоит на месте и её развитием в исторической ретроспективе занимается история экономических учений.

Основная задача экономической теории — дать объяснения происходящих событий в экономической жизни с помощью моделей действительности, отразить в себе реальную экономику.

Экономическая теория состоит из ряда разделов: методологии экономической науки, микроэкономики, макроэкономики, международной экономики, эконометрики, теории игр.

В современной экономической теории можно выделить ряд научных школ и направлений: неокейнсианство, монетаризм, новую институциональную экономическую теорию, нейроэкономику, австрийскую школу, новую политическую экономию, экономику и право.


3.Методология построения экономических моделей

Задача эк-ки- построение моделей эк явлений и исп-е этих моделей д/опис-для, анализа и прогнозир-я. В действит-ти модели н. д/упр-я и д/принятия управленч. реш-й. Своеобразие Э.-примен-е методов точных наук к опис-ю деят-ти чела, т.е. к гум. наукам. Гл. метод в эк-ке – это регрессионный анализ, т.е. построение Ур-я связи по фактич. данным, по больш. наборам чисел. В эк-ке выделяют 3 раздела: регрессия (ур-е регресии), врем. ряды (регрессия, аргументом явл. вр.), с-мы ур-й. предназн-е. Эконометрика также формулирует экономические модели, основываясь на экономической теории или на эмпирических данных, оценивает неизвестные величины (параметры) в этих моделях, делает прогнозы (и оценивает их точность) и даёт рекомендации по экономической политике.
4.Область применения эконометрических моделей

Представляется система эконометрических моделей, предназначенная для прогнозирования целевых показателей и оценки вариантов денежно-кредитной политики. Эконометрические модели в форме коррекции ошибок, интегрированные в данную систему, взаимосвязаны по переменным, выступающим в роли инструментов денежно- кредитной политики, по общим экзогенным переменным, характеризующим внешние воздействия, а также по эндогенным переменным, выступающим в качестве целевых показателей денежно-кредитной политики. Описываются результаты оценки точности прогнозов и анализа вариантов денежно-кредитной политики на основе предлагаемой системы.
5.Понятие о функциональной, статистической и корреляционной связях.

Различают два типа связей между различными явлениями и их признаками: функциональную или жестко детерминированную, с одной стороны, и статистическую или стохастически детерминированную- с другой. Строго определить различие этих типов связи можно тогда, когда они получают математическую формулировку. Для простоты будем говорить о связи двух явлений или двух признаков, математически отображаемой в форме уравнения связи двух переменных.

Если с изменением значения одной из переменных вторая изменяется строго определенным образом, т.е. значению одной переменной обязательно соответствует одно или несколько точно заданных значений другой переменной, связь между ними является функциональной.

Нередко говорят о строгом соответствии лишь одного значения второй из переменных каждому значению первой из них, но это неверно. Например, связь между у и х является строго функциональной, если , но значению х = 4 соответствует не одно, а два значения: у1 = +2; у2 = - 2. Уравнения более высоких степеней могут иметь несколько корней, связь, разумеется, остается функциональной.

Функциональная связь двух величин возможна лишь при условии, что вторая из них зависит только от первой и ни от чего более. В реальной природе (и тем более в обществе) таких связей нет; они являются лишь абстракциями, полезными и необходимыми при анализе явлений, но упрощающими реальность. Функциональная зависимость данной величины у от многих факторов х1, х2, ..., хn возможна только в том случае, если величина y всегда зависит только от перечисленного набора факторов x1, х2 ..., хk и ни от чего более.

6. Основные задачи прикладного корреляционно-регрессионного анализа.

Основными задачами корреляционного анализа являются оценка силы связи и проверка статистических гипотез о наличии и силе корреляционной связи. Не все факторы, влияющие на экономические процессы, являются случайными величинами, поэтому при анализе экономических явлений обычно рассматриваются связи между случайными и неслучайными величинами. Такие связи называются регрессионными, а метод математической статистики, их изучающий, называется регрессионным анализом.

Использование возможностей современной вычислительной техники, оснащенной пакетами программ машинной обработки статистической информации на ЭВМ, делает практически осуществимым оперативное решение задач изучения взаимосвязи показателей биржевых ставок методами корреляционно-регрессионного анализа.

При машинной обработке исходной информации на ЭВМ, оснащенных пакетами стандартных программ ведения анализов, вычисление параметров применяемых математических функций является быстро выполняемой счетной операцией.
7.Уравнение регрессии, его смысл и назначение Смысл регрессионного анализа – построение функциональных зависимостей между двумя группами переменных величин Х1, Х2, … Хр и Y. При этом речь идет о влиянии переменных Х (это будут аргументы функций) на значения переменной Y (значение функции). Переменные Х мы будем называть факторами, а Y – откликом.

Сегодня мы разберем наиболее простой случай – установление зависимости одного отклика y от одного фактора х. Такой случай называется парной (простой) регрессией.


8. Выбор типа матем-й функции при построении уравнения регрессии Построение модели

Исходные данные: заранее известные (экспериментальные, наблюденные) значения фактора хi – экзогенная переменная и соответствующие им значения отклика yi, (i = 1,…,n) - эндогенная переменная;

Активный и пассивный эксперимент.

Выборочные характеристики – позволяют кратко охарактеризовать выборку, т. е., получить ее модель, хотя и очень грубую:

а) среднее арифметическое:



Среднее арифметическое – это «центр», вокруг которого колеблются значения случайной величины.

Основные этапы построения эконометрических моделей

На первом постановочном этапе построения эконометрической модели формируются цели моделирования, определяется набор участвующих в модели факторов, т.е. устанавливается, какие из переменных будут рассматриваться как экзогенные, а какие как эндогенные и лаговые.

Пусть У ={у1 у2 …уm}, множество эндогенных переменных ; Х = {х1 х2 …хm} – множество экзогенных переменных.

Задачей экзогенного моделирования является получение каждой эндогенной переменной от совокупности экзогенных переменных и возможно от части эндогенных.

y1 = f (x1 … xk у2 … уm)

При этом зависимые переменных лаговые.

На 1 ом этапе осуществляется анализ экономической сущности изучаемой модели.

На 3 ем этапе выбор общего вида модели: парная, множественная; сколько должно войти факторов; линейная не линейная; а так же определение коэффициентов функции f.

4 ый этап отбор необходимой статистической информации и предварительный анализ данных.

5 ый этап – идентификация модели, т.е. стат анализ модели, стат оценка независимых параметров модели. Наиболее часто для оценки (нахождения) параметров модели применяют метод наименьших квадратов (МНК)

6 ой этап – сопоставление реальных и модельных значений. Иначе оценка адекватности и точности модели.

9. Парной регрессией называется уравнение связи двух переменных у и х

Вида y = f (x),

где у – зависимая переменная (результативный признак);

х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Метод наименьших квадратов МНК

Для оценки параметров регрессий, линейных по этим параметрам, используется метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических значений ŷx при тех же значениях фактора x минимальна, т. е.




10. .Метод наименьших квадратов — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки.

Метод наименьших квадратов применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений.

Когда искомая величина может быть измерена непосредственно, как, например, длина отрезка или угол, то, для увеличения точности, измерение производится много раз, и за окончательный результат берут арифметическое среднее из всех отдельных измерений. Это правило арифметической середины основывается на соображениях теории вероятностей; легко показать, что сумма квадратов уклонений отдельных измерений от арифметической середины будет меньше, чем сумма квадратов уклонений отдельных измерений от какой бы то ни было другой величины. Само правило арифметической середины представляет, следовательно, простейший случай метода наименьших квадратов.

Пусть дано решить систему уравнений

a1x + b1y + c1z + … + n1 = 0

a2x + b2y + c2z + … + n2 = 0 (1)

a3x + b3y + c3z + … + n3 = 0



число которых более числа неизвестных x, у, z Чтобы решить их по способу Н. квадратов, составляют новую систему уравнений, число которых равно числу неизвестных и которые затем решаются по обыкновенным правилам алгебры. Эти новые, или так называемые нормальные, уравнения составляются по следующему правилу: умножают сперва все данные уравнения на коэффициенты у первой неизвестной х и, сложив почленно, получают первое нормальное уравнение, умножают все данные уравнения на коэффициенты у второй неизвестной у и, сложив почленно, получают второе нормальное уравнение и т. д. Если означить для краткости:

[aa] = a1a1 + a2a2 +…

[ab] = a1b1 + a2b2 +…

[ac] = a1c1 + a2c2 +…



[ba] = b1a1 + b2a2 +…

[bb] = b1b1 + b2b2 +…

[bc] = b1c1 + b2c2 +…



то нормальные уравнения представятся в следующем простом виде:

[aa]x + [ab]y + [ac]z + … + [an] = 0

[ba]x + [bb]y + [bc]z + … + [bn] = 0 (2)

[ca]x + [cb]y + [cc]z + … + [cn] = 0

11. Оценка тесноты связи



12. Коэффициент ковариации

Мч(у) - Т.е. получим корреляционную зависимость.

Наличие корреляционной зависимости не может ответить на вопрос о причине связи. Корреляция устанавливает лишь меру этой связи, т.е. меру согласованного варьирования.

Меру взаимосвязи м\у 2 мя переменными можно найти с помощью ковариации.

, ,

Величина показателя ковариации зависит от единиц в ? измеряется переменная. Поэтому для оценки степени согласованного варьирования используют коэффициент корреляции – безразмерную характеристику имеющую определенный пределы варьирования..


13.Показатели корреляции: линейный коэффициент. индекс корреляции. Наиболее распространенный коэффициент корреляции. Предназначен для расчета силы и направления линейной зависимости между переменными исследования.

Смысл коэффициента линейной корреляции.

Коэффициент линейной корреляции отражает меру линейной зависимости между двумя переменными. Предполагается, что переменные измерены в интервальной шкале либо в шкале отношений.Если представить две переменные на координатном поле , то каждая пара значений будет отображать координаты точки в этом поле. Чем ближе точки к усредненной прямой, тем выше коэффициент корреляции Коэффициент корреляции будет положительным числом, когда при повышении X происходит повышение Y (прямопропорциональная связь), отрицательным при обратнопропорциональной связи. На иллюстрации изображены различные по силе положительные коэффициенты корреляции. Индекс корреляции используется для выявления тесноты связи между переменными в случае нелинейной зависимости.

Он показывает тесноту связи между фактором x и зависимой переменной y: . (6.13)
где ei = yi - i - величина ошибки, т.е. отклонение фактических значений зависимой переменной от рассчитанных по уравнению регрессии.

Индекс корреляции есть неотрицательная величина, не превосходящая 1: 0 ? Iyx ? 1.

Связь тем сильнее, чем ближе Iyx к единице.

В случае линейной зависимости Iyx = | ryx |. Расхождение между Iyx (формула (6.13)) и ryx (формула (6.4)) может быть использовано для проверки линейности корреляционной зависимости.

16. Оценка статистической значимости пок. коррел. Стьюдента.



15 Оценка статистической значимости пок. Коррел. Фишера.




17. Понятие о множ. регрессии.

18.Линейная модель множественной регрессии


В большинстве случаев необходимо идентифицировать более одного фактора, влияющего на стоимость объекта оценки. Количественные измерения влияния множества факторов на зависимую переменную (у) можно осуществить на основе методики многофакторного регрессионного анализа. В данном случае, так же как и в парной регрессии, зависимость может характеризоваться как линейной, так и нелинейной связью.Линейная модель множественной регрессии имеет общий вид:

y = b0 + b1x1 + b2x2+...+ bnxn, (7.5.1)

где h1 b2 bn - коэффициенты множественной регрессии;

x1, x2, хn - факторы, влияющие на стоимость объекта оценки, включенные в анализ;

b0 - постоянная величина, не зависящая от влияния отобранных факторов;

n - объем статической выборочной совокупности данных. Отбор факторов начинается с логического анализа: если вариация у в зависимости от вариации конкретного фактора х логически необъяснима, в модель фактор включать не следует.

19. Определение параметров уравнения множественной регрессии методам наименьших квадратов



33 Аналитическое выравнивание временных рядов. Оценка параметров уравнения тренда.

Аналитическое выравнивание временного ряда – способ моделирования тенденции временного ряда: построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда.



14. Коэффициент детерминации (rxy2) – характеризует долю дисперсии результативного признака y, объясняемую дисперсией, в общей дисперсии результативного признака. Чем ближе rxy2 к 1, тем качественнее регрессионная модель, то есть исходная модель хорошо аппроксимирует исходные данные.

20. Регрессия может дать хороший результат при модели­ровании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономи­ческих переменных контролировать нельзя, т. е. не удается обес­печить равенство всех прочих условий для оценки влияния одно­го исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. пост­роить уравнение множественной регрессии: y=a+b1x1+b2+…+bpxp+e; Такого рода уравнение может использоваться при изучении потребления. Тогда коэффициенты bj — частные производные потребления у по соответствующим факторам xi:, в предположении, что все остальные хi постоянны. Совре­менная потребительская функция чаще всего рассматривается как модель вида: C=j(y,P,M,Z), где С — потребление; у — доход; Р — цена, индекс стоимости жизни; М — наличные деньги; Z — ликвидные активы. При этом .. Основная цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель. Спецификация модели включает в себя два круга вопросов: отбор фак­торов и выбор вида уравнения регрессии. Требования к факторам.1 Они должны быть количественно измеримы. Если необхо­димо включить в модель качественный фактор, не имеющий ко­личественного измерения, то ему нужно придать количествен­ную определенность (например, в модели урожайности качество почвы задается в виде баллов) 2.Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи. Включение в модель факторов с высокой интеркорреляцией, когда Ryx1Rx1x2.Для зависимости y=a+b1x1+b2+…+bpxp+e может привести к нежелательным последствиям, повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются не интерпретированными.

Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором р-факторов, то для нее рассчитывается показа­тель детерминации R2 , который фиксирует долю объясненной ва­риации результативного признака за счет рассматриваемых в ре­грессии р-факторов. Влияние других не учтенных в модели фак­торов оценивается как 1 - R2 с соответствующей остаточной дис­персией S2.При дополнительном включении в регрессию (р + 1) фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться:. е. корреляции между объясняющими переменными) позволяют исключать из модели дублирующие факторы. Считается, что две переменных явно коллинеарны, т. е. находятся между собой в линейной зависимости, если . Ес­ли факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочте­ние при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно
21. . Гомоскедастичность остатков означает, что дисперсия остатков ei одинакова для каждого значения х.Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции. а — дисперсия остатков растет по мере увеличения х; б — дисперсия остатков достигает максимальной величины при средних значениях переменной х и уменьшается при минимальных и максимальных значениях х; в — максимальная дисперсия остатков при

малых значениях х и дисперсия остатков однородна по мере увеличения значений х. Графики гомо- и гетеро-ти.

Оценка отсутствия автокорреляции остатков(т.е. значения остатков ei распределены независимо друг от друга). Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Коэффициент корреляции между ei и ej , где ei — остатки текущих наблюдений, ej — остатки предыдущих наблю­дений, может быть определен по обычной формуле линейного коэффициента корреляции . Если этот коэффициент окажется существенно отличным от ну­ля, то остатки автокоррелированы и функция плотности вероят­ности F(e) зависит j-й точки наблюдения и от распределения значений остатков в других точках наблюдения. Для регрессионных моделей по статической информации ав­токорреляция остатков может быть подсчитана, если наблюдения упорядочены по фактору х. Отсутствие автокорреляции остаточных величин обеспечива­ет состоятельность и эффективность оценок коэффициентов ре­грессии. Особенно актуально соблюдение данной предпосылки МНК при построении регрессионных моделей по рядам динами­ки, где ввиду наличия тенденции последующие уровни динами­ческого ряда, как правило, зависят от своих предыдущих уров­ней.

22. Проблемы коллинеарности и мультиколлинеарности Коллинеарность -это Два вектора называются коллинеа́рными, если они лежат на параллельных прямых или на одной прямой. Наличие мультиколлинеарности факторов может озна­чать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полно­стью независимой, и нельзя оценить воздействие каждого факто­ра в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК). Включение в модель мультиколлинеарных факторов нежела­тельно в силу следующих последствий:1.затрудняется интерпретация параметров множественной ре­грессии как характеристик действия факторов в «чистом» ви­де, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл;2оценки параметров ненадежны, обнаруживают большие стан­дартные ошибки и меняются с изменением объема наблюде­ний.

23.Виды нелинейных зависимостей Если между экономическими явлениями существуют нелинейные соотношения, то они

выражаются с помощью соответ нелинейных функций: например,

равносторонней ги

, параболы второй степени

и д.р.

Различают два класса нелинейных регрессий :

• регрессии , нелинейные относительно включенных в анализ

объясняющих переменных, но линейные по оцениваемым па;

• регрессии , нелинейные по оцениваемым параметрам.

Примером нелинейной регрессии по включаемым в нее объ переменным

могут служить следующие функции:

• полиномы разных степеней

• равносторонняя гипербола

К нелинейным регрессиям по оцениваемым параметрам от функции:

• степенная

• показательная

• экспоненциальная
24. подходы к линеаризации регрессионных моделей В эконометрике для оценки параметров нелинейных моделей используются два подхода:

линеаризация моделей, не линейных как по переменным, так и по параметрам, когда с помощью подходящих преобразований исходных переменных исследуемую зависимость представляют в виде линейного соотношения между преобразованными переменными;

методы нелинейной оптимизации на основе исходных данных (когда не удается подобрать соответствующее линеаризующее преобразование).

Пример Если необходимо оценить параметры не линейной по переменным регрессионной модели , то, вводя новые переменные , получим линейную модель: , параметры которой находятся обычным методом наименьших квадратов.

Нелинейность моделей по параметрам является более сложной проблемой. Непосредственное применение метода наименьших квадратов для их оценивания невозможно. К числу таких моделей относятся:мультипликативная (степенная) модель

экспоненциальная и другие.Эти модели могут быть приведены к линейным путем логарифмирования обеих частей уравнений. Тогда общий вид мультипликативной модели станет следующим:

К полученной модели уже можно применить МНК

25. Производственый функции и их анализ Производственная функция – это зависимость между набором факторов производства и максимально возможным объемом продукта, производимым с помощью данного набора факторов.

Производственная функция всегда конкретна, т.е. предназначается для данной технологии. Новая технология – новая производительная функция.

С помощью производственной функции определяется минимальное количество затрат, необходимых для производства данного объема продукта.

Производственные функции, независимо от того, какой вид производства ими выражается, обладают следующими общими свойствами:

1) Увеличение объема производства за счет роста затрат только по одному ресурсу имеет предел (нельзя нанимать много рабочих в одно помещение – не у всех будут места).

2) Факторы производства могут быть взаимодополняемы (рабочие и инструменты) и взаимозаменяемы (автоматизация производства).

В наиболее общем виде производственная функция выглядит следующим образом:где Q- объем выпуска;

K- капитал (оборудование);

М- сырье, материалы;

Т – технология;

N – предпринимательские способности.
26.Понятие регрессионных моделей с неоднородными данными Линейные регрессионные модели с переменной структурой рассматриваются в ситуациях, когда в ходе сбора исходных статистических данных Вп = {(X1,y1),(X2,y2), ..., (Хп,уп)} имеет место косвенное воздействие (во времени и/или пространстве) некоторых качественных факторов (сопутствующих переменных), в результате которого происходят скачкообразные сдвиги в структуре анализируемых линейных связей (т.е. в значениях коэффициентов регрессии q0,q1,. ..,qр). Если же эти данные объединяют в себе наблюдения, зарегистрированные при различных условиях (значениях сопутствующих переменных Z), то они, вообще говоря, могут быть неоднородными.

27.Введение в регрессионную модель фиктивных переменных Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина.

К фиктивным переменным иногда относят регрессор, состоящий из одних единиц (т.е. константу, свободный член), а также временной тренд.

Фиктивные переменные, будучи экзогенными, не создают каких-либо трудностей при применении ОМНК. Фиктивные переменные являются эффективным инструментом построения регрессионных моделей и проверки гипотез.

Иногда возникает необходимость включения в модель фактор, имеющий два или более качествен¬ных уровней. Это могут быть разного рода атрибутивные призна¬ки, такие, например, как профессия, пол, образование, климати¬ческие условия, принадлежность к определенному региону. Для того чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т. е. каче¬ственные переменные необходимо преобразовать в количествен¬ные. Такого вида сконструированные переменные в эконометри¬ке принято называть фиктивными переменными.

28. Специфика временных рядов Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Применение традиционных методов корреляционно-регрессионного анализа для изучения причинно следственных зависимостей переменных, представленных в форме временных рядов, может привести к ряду серьезных проблем, возникающих как на этапе построения, так и на этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании.

Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E).

Если временные ряды содержат сезонные или циклические колебания, то перед проведением дальнейшего исследования взаимосвязи необходимо устранить сезонную или циклическую компоненту из уровней каждого ряда, поскольку ее наличие приведет к завышению истинных показателей силы и связи

изучаемых временных рядов в случае, если оба ряда содержат циклические колебания одинаковой периодичности, либо к занижению этих показателей в случае, если сезонные или циклические колебания содержит только один из рядов или периодичность колебаний в рассматриваемых временных рядах различна.

Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким, что в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. Для того чтобы получить коэффициенты корреляции, характеризующие причинно следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряде.

Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков et за текущий и предыдущие моменты времени, которая получила название «автокорреляция в остатках».

29. Понятие стационарности временного ряда. Тренд (от англ. Trend — тенденция) — долговременная тенденция изменения исследуемого временного ряда Вр ряд - упорядоченн последовательность показателей, кот характеризуют развитие явления во времени. Стационарн в.р. – отражение некот случайн процесса, сам процесс – в равновесии относит некоего постоянн средн уровня, его хар-ки не завис от момента времени. Стационарн процесс свободен от периодич Стационарные ряды (в анализе временных рядов). В анализе временных рядов стационарные ряды имеют постоянные по времени среднее, дисперсию и автокорреляции (т.е. сезонные зависимости удаляются с помощью разностей).
31. Понятие модели временного ряда

модель временного ряда имеет следующий вид: Xt = b + t, где b - константа и (эпсилон) - случайная ошибка. Константа b относительно стабильна на каждом временном интервале, но может также медленно изменяться со временем. Один из интуитивно ясных способов выделения b состоит в том, чтобы использовать сглаживание скользящим средним, в котором последним наблюдениям приписываются большие веса, чем предпоследним, предпоследним большие веса, чем пред-предпоследним и т.д. Простое экспоненциальное именно так и устроено. Здесь более старым наблюдениям приписываются экспоненциально убывающие веса, при этом, в отличие от скользящего среднего, учитываются все предшествующие наблюдения ряда, а не те, что попали в определенное окно. Точная формула простого экспоненциального сглаживания имеет следующий вид:

St = *Xt + (1-)*St-1

Когда эта формула применяется рекурсивно, то каждое новое сглаженное значение (которое является также прогнозом) вычисляется как взвешенное среднее текущего наблюдения и сглаженного ряда. Очевидно, результат сглаживания зависит от параметра (альфа). Если равно 1, то предыдущие наблюдения полностью игнорируются. Если равно 0, то игнорируются текущие наблюдения. Значения между 0, 1 дают промежуточные результаты.


32.анализ временных рядов с периодическими колебаниями

Многие временные ряды имеют сезонные компоненты. Например, продажи игрушек имеют пики в ноябре, декабре и, возможно, летом, когда дети находятся на отдыхе. Эта периодичность имеет место каждый год. Однако относительный размер продаж может слегка изменяться из года в год. Таким образом, имеет смысл независимо экспоненциально сгладить сезонную компоненту с дополнительным параметром, обычно обозначаемым как (дельта). Сезонные компоненты, по природе своей, могут быть аддитивными или мультипликативными. Например, в течение декабря продажи определенного вида игрушек увеличиваются на 1 миллион долларов каждый год. Для того чтобы учесть сезонное колебание, вы можете добавить в прогноз на каждый декабрь 1 миллион долларов (сверх соответствующего годового среднего). В этом случае сезонность - аддитивная. Альтернативно, пусть в декабре продажи увеличились на 40%, т.е. в 1.4 раза. Тогда, если общие продажи малы, то абсолютное (в долларах) увеличение продаж в декабре тоже относительно мало (процент роста константа). Если в целом продажи большие, то абсолютное (в долларах) увеличение продаж будет пропорционально больше. Снова, в этом случае продажи увеличатся в определенное число раз, и сезонность будет мультипликативной (в данном случае мультипликативная сезонная составляющая была бы равна 1.4). На графике различие между двумя видами сезонности состоит в том, что в аддитивной модели сезонные флуктуации не зависят от значений ряда, тогда как в мультипликативной модели величина сезонных флуктуаций зависит от значений временного ряда.
34.прогнозирование значений временных рядов Научное название: задача авторегрессии, прогнозирование временного ряда.

Реальные примеры: прогнозирование температуры дня на завтра по температурам предыдущих дней, прогнозирование курса валют или котировок акций на завтра по результатам торгов в предыдущие дни.

Описание. Имеется упорядоченный во времени ряд измерений, и необходимо получить возможность делать прогноз значения на момент времени t по значениям за некоторое число k предыдущих моментов времени t-1, t-2, ... , t-k.При наличии нескольких одновременно протекающих процессов задача авторегрессии может быть превращена в задачу регрессии-авторегрессии, когда следующее значение показателя прогнозируется не только по предыдущим его значениям, но и по значениям других показателей в предыдущие моменты времени. Например, при наборе биржевых курсов "доллар-евро", "доллар-йена", "доллар-фунт стерлингов" для прогноза курса доллара относительно евро могут быть использованы и значения его прошлых курсов относительно других валют.
35. системы эконометрических уравнений Сложные системы и процессы в них, как правило, описываются не одним уравнением, а системой уравнений. При этом между переменными имеются связи, так что по крайней мере некоторые из таких связей между переменными требуют корректировки МНК для адекватного оценивания параметров модели (параметров системы уравнений). Удобно сначала рассмотреть оценивание системы, в которой уравнения связаны только благодаря корреляции между ошибками (остатками) в разных уравнениях системы. Такая система называется системой внешне несвязанных между собой уравнений:
В такой системе каждая зависимая переменная рассматривается как функция одного и того же набора факторов; правда, этот набор факторов вовсе не обязан быть представлен весь целиком во всех уравнениях системы, а может варьировать от одного уравнения к другому. Можно рассматривать каждое уравнение такой системы независимо от остальных и применять для оценивания его параметров МНК.

Более общей является модель так называемых рекурсивных уравнений, когда зависимая переменная одного уравнения выступает в роли фактора х, оказываясь в правой части другого уравнения системы. При этом каждое последующее уравнение системы (зависимая переменная в правой части этих уравнений) включает в качестве факторов все зависимые переменные предшествующих уравнений наряду с набором их собственных факторов х. Здесь опять каждое уравнение системы может рассматриваться независимо,

(6.2)
Наконец, общим и самым полным является случай системы взаимосвязанных уравнений. Такие уравнения еще называют одновременными, или взаимозависимыми. Также это система совместных одновременных уравнений. Здесь уже одни и те же переменные рассматриваются одновременно как зависимые в одних уравнениях и независимые — в других. Такая форма модели называется структурной формой модели. (6.3)




36.независимые системы эконометрических уравнений. Система независимых уравнений – система, в которой каждая зависимая переменная y рассматривается как функция одного и того же набора факторов x то есть система вида1: Y1=a11x1 + a12x2 +…+ a1mxm +е1;

Y2=a21x1 + a22x2 +…+ a2mxm +е2; Yn=an1x1 + an2x2 +…+ anmxm +еn.

37.Рекурсивные системы Система рекурсивных уравнений – система, в которой зависимая переменная одного уравнения выступает в виде фактора x в другом уравнении, то есть система вида: Y1=a11x1 + a12x2 +…+ a1mxm +е1; Y2= b21y1 +a21x1 + a22x2 +…+ a2mxm +е2 ; Y3= b31y1 + b32y2+a31x1 + a32x2 +…+ a3mxm +е2 ; Yn= bn1y1 + bn2y2 +…+ bnn-1yn-1 + an1x1 + an2x2 +…+ anmxm +еn.

38.Системы одновременных уравнений одновременных уравнений, имея в виду, что здесь зависимая переменная одного уравнения может появляться одновременно в виде переменной (но уже в качестве независимой) в одном или нескольких других уравнениях. В таком случае теряет смысл традиционное различение зависимых и независимых переменных. Вместо этого устанавливается различие между двумя видами переменных.

Это, во-первых, совместно зависимые переменные (эндогенные), влияние которых друг на друга должно быть исследовано (матрица A в слагаемом Ay(t) приведенной выше системы уравнений).

Во-вторых, предопределенные переменные, которые, как предполагается, оказывают влияние на первые, однако не испытывают их воздействия; это переменные с запаздыванием, т. е. лаговые (второе слагаемое) и определенные вне данной системы уравнений экзогенные переменные.

Экзогенными, напр., всегда оказываются показатели климатических условий, если они включаются в модель. В то же время многие экономические переменные в зависимости от задач и структуры модели могут относиться и к эндогенным, и к экзогенным.

Понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.

39.Косвенный и двушаговый метод наименьших квадратов

Алгоритм косвенного метода наименьших квадратов:

• Структурная модель преобразовывается в приведенную форму модели.

• Для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты.

• Коэффициенты приведенной формы модели трансформируются в параметры структурной формы модели.

Алгоритм двухшагового метода наименьших квадратов:

• Определяется приведенная форма модели, и находятся на ее основе оценки теоретических значений эндогенных переменных.

• Определяются структурные коэффициенты модели по данным теоретических (расчетных) значений эндогенных переменных. Косвенный МНК. Рассмотрим приведенную форму системы , в которой переменные -не мультиколлинеарны. роцедура статистического оценивания структурных параметров i-го уравнения: На 1-м этапе оцениваем с помощью обычного МНК все параметры приведенной формы. На 2-м этапе используются соотношения связывающие структурные параметры i-го уравнения системы с параметрами приведенной формы. В случае точной идентифицируемости i-го уравнения структурной формы его параметры и однозначно определяются из системы по значениям . Подставив в эти соотношения вместо их оценки и решив систему уравнений относительно и , мы получим состоятельные оценки и структурных параметров i-го уравнения системы.

В случае неидентифицируемости анализируемого уравнения структурной формы число взаимно независимых связей между , и будет меньше общего числа неизвестных. Поэтому без дополнительной информации нельзя определить значения структурных коэффициентов и .

Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. Двухшаговый метод наименьших квадратов (ДМНК) использует следующую центральную идею: на основе приведенной формы модели получают для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Затем они подставляются вместо фактических значений и применяют обычный МНК к структурной форме сверхидентифицируемого уравнения. В свою очередь, сверхидентифицируемая структурная модель может быть двух типов: либо все уравнения системы сверхидентифицируемы, либо же система содержит наряду со сверхидентифицируемыми и точно идентифицируемые уравнения. В первом случае, если все уравнения системы сверхидентифицируемые, для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.


40. Трехшаговый метод наименьших квадратов

трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и погрешности каждого уравнения, а затем построить оценку для ковариационной матрицы погрешностей, После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов.

41. Применение систем эконометрических уравнений в исследованиях Применение систем эконометрических уравнений представляет собой непростую задачу.

Проблемы здесь происходят из-за ошибок спецификации. Основной областью применения эконометрических моделей является построение макроэкономических моделей экономики целой страны. Это, главным образом, мультипликаторные модели кейнсианского типа. Более совершенными по сравнению со статическими моделями являются динамические модели экономики, которые содержат в правой части лаговые переменные и учитывают тенденцию развития (фактор времени). Значительные трудности создает невыполнение условия независимости факторов, которое в корне нарушается в системах одновременных (взаимозависимых) уравнений[6].

Использование корреляционно-регрессионного анализа в контексте структурного моделирования — это попытка подойти к выделению и измерению причинных связей переменных. Для этого следует сформулировать гипотезы о структуре влияний и корреляции. Такая система причинных гипотез и соответствующих взаимосвязей изображается графом, вершины которого — это переменные (причины или следствия), а дуги — причинные отношения. Верификация гипотез требует установления соответствия между графом и системой уравнений, описывающей этот граф.

Структурные модели эконометрики представляются системой линейных по отношению к наблюдаемым переменным уравнений. Если алгебраическая система соответствует графу без контуров (петель), то она является рекурсивной системой. Такая система позволяет рекуррентно определять значения входящих в нее переменных. В ней в уравнения для признака включаются все переменные, кроме тех, которые расположены выше него по графу. Соответственно формулировка гипотез в структуре рекуррентной модели довольно проста, при условии использования данных динамики. Рекурсивная система уравнений позволяет определить полные и частные коэффициенты влияния факторов. Коэффициенты полного влияния измеряют значение каждой переменной в структуре. Структурные модели позволяют оценить полное и непосредственное влияние переменных, прогнозировать поведение системы, рассчитывать значения эндогенных переменных.

Если нужно всего лишь уточнить характер связей переменных, то используют метод путевого анализа (путевых коэффициентов). В основе его лежит гипотеза об аддитивном характере (аддитивность и линейность) связей между переменными. К сожалению, применение путевого анализа в социально-экономических исследованиях затруднено тем, что не всегда линейная зависимость удовлетворительно выражает все разнообразие причинно-следственных связей в реальных системах. Значимость результатов анализа определяется правильностью построения максимально связного графа и, соответственно, изоморфной математической модели в виде системы уравнений. В то же время важным достоинством путевого анализа является возможность производить декомпозицию корреляций.

В данной главе мы рассмотрели сущность систем эконометрических уравнений, их применение. Таким образом, понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.

В зависимости от характера ограничений и статистической структуры переменных эконометрические модели классифицируются на линейные модели с одной, двумя и большим числом переменных, а также на пробит-модели, логит-модели, тобит-модели и др.

Применение систем эконометрических уравнений представляет собой непростую задачу.

Основной областью применения эконометрических моделей является построение макроэкономических моделей экономики целой страны. Это, главным образом, мультипликаторные модели кейнсианского типа.


1



1.Определение эконометрики
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации