Шпаргалки к Экзамену. Строительные машины - файл 1-10, 47.docx

приобрести
Шпаргалки к Экзамену. Строительные машины
скачать (17124.5 kb.)
Доступные файлы (17):
1-10, 47.docx1022kb.09.01.2009 03:28скачать
11-19.doc1843kb.09.01.2009 03:19скачать
21-25, 28-29.docx407kb.09.01.2009 03:42скачать
31-40,48, 50-70, 77, 101-103, 20.docx4061kb.09.01.2009 03:31скачать
41-42,46.doc628kb.09.01.2009 03:08скачать
49, 27.docx2444kb.09.01.2009 03:42скачать
71-76,78-80.docx825kb.08.01.2009 22:23скачать
81, 28.docx179kb.09.01.2009 03:46скачать
82, 84.docx83kb.09.01.2009 03:48скачать
n10.docx101kb.08.01.2009 21:28скачать
85, 86.docx743kb.09.01.2009 03:50скачать
n12.docx109kb.14.12.2008 14:47скачать
88, 90-100.doc5416kb.09.01.2009 04:08скачать
n14.docx98kb.14.12.2008 14:58скачать
n15.jpg194kb.08.01.2009 23:48скачать
n16.txt1kb.09.01.2009 04:11скачать
n17.txt1kb.09.01.2009 00:13скачать

1-10, 47.docx


Вопрос 1 «Цель и задачи классификации и индексации строительных машин»

1) Классификация. В строительстве эксплуатируется большое количество машин, различающихся между собой по назначению, конструкции, принципу действия, размерам, параметрам и т.п. Рассмотрим основы классификации строительных машин и оборудования.

По назначению (технологическому признаку) машины делят на транспортные; транспортирующие; погрузочно-разгрузочные; грузоподъемные; для земляных работ; для свайных работ; для переработки и сортировки каменных материалов; для приготовления, транспортировки, укладки и уплотнения бетонных и растворных смесей; для уплотнения грунтов; для ремонта и содержания дорог; для отделочных работ; ручные машины. Каждая группа делится на подгруппы (бульдозеры, скреперы, экскаваторы в группе машин для земляных работ). Внутри подгрупп машины отдельных типов различаются конструкцией узлов или машин в целом (экскаваторы одноковшовые с прямой или обратной лопатой, траншейные роторные или цепные, шагающие, с поперечным копанием). Каждый тип машин имеет ряд типоразмеров (моделей), близких по конструкции, но отличающихся отдельными параметрами (вместимость ковша, размеры, масса, мощность, производительность). При изготовление машин одного типоразмерного ряда широко используются стандартные детали и унифицированные сборочные единицы.

По режиму работы (принципу действия) различают машины периодического (цикличного) действия, выполняющие работу путем периодического многократного повторения одних и тех же чередующихся рабочих и холостых операций с цикличной выдачей продукции (бульдозеры, скреперы, одноковшовые экскаваторы) и машины непрерывного действия, выдающие или транспортирующие продукцию непрерывным потоком (многоковшовые экскаваторы непрерывного действия, конвейеры). Машины цикличного действия отличает их универсальность и приспособленность к работе в различных производственных условиях, а машины непрерывного действия — повышенная производительность. Имеются машины и комбинированного действия – (шагающие экскаваторы, экскаваторы поперечного копания для формирования откосов каналов и т.п.

По степени подвижности машины делят на переносные, стационарные и передвижные (в том числе в кузове автотранспорта, прицепные и полуприцепные к грузовым автомобилям, тракторам, тягачам и самоходные).

По типу ходового оборудования различают машины на гусеничном, пневмоколесном, рельсовом ходу, шагающие и комбинированные.

По виду силового оборудования машины подразделяют на работающие от электрических двигателей и двигателей внутреннего сгорания. Первые обладают большой готовностью к работе, но зависят от наличия электроэнергии, а вторые не зависят от источников энергии и являются автономными. Многие строительные машины имеют комбинированный привод с использованием гидравлических и пневматических двигателей. К таким относят дизель-электрический, дизель-гидравлический (наиболее распространен), дизель-пневматический, электрогидравлический, электропневматический и т.п.


По количеству двигателей, установленных на машине, различают одномоторные (все механизмы приводятся в действие от одной силовой установки) и многомоторные (для каждого механизма предусмотрен индивидуальный двигатель).

По системам управления машины делят на механические (рукоятки и педали, приводящие в действие системы рычагов), гидравлические (безнасосные и насосные, где частично или полностью используются гидроустройства), пневматические (с использованием сжатого воздуха), электрические (с использованием электрооборудования) и комбинированные (электрогидравлические, пневмоэлектрические и т.п.).

По степени универсальности машины подразделяют на универсальные многоцелевого назначения, снабженные различными видами быстросъемных рабочих органов, приспособлений и оборудования для выполнения большого разнообразия технологических операций (строительные одноковшовые экскаваторы, погрузчики) и специализированные, имеющие один вид рабочего оборудования и предназначенные для выполнения только одного технологического процесса (дробильные машины, бетононасосы).

По степени автоматизации различают машины с механизированным управлением, с автоматизированным управлением и контролем на базе микропроцессорной техники, с автоматизированным управлением на расстоянии, с автоматическим управлением на базе микропроцессоров и мини-ЭВМ, строительные манипуляторы и роботы, а также роботизированные машины и комплексы.

2) Индексация строительных машин. На все выпускаемые в нашей стране строительные машины распространяется единая система индексации, в соответствии с которой каждой машине разработчиком присваивается индекс (марка), содержащий буквенное и цифровое обозначение. Основные буквы индекса, располагаемые перед цифрами, обозначают вид машины. Например, буквенная часть индекса одноковшовых строительных экскаваторов содержит буквы ЭО, экскаваторов траншейных роторных — ЭТР, цепных — ЭТЦ, землеройно-транспортных машин — ДЗ, машин для подготовительных работ и разработки мерзлых грунтов — ДП, машин для уплотнения грунтов и дорожных покрытий — ДУ, кранов стреловых самоходных — КС, строительных башенных кранов — КБ, оборудования для погружения свай — СП, бурильных и бурильно-крановых машин — БМ,машин для отделочных работ — СО, лебедок — ТЛ, погрузчиков многоковшовых — ТМ и одноковшовых — ТО, подъемников — ТП, конвейеров и питателей — ТК, машин для уборки и очистки городов — КО, ручных машин электрических — ИЭ, пневматических — ИП, вибраторов — ИВ и т.п. Цифровая часть индекса означает техническую характеристику машины. После цифровой части в индекс могут быть включены дополнительные буквы, обозначающие порядковую модернизацию машины, вид ее специального исполнения и т.п.

В нашей стране все строительные машины выпускают в соответствии с Государственными стандартами (ГОСТами). В каждом ГОСТе указываются область его распространения, основные параметры и размеры, технические требования, методы испытаний, маркировка, упаковка, транспортирование и хранение машин. Предусмотренные в Государственных стандартах показатели и нормы отражают достигнутый передовой уровень техники в нашей стране и за рубежом.

Вопрос 2 «Основные требования, предъявляемые к строительным машинам. Режим работы, коэффициенты и их влияние на выбор машины»
Машина – устройство, совершающее полезную работу с преобразованием одного вида энергии в другой, и состоящее из ряда механизмов различного назначения, объединенных общим корпусом или рамой.

Механизм – совокупность узлов в виде законченных сборочных единиц, представляющих совместно работающие детали.

Деталь – часть машины или механизма, которая изготовлена в основном из однородного по наименованию и марке материала без использования сборочных операций.

Основные требования, характеризующие одновременно качество строительных и дорожных машин, можно представить рядом показателей: назначения, надежности, стандартизации и унификации, безопасности, технологичности, транспортабельности, а также экологические, эргономические, эстетические, патентно-правовые и экономические.

1. Назначение характеризуется свойствами машины, определяющими основные функции (для выполнения которых она предназначена) и обусловливающими область их применения. К этой группе относят следующие показатели:

  • классификационные, определяющие один или несколько основных параметров (передаточное число редуктора, вместимость ковша экскаватора, скрепера, грузоподъемность кранов, размеры отвала бульдозера и т.п.);

  • функциональные и технической эффективности (обеспечение максимально возможной производительности при работе в любую погоду, любое время суток и года, минимальной стоимости единицы продукции при работе в конкретных производственных условиях), а также качества выполняемой работы;

конструктивные, определяющие основные проектно-конструкторские решения машины (габаритные и присоединительные размеры; рабочее давление в гидросистеме; мощность привода; усилие на рабочем органе; скорости рабочих органов; ширина, глубина и радиус действия; тип ходового устройства и привода; наличие элементов автоматики; приспособленность к меняющимся условиям эксплуатации; возможность работать в стесненных условиях; достаточно высокая маневренность, проходимость, мобильность и устойчивость; минимальная масса; простота и прочность конструкции, легкость ее технического обслуживания и ремонта).

2. Надежность характеризует общее свойство машины сохранять свою работоспособность во времени и включает в себя такие понятия как безотказность, долговечность, ремонтопригодность и сохраняемость.

Работоспособность — состояние машины, при котором она способна выполнять заданные функции и сохранять значения заданных параметров в пределах, установленных нормативно-технической документацией.

Безотказность — свойство машины непрерывно сохранять работоспособность в течение некоторого времени или некоторой наработки. Она в свою очередь, характеризуется:

  • сопротивляемостью элементов конструкции разрушению, износу, коррозии и т.п.;

  • стабильностью физико-механических свойств конструкционных материалов;

  • стабильностью рабочих процессов в сборочных единицах, агрегатах и системах.

Для таких причин нарушения работоспособности как коррозия, облучение, действие внешних температурных факторов и т.п., время работы до отказа оценивается календарной продолжительностью работы машины (месяцы, годы) и называется сроком службы до отказа, а регламентированное время работы машины — сроком службы.

Долговечность — свойство машины сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Ремонтопригодность — приспособленность машины к предупреждению, обнаружению и устранению причин повреждений (отказов) путем проведения технического обслуживания и ремонтов.

Сохраняемость — свойство машины сохранять исправное состояние и работоспособность в течение и после срока хранения или транспортирования. Она характеризуется сопротивляемостью конструкций машины изменению характеристик элементов под воздействием влажности, атмосферного давления, облучения, загрязненности атмосферы, окружающей температуры, собственной массы при хранении и т.п. Высокие показатели сохраняемости достигаются лакокрасочным покрытием и герметизацией, применением специальных заглушек и пробок, установкой опорных приспособлений, хранением в боксах и др.


3. Стандартизация и унификация характеризуют насыщенность машин стандартными, унифицированными и оригинальными деталями и сборочными единицами.

Стандартизация предусматривает введение обязательных норм — стандартов, которым должны соответствовать определенные детали, сборочные единицы и параметры машин при проектировании, изготовлении и эксплуатации.

4. Эргономические требования отражают взаимодействие человека с машиной и делятся на:

  • гигиенические — соответствие кабины условиям жизнедеятельности и работоспособности машиниста (размеры кабины, освещенность, вентиляция с фильтрами для очистки воздуха, вибрация, пыле- и газонепроницаемость и т.д.);

  • антропометрические—соответствие рабочего места и его частей, форме, весу и размерам тела машиниста (удобное, регулируемое по высоте и горизонтали сиденье машиниста, регулируемые подлокотники, расстояние до рычагов, рукояток и кнопок управления и т.д.);

  • физиологические и психофизические — соответствие рабочего места физиологическим свойствам машиниста и особенностям функционирования его органов чувств (скоростные и силовые возможности машиниста требуют легкое механизированное или автоматизированное управление; пороги слуха, зрения и т.д.);

психологические — соответствие рабочего места машины возможностям восприятия и переработки информации, соответствие закрепленным и вновь формируемым навыкам человека.

  1. Эстетические требования

  2. Экологические требования учитывают вопросы, связанные с охраной окружающей среды при эксплуатации машин. К ним относятся выявление возможностей механических (нарушение земной поверхности и растительности), химических (содержание и вероятность выбросов вредных частиц, газов, масел, топлива, излучений не только при эксплуатации, но и при хранении и транспортировании), световых, звуковых, биологических, радиационных (растительный и животный мир) и других воздействий на окружающую среду с целью их ограничения до допустимых пределов.

  3. Безопасность должны обеспечивать конструкция машины, меры и средства защиты людей, работающих на машине и рядом с ней при эксплуатации, монтаже-демонтаже, ремонте, хранении, транспортировании, в зонах возможной опасности, в том числе в аварийных и послеаварийных ситуациях от механических (защита движущихся элементов машины кожухами, заносы и устойчивость, на поворотах и при вращении поворотных платформ, в продольном и поперечном направлениях против опрокидывания), электрических(замыкания в электроцепи), тепловых (разогреваемые строительные материалы, пар, повышенная температура воды, двигателя, сварка и наплавка) воздействий, ядовитых и взрывчатых паров, шумов, радиоактивных излучений и т.п.

  1. Технологичность предусматривает оптимальное распределение затрат материалов, средств, труда и времени при подготовке производства, изготовлении деталей, сборке и отделке узлов и машины в целом, эксплуатации и ремонтах (в том числе удобство замены узлов и агрегатов), возможность использования прогрессивных технологий с автоматизацией процессов путем внедрения манипуляторов и промышленных роботов.

  2. Транспортабельность машин и оборудования должна обеспечить их приспособленность к перемещению в пространстве на транспорте (автомобильном, железнодорожном, водном, воздушном), с прицепом, на специальных транспортных средствах и своим ходом с минимальными затратами труда и времени на подготовительные операции (укладка в тару, упаковывание, частичный демонтаж, погрузка, крепление и т.п. с противоположными операциями после перевозки).

  3. Патентно-правовые требования предусматривают патентные чистоту

  4. Экономические требования характеризуются ценой и экономическим эффектом, определяемыми на стадиях проектирования, подготовки производства, изготовления, испытаний и эксплуатации при соответствующем увеличении производительности, снижении массы машины, стоимости перерабатываемой продукции и улучшении качества выполняемых работ.


По режиму работы (принципу действия) различают машины периодического (цикличного) действия, выполняющие работу путем периодического многократного повторения одних и тех же чередующихся рабочих и холостых операций с цикличной выдачей продукции (бульдозеры, скреперы, одноковшовые экскаваторы) и машины непрерывного действия, выдающие или транспортирующие продукцию непрерывным потоком (многоковшовые экскаваторы непрерывного действия, конвейеры). Машины цикличного действия отличает их универсальность и приспособленность к работе в различных производственных условиях, а машины непрерывного действия — повышенная производительность. Имеются машины и комбинированного действия – (шагающие экскаваторы, экскаваторы поперечного копания для формирования откосов каналов и т.п




Вопрос 3 «Уровень механизации, энерговооруженность и механовооруженность строительства. Влияние этих показателей на производительность строительных работ»
Строительные процессы, в которых заняты машины, называют механизированными, а их обеспеченность машинами – механизацией строительства. Механизация может быть полной и частичной. При полной механизации все операции строительного процесса выполняются машинами, а при частичной на отдельных операциях используется ручной труд. В механизации строительства существует также понятие малой механизации с использованием ручных машин, механизмов, приспособлений и оснастки, упрощающих и облегчающих ручной труд и повышающих его производительность.

Одни и те же виды строительных работ могут быть выполнены различными типами и моделями машин. При выборе оптимальных средств механизации для наиболее эффективного выполнения строительных работ ориентируются на показатели механизации, наиболее существенными из которых являются:

-производительность труда на одного рабочего, численно равная отношению общего объема работ, выполненных в течении смены, к общему числу рабочих, занятых на этих работах;

-стоимость единицы продукции, равная сумме всех затрат в денежном эквиваленте, связанных с её производством

-доля ручного труда, оцениваемая отношением объема или стоимости работ, выполненных вручную, к общему объему (стоимости) работ или отношением количества рабочих, занятых на ручных работах, к общему их количеству.

Эффективность механизации строительства будет тем выше, чем больше первый показатель и чем ниже два другие. Эти показатели также зависят от основных параметров машин (их массы, мощности приводного двигателя и др.).

Для определения доли ручного труда более удобно пользоваться либо отношением стоимеостей работ, либо отношением числа рабочих. Эти показатели позволяют сравнивать уровни механизации разнотипных работ, в то время как отношение объемов работ применимо только к однотипным работам.

Наиболее полно уровень механизации можно оценить стоимостью единицы продукции, комплексно учитывающей все издержки строительного производства. В случае использования в строительном процессе только одной машины с годовой эксплуатационной производительностью Пэ этот показатель преобразуется в удельные приведенные затраты:

Zуд = Z/ Пэ

где Z - годовые приведенные затраты, определяемые как: Z = С + Е К; С - текущие затраты,

равные себестоимости годового объема продукции машины; Е - коэффициент эффективности

капитальных вложений, зависящий от срока службы машины и составляющий от 0,1 ... 0,15 для крупных

машин до 0,4 ... 0,5 для машин малой мощности; К - единовременные капитальные вложения на создание или покупку машины.



Наиболее высокой формой механизации строительных работ является комплексная механизация, при которой все основные и вспомогательные тяжелые и трудоемкие операции и процессы выполняются комплексно с помощью машин, механизмов и оборудования, отвечающих передовому техническому уровню, взаимоувязанных по производительности, обеспечивающих заданный темп (сроки) всего процесса и наивысшие в данных условиях технико-экономические его показатели - наиболее высокую производительность труда при наименьшей стоимости работ. Комплексная механизация не исключает ручного труда, но только на нетрудоемких операциях при условии, что при этом общий темп работ не будет снижен и что механизация этих операций нецелесообразна как по экономическим соображениям, так и с целью облегчения труда.

Уровень комплексной механизации характеризуется процентным отношением объема строительно-монтажных работ, осуществленных комплексно-механизированным способом, к общему объему строительно-монтажных работ в натуральном выражении, выполненных на строительной площадке:

Укм = (Рк.мо)100,

где Рк.м — объем работ, выполненный средствами комплексной механизации; Ро — общий объем выполненных работ.

Механовооруженность строительства — отношение стоимости машинного парка строительной организации к стоимости строительно-монтажных работ (%), выполняемых в течение года:

Мс = (Смо) 100,

где См — балансовая стоимость средств механизации, тыс. руб; Со — годовой объем строительно-монтажных работ, тыс. руб.

Механовооруженность труда определяют отношением балансовой стоимости средств механизации к среднесписочному числу рабочих, занятых на данном строительстве:

Мт = См/nр.сп,

где nр.сп — среднесписочное число рабочих.

Энерговооруженность строительства — отношение суммарной мощности двигателей машинного парка строительства к среднесписочному числу рабочих:

Эс = ?Рдв/nр.сп,

где ?Рдв — суммарная мощность двигателей машин, кВт.


Вопрос 4. Производительность строительных машин и ее выражение: теоретическая, техническая, эксплуатационная.

Основным технико-эксплуатационным показателем строительных машин является их производительность. Производительность определяется количеством продукции, выраженной в определенных единицах измерения (т, м3, м2, м длины и т.д.), которую машина вырабатывает (перерабатывает) или перемещает за единицу времени — час, смену, месяц или год.

Различают три категории производительности машин: конструктивную, техническую и эксплуатационную.

Конструктивная производительность Пк — максимально возможная производительность машины, полученная за 1 ч непрерывной при расчетных условиях работы, скоростях рабочих движений, нагрузках на рабочий орган с учетом конструктивных свойств машины и высокой квалификации машиниста.

Для машин периодического действия

Пк = qn или Пк = qn?,

где q — расчетное количество материала, вырабатываемого машиной за один цикл работы, м3 или т; п — расчетное число циклов работы машины в час, п = З600/Тц; Тц — расчетная продолжительность цикла, с; ? — плотность материала, т/м3.

Для машин непрерывного действия при перемещении насыпных материалов сплошным непрерывным потоком

Пк = 3600Аv или Пк = 3600Аv?,

где А — расчетная площадь поперечного сечения потока материала, неизменная на всем пути перемещения, м2, v — расчетная скорость движения потока; м/с.

При перемещении штучных грузов и материалов отдельными порциями

Пк = 3600mv/l или Пк = 3600qпv?/l,

где m — масса груза, т; qп — количество (объем) материала в одной порции, м3; l —среднее расстояние между центрами грузов (порций).

При расчете конструктивной производительности не учитываются условия производства работ и перерывы (простои) в работе машины — технологические (связанные с технологией производства работ), организационные (связанные с организацией работ), по метеорологическим условиям и случайные. Конструктивную производительность используют в основном для предварительного сравнения вариантов проектируемых машин, предназначенных для выполнения одного и того же технологического процесса. Эта производительность является исходной для расчета производительности машин в реальных условиях эксплуатации.

Техническая производительность Пт — максимально возможная производительность машины, которая может быть достигнута в конкретных производственных условиях данным типом машины с учетом конструктивных свойств и технического состояния машины, высокой квалификации машиниста и наиболее совершенной организации выполняемого машиной технологического процесса за 1 ч непрерывной работы:

Пт = ПК КУ,


где Ку — коэффициент, учитывающий конкретные условия работы машины.

Так, конкретными условиями работы одноковшовых экскаваторов являются категория разрабатываемого грунта, высота (глубина) забоя, требуемый угол поворота рабочего оборудования в плане, условия разгрузки ковша (в отвал или в транспортные средства). Часовая техническая производительность указывается в технической документации машины — паспорте, инструкции по технической эксплуатации.

Эксплуатационная производительность определяется реальными условиями использования машины с учетом неизбежных перерывов в ее работе, квалификации машиниста и может быть часовой, сменной, месячной и годовой.

Часовая эксплуатационная производительность

Пэ.ч = Пт Кв.см Км,

где Кв.см — коэффициент использования машины по времени в течение смены, учитывающий перерывы на техническое обслуживание и ремонт машины, смену рабочего оборудования, передвижку машины по территории объекта, потери времени по метеорологическим условиям, отдых машиниста и др.;

Кв.см = (Тcм - ?tп)/ Тcм,

Тcм — продолжительность смены, ч; ?tп — суммарное время перерывов в работе машины за смену, ч; Км = 0,85...0,95 — коэффициент, учитывающий квалификацию машиниста и качество управления. Сменная эксплуатационная производительность

Пэ.см = Тcм Пэ.ч,

где tсм — количество часов в смене.

При расчете месячной и годовой производительности учитываются простои в работе машины за соответствующий период времени.

Годовая эксплуатационная производительность

Пэ.год = 365 Пэ.см Кв.год Ксм,

где Кв.год — коэффициент использования машины по времени в течение года;

Кв.год = Тгод/365 = (365 — tвtремtпр)/365,

где Тгод — количество дней работы машины в году; tв — количество выходных и праздничных дней; tрем — количество дней, необходимое для выполнения текущего, среднего и капитального ремонтов; tпр — продолжительность простоев организационных и по метеорологическим причинам; Ксм — коэффициент сменности.





Вопрос 5. Из каких основных частей состоят строительные машины. Виды трансмиссий, применяемых в машинах. Что такое КПД трансмиссий.

img_4516.jpg

Каждая машина состоит из сборочных единиц (элементов), выполняющих определенные функции при ее работе: силового оборудования (одного или нескольких двигателей) для получения механической энергии; рабочего оборудования для непосредственного воздействия на перерабатываемый материал и выполнения заданного технологического процесса; ходового оборудования (у переносных и стационарных машин оно отсутствует) для передвижения машины и передачи ее веса и рабочих нагрузок на опорную поверхность; передаточных механизмов (трансмиссии), связывающих рабочее и ходовое (у самоходных машин) оборудование с силовым; системы управления для запуска, останова и изменения режимов работы силового оборудования, включения, выключения, реверсирования, регулирования скоростей и торможения механизмов и рабочего органа машины; несущей рамы для размещения и закрепления на ней всех узлов и механизмов машины. Сборочные единицы многих строительных машин унифицированы.

Машина представляет собой устройство, совершающее полезную работу с преобразованием одного вида энергии в другой. Она состоит из ряда механизмов различного назначения, объединенных общим корпусом, рамой или станиной. Механизмы включают в себя узлы в виде законченных сборочных единиц, представляющих совместно работающие детали. Деталь является частью машины, изготовленной в основном из однородного по наименованию и марке материала без использования сборочных операций. Их подразделяют на простые (заклепка, штифт, шпонка), сложные (распределительный вал, корпус редуктора и двигателя), общего (болты, валы, зубчатые колеса) и специального назначения, применяемые в различных видах машин (крюки кранов, корпуса ковшей экскаваторов, поршни насосов).

Трансмиссии.

Трансмиссия представляет собой систему механизмов для передачи энергии от двигателя к исполнительным органам машины с изменением скоростей, крутящих моментов, направления и вида движения. В зависимости от способа передачи энергии их делят на механические, электрические, гидравлические и пневматические. В рассматриваемых ниже механических передачах наиболее распространенными являются передачи вращательного движения, одни из которых используют трение (фрикционные и ременные), а другие — зацепление (зубчатые, червячные, цепные и винтовые). В каждой передаче вал, передающий мощность, называется ведущим (входным), а воспринимающий ее — ведомым (выходным).

Основными параметрами передач являются мощность на ведущем P1 и на ведомом Р2 валах (в Вт), а также быстроходность, характеризующаяся угловой скоростью w1 или частотой вращения ведущего п1 и ведомого w2 и n2 валов (в рад/с и с-1), где w = ?n/30. Так как при передаче мощности от ведущего вала к ведомому происходят ее потери на трение в движущихся частях, то Р12 . Величина этих потерь характеризуется КПД передачи

? = Р21 < 1.

Общий КПД системы передач определяется как произведение КПД отдельных передач:

? общ = ?1 ?2 ?3…?n

Передачи могут выполняться с постоянным и переменным (регулируемым) передаточным числом и, определяемым как соотношение частот вращения одного вала к другому. Различают понижающие (редукторные) передачи, у которых и>1 и n1>n2 и повышающие (мультипликаторные), у которых и<1 и n1<n2_. В строительных машинах преимущественное распространение получили понижающие передачи, у которых: и = n1/n2.



Передаточное число системы передач определяется как произведение передаточных чисел передач ее составляющих, т.е.:и общ = и 1 и 2 и 3…и n.

Между различными параметрами передач существуют следующие соотношения: мощность Р (Вт) можно выразить через окружное усилие F(H) элемента передачи и его окружную скорость v (м/с): P=Fv при v=?nD;

крутящий момент Мкр . м) можно выразить через мощность Р (Вт) и частоту вращения n(c-1): Мкр=Р/п.

Крутящие моменты на ведущем Mкр1 и ведомом Мкр2 валах передачи связаны зависимостью: Mкр2 = Мкр1 u.

Фрикционные передачи работают за счет сил трения, возникающих в месте контакта цилиндрических, конических и клиновых катков (рис. 1.1), при их взаимном прижатии друг к другу с усилием Q.

Передаточное число фрикционной передачи без учета проскальзывания катков u ? D2/D1, где D2 и D1 — диаметры катков.

Фрикционные передачи просты по конструкции, обеспечивают плавность и бесшумность работы, безударное включение на ходу, бесступенчатое регулирование передаточного числа и реверсивность движения. Основные их недостатки — проскальзывание катков и ограниченный диапазон передаваемых мощностей (до 20 кВт).

Ременные передачи состоят из ведущего и ведомого шкивов (рис. 1.2, а), расположенных на определенном расстоянии друг от друга и охватываемых между собой одним или несколькими бесконечными ремнями. Усилие от ведущего шкива к ведомому передается за счет сил трения, возникающих между шкивами и ремнем вследствие натяжения последнего.

Передаточное число ременных передач не является строго постоянным (за счет проскальзывания ремня) и определяется по формуле: u ? D1/D2

Достоинства ременных передач — простота конструкции и эксплуатации, небольшая стоимость, плавность и бесшумность работы, предохранение механизмов от перегрузки за счет проскальзывания ремня. Основной недостаток — непостоянство передаточного числа.

Зубчатые передачи в общем случае состоят из двух зубчатых колес, находящихся в зацеплении. Ведущее, обычно меньшее колесо, называется шестерней, а ведомое большое — колесом. По взаимному расположению колес зубчатые передачи подразделяют на передачи с внешним и внутренним зацеплением.

В строительных машинах наиболее широко применяют цилиндрические зубчатые передачи. По сравнению с ременными зубчатые передачи способны передавать большие мощности, обеспечивают точность, постоянство и большие величины передаточного числа, имеют малые габариты, обладают более высокими КПД, долговечностью, надежностью и простотой в эксплуатации.

Червячные передачи передают вращение между близкорасположенными перекрещивающимися (чаще всего под углом 90°) валами. Движение в червячных передачах осуществляется по принципу винтовой пары. Винтом является червяк , в зацеплении с которым находится червячное колесо. Резьба червяка может быть однозаходной и многозаходной, правой и левой. Наиболее распространена правая резьба с числом заходов z1 = l, 2, 4. Число зубьев червячного колеса z2 ? 28.

Передаточное число червячной пары u=z2/z1.

Червячные передачи характеризуются высокой компактностью, плавностью и бесшумностью работы и позволяют получать большие передаточные числа (40... 100 и более). Так как вращение не может передаваться от колеса к

червяку, а в этом заключается свойство самоторможения червячной передачи, то их широко применяют в стрелоподъемных, поворотных и ходовых механизмах строительных машин. К недостаткам относятся пониженный КПД, возможность заедания при работе и необходимость применения дорогих антифрикционных материалов.


Редуктором называется механизм, предназначенный для уменьшения частоты вращения выходного вала по сравнению с входным, увеличения крутящего момента и состоящий из одной или нескольких механических передач, помещенных в общем закрытом корпусе. Общее передаточное число редуктора иобщ = п,б/пТ, где п,б и пТ — соответственно частоты вращения быстроходного Б (входного) и тихоходного Г (выходного) валов, с-1.

Цепные передачи состоят из ведущей и ведомой звездочек и охватывающей их цепи .

Передаточное число цепных передач и = z2/z1 ? 8, в тихоходных передачах допускается и ? 15. Скорость цепи (м/с): v=nzp/1000,

где z — число зубьев звездочки; п — частота вращения звездочки, c-1.

Со скоростью цепи связаны действующие на нее динамические нагрузки. Скорость цепных передач, применяемых в строительных машинах (грузовые, тяговые и приводные цепи), не превышает 10... 15 м/с. По сравнению с ременными, цепные передачи способны передавать значительно большие нагрузки, обеспечивают постоянное передаточное число, надежно работают при малых межосевых расстояниях, уменьшают нагрузки на валы и опоры. Недостатки — высокая стоимость, шум при работе, небольшая долговечность.

Для преобразования вращательного движения в возвратно-поступательное и наоборот применяют реечный, винтовой, кривошипно-ползунный, эксцентриковый и кулачковый механизмы.

Реечный механизм состоит из цилиндрического зубчатого колеса и зубчатой рейки, находящихся в зацеплении друг с другом. Если ведущим элементом является колесо, то вращательное движение преобразуется в поступательное, если рейка — поступательное во вращательное. Этот механизм применяется в реечном домкрате, станках и др.

Винтовой механизм состоит из сопряженных винта и гайки, каждый из которых может получать поступательное движение по трем различным схемам:

  • вращение неподвижной гайки позволяет поступательно перемещаться свободному винту в осевом направлении;

  • при вращении закрепленного винта внутри лишенной возможности вращения гайки последняя получит поступательное движение;

  • вращение винта относительно неподвижной гайки дает поступательное перемещение винту.

Применяется в винтовых домкратах, станках и др

Кривошипно-ползунный механизм состоит из кривошипа, шатуна, ползуна, неподвижной опоры и может преобразовывать вращательное движение кривошипа в возвратно-поступательное ползуна (поршневой компрессор), а возвратно-поступательное движение ползуна во вращательное движение кривошипа (двигатели внутреннего сгорания).

Эксцентриковый механизм является разновидностью кривошипно-ползунного, но может преобразовывать только вращательное движение в возвратно-поступательное. Особенностью этого механизма является эксцентрик (диск), у которого ось вращения не совпадает с его геометрической осью, расстояние между этими осями называют эксцентриситетом. Во время работы эксцентрику сообщается вращение вокруг неподвижной оси 01. При этом его геометрическая ось О описывает дугу окружности, радиус которой равен величине эксцентриситета е. Обойма 2 перемещается относительно эксцентрика и через шатун сообщает ползуну возвратно-поступательное движение. Такой механизм применяется в камнедробилках, прессах и др.

Кулачковый механизм в общем случае состоит из опоры , штанги с роликом на ее конце для перекатывания по вращающемуся (ведущему) кулачку. При вращении кулачка штанга совершает возвратно-поступательное движение и называется толкателем. В случае вращательного движения штангу называют коромыслом. Эти механизмы используют в двигателях, топливных насосах и др.


Вопрос 6. Виды ходового оборудования строительных машин. Системы управления и требования, предъявляемые к ним.

Ходовое оборудование предназначено:
- для передачи на опорную поверхность (грунт, дорожное покрытие, рельсы) веса машины и внешних нагрузок, действующих на нее при работе;

- передвижения машины на рабочих (при выполнении рабочего процесса) и транспортных скоростях;

- для стопорения машины при работе.

Ходовое оборудование включает гусеничное, пневмоколесное, гусенично-колесное или рельсовое ходовое устройство и механизмы для его привода. Каждое ходовое устройство состоит из движителя и подвески. Движитель находится в постоянном контакте (сцеплении) с опорной поверхностью и обеспечивает поступательное движение машины. Подвеска соединяет движитель с опорной рамой машины и выполняется жесткой у тихоходных машин, полужесткой и упругой — у быстроходных. Самоходные строительные машины монтируют на базе серийных грузовых автомобилей, колесных и гусеничных тракторов, пневмоколесных тягачей и специальных гусеничных и пневмоколесных шасси с приводом от общей трансмиссии машины или от индивидуальных электрических и гидравлических двигателей. Специальные шасси современных строительных машин унифицированы.

Пневмоколесное ходовое оборудование обеспечивает машинам маневренность, мобильность, высокие скорости (до 60...70 км/ч) и плавность передвижения.

Пневмоколесный движитель состоит из ведомых и ведущих (приводных) колес, вращательное движение которых преобразуется в поступательное движение машины. У большинства строительных машин все колеса — ведущие. Количество колес зависит от допускаемой на каждое колесо нагрузки, условий и режимов работы машины, требуемых скоростей ее движения. Ходовые устройства строительных машин имеют обычно от 4 до 8 одинаковых взаимозаменяемых колес. Основным элементом каждого пневмоколеса является накачанная воздухом упругая резиновая шина, смонтированная на ободе. Шины могут быть камерными и бескамерными. В камерных шинах воздух накачивается в камеру , в бескамерных — между герметично соединенными покрышкой и ободом.

Гусеничное ходовое оборудование характеризуется:

хорошим сцеплением с грунтом;

- высокой тяговой способностью;

- большой опорной поверхностью

- низким удельным давлением на грунт (0,04...0,1 МПа);

Определяющими в комплексе его высокую проходимость, и применяется в машинах, передвигающихся в условиях плохих дорог и бездорожья. Недостатки гусеничного оборудования — тихоходность (не более 10... 12 км/ч), сравнительно большая масса (30...40% от массы машины), сложность конструкции. Гусеничные машины обычно обслуживают объекты с большими объемами работ. Для транспортирования их с одного объекта на другой применяют пневмоколесные прицепы-тяжеловозы (трайлеры). В городском строительстве используют машины с двухгусеничным ходовым оборудованием. Гусеничный движитель состоит из гусеничной ленты (цепи 2 в виде шарнирно соединенных между собой звеньев (пластин, траков), огибающей приводное 1 и направляющее (натяжное) 9 колеса. Последние установлены на концах рамы 7. Нагрузки от машины передаются на нижнюю ветвь гусеничной ленты через движущиеся по ней опорные катки 6. Холостую верхнюю ветвь гусеницы поддерживают и предохраняют от провисания ролики 3. Натяжение гусеничной ленты регулируют винтовым натяжным устройством 8, перемещающим натяжное колесо Р. Для машин, работающих и передвигающихся на слабых, переувлажненных и заболоченных грунтах, применяют уширенно-удлиненные движители с увеличенной опорной поверхностью гусениц и удельным давлением на грунт 0,02...0,03 МПа.





Рельсовое ходовое оборудование имеет башенные, козловые, мостовые и специальные стреловые самоходные краны, электротали — тельферы, сваебойные установки и др. Оно характеризуется простотой конструкции, небольшими .сопротивлениями передвижению, а также малыми маневренностью и скоростью передвижения. Основными элементами рельсового ходового устройства являются размещаемые на рельсах стальные колеса с гладким ободом с одной или двумя ребордами. Привод ведущих колес может быть общим от электродвигателя или двигателя внутреннего сгорания через систему валов и передач и индивидуального электродвигателя через редуктор. Приводы оборудуют управляемыми и автоматическими тормозами. Одно или несколько колес с общей рамой, двигателем, редуктором и тормозом образуют приводную ходовую тележку. Количество колес в тележке определяется действующей нагрузкой. Приводные и неприводные (без привода) ходовые тележки кранов шарнирно соединяются с опорной рамой и оборудуются противоугонными клещевыми захватами.

Системы управления строительных машин по конструктивным признакам разделяют на механические, гидравлические, пневматические, электрические и смешанные (комбинированные).

Механическая система обеспечивает связь руки или ноги машиниста с муфтами и тормозами через рычаги и тяги. Такая конструкция надежна в эксплуатации и имеет высокую чувствительность управления. Основные ее недостатки — необходимость приложения значительных мускульных усилий машиниста к рычагам и педалям, быстрая утомляемость машиниста, ведущая к снижению производительности машины, необходимость частых смазок и регулировок быстроизнашивающихся шарнирных соединений тяг и рычагов. Обычно механическая система используется как вспомогательная — для управления механизмами, не принимающими участия в выполнении рабочего процесса.

В гидравлической системе управления рычаги полностью или частично заменены исполнительными гидроцилиндрами одно- и двустороннего действия, создающими необходимое усилие включения муфт, тормозов и других механизмов. Различают насосную и безнасосную системы управления. В насосной системе рабочая жидкость подается под давлением в исполнительный гидроцилиндр от насоса через распределитель, которым управляет машинист, т.е. так же, как в силовом гидроприводе. Безнасосная система проста по конструкции, надежна в эксплуатации, но так как для ее привода требуется мускульная сила, имеет ограниченное применение. Преимущественное распространение получила насосная система управления.

Пневматическая система управления отличается от гидравлической насосной тем, что в ней вместо жидкости используется сжатый до 0,7...0,8 МПа в компрессоре воздух, исполнительными органами такой системы являются пневмоцилиндры и пневмокамеры одностороннего действия, подвижные элементы которых — поршень или диафрагма со штоком — передают усилие включаемому механизму.

Электрическая система управления применяется в машинах с индивидуальным электрическим приводом механизмов и обеспечивает пуск и останов электродвигателей, регулирование частоты и вращения, реверсирование, безопасную работу и т.п.

С целью частичной или полной автоматизации управления машинами применяют комбинированные системы — гидропневматические, гидроэлектрические, гидропневмоэлектрические и т.п.


Вопрос 7. Полиспасты: определение, классификация, конструктивное разнообразие.

Полиспаст представляет собой систему подвижных (перемещающихся в пространстве) и неподвижных одно- и многорольных блочных обойм, огибаемых по определенной системе одним общим канатом. Подвижная обойма имеет крюк или петлю для захвата груза, неподвижная крепится к элементу конструкции.

Полиспасты применяют для выигрыша в силе (редукторные полиспасты) или в скорости (мультипликаторные полиспасты).

Классификация:

  1. В строительных машинах наибольшее применение получили редукторные полиспасты, уменьшающие натяжение каната, грузовой момент и передаточное число механизма привода при соответствующем проигрыше в скорости подъема груза (рис. 1.30, а, б). Свободный конец каната крепится на барабане лебедки 1, а другой — на подвижной 3 или неподвижной 2 блочной обойме (в зависимости от принятой схемы запасовки каната). Эти полиспасты используют при монтажных работах как самостоятельные грузоподъемные устройства, но в основном они применяются в грузовых и стрелоподъемных механизмах кранов, подъемников, экскаваторов и т.п.

  2. Мультипликаторные полиспасты используют реже, в основном в гидравлических подъемниках, погрузчиках, механизмах выдвижения телескопических стрел кранов, экскаваторов и других случаях, когда при малых скоростях приводного механизма необходимо получить повышенные скорости перемещения груза или элементов машины (рис. 1.30, в). В этом случае используют гидравлические цилиндры 4.

Классификация (конструктивное разнообразие) по количеству ветвей каната, навиваемых на барабан и определяющих тип полиспаста, различают:

  1. Одинарные (рис. 1.30, а). Одинарные полиспасты используют практически во всех строительных машинах с применением отклоняющих блоков, которые позволяют передать движение рабочему органу в требуемом направлении. При навивке на барабан канат перемещается вместе с грузом вдоль оси, создавая неравномерные нагрузки на подшипники барабана

  2. Сдвоенные (рис. 1.30, б) послиспасты. Сдвоенные полиспасты состоят из двух одинарных полиспастов и обеспечивают строго вертикальное перемещение груза при его подъеме или опускании, а также равномерную нагрузку на барабан и его опоры. Такие полиспасты применяют в основном в мостовых и козловых кранах. В тяжелых башенных кранах сдвоенные полиспасты применяют для того, чтобы использовать две стандартные грузовые лебедки вместо одной крупногабаритной большой мощности, а также для получения двух или трех скоростей подъема груза.

29

Вопрос 8. Полиспасты: кратность (способы определения), КПД, влияние на определение высоты подъема в строительных машинах.

Основной характеристикой полиспаста является его кратность uп. Ее определяют как отношение числа ветвей каната, на которых подвешен груз, к числу ветвей каната, наматываемых на барабан. Так, на рис. 1.30, uп1 = 2, uп2 = 3, а на рис. 1.30, б ип = 3. Максимальное натяжение каната, навиваемого на барабан:

Fmax= Gгр+Gк(aип?кс),

где Gгр — вес поднимаемого груза; Gк — вес подвижной блочной обоймы с грузозахватным органом (крюком, петлей, грейфером, электромагнитом и т.п.) и грузозахватного приспособления (стропы, траверсы, захваты и т.п.); а — тип полиспаста; ?кс — КПД канатной системы, ?кс= ?п?nбл где ?п — КПД полиспаста; ?nб — КПД отклоняющих блоков; п — количество отклоняющих блоков.

Так как КПД неподвижных блоков ниже КПД подвижных, то КПД полиспаста

?п = 1 + ?бл + ?2бл + ?3бл + ... + ?uп-1бл/uп.

КПД сдвоенного полиспаста равно произведению КПД двух одинарных полиспастов.

Длина каната L одинарного полиспаста, наматываемого на барабан, при высоте подъема груза h и кратности полиспаста ип составляет Lпh. В сдвоенном полиспасте под длиной L понимают длину каната, наматываемого на одну половину барабана. Скорость навивки каната vк и скорость подъема груза vrp (м/с) связаны между собой соотношением vк = ипvrp, a vк = nDonб, где D0 — диаметр барабана по центру наматываемого каната, nб — частота вращения барабана, с-1.

Необходимое передаточное число ир редуктора между двигателем и барабаном:

ир= nдв / nб.

где nдв — частота вращения двигателя, с-1.

Потребная мощность двигателя Р (кВт) при подъеме нминального груза G H) со скоростью vrp (м/с):

Р = Gvrp /?общ,

где ?общ — общий КПД всей системы; ?общ = ?кс ?р ?б; ?р — КПД редуктора; ?б — КПД барабана.

Фактическая скорость подъема груза (м/с)

vф.гp = ? Do nдв / иpип

Применение силовых полиспастов позволяет уменьшить диаметр каната, а следовательно, и диаметры блоков и барабанов, снизить передаточное число редуктора, уменьшить габариты и массу машины. Однако при этом увеличивается длина каната, канатоемкость барабана и потери мощности на трение.


Вопрос 9. Домкраты: конструктивные схемы и принцип действия реечных, винтовых, гидравлических. Расчет грузоподъемности

Домкраты представляют собой переносные грузоподъемные механизмы незначительных размеров и веса. Они служат для подъема груза на высоту 200...500 мм, перемещения его по горизонтали и для выверки конструкций при их установке. Домкраты применяются в строительстве на монтажных и ремонтных работах, в установках для бестраншейной прокладки коммуникаций, в строительных машинах (выносные опоры кранов, подъемников) и т. д. По конструкции домкраты делятся на реечные, винтовые и гидравлические, с ручным и электрическим, гидравлическим и пневматическим приводом.

Винтовой домкрат (рис. 3.1, а) состоит из литого или сварного корпуса 7 с запрессованной в нем бронзовой или чугунной гайкой 4, составляющей винтовую пару со стальным винтом 5. На верхнем торце винта установлена грузовая с рифленой поверхностью головка /, которая при вращении винта остается неподвижной, так как упирается в поднимаемый груз. Подъем груза производится путем поворота винта возвратно-поступательным движением рукоятки 2. При этом зуб двусторонней собачки 6, установленной на рукоятке, входит в зацепление с храповым колесом 5, закрепленным на винте, и поворачивает его вместе с винтом.



Фиксация собачки в одном из крайних положений (на подъем или опускание) осуществляется пружинным стопором, размещенным в полости рукоятки. Винтовая пара домкратов, имеющая трапецеидальную или прямоугольную резьбу, обладает свойством самоторможения, так как угол подъема резьбы Р принимается меньше угла трения в резьбе р. Это исключает возможность перемещения винта под действием нагрузки, но существенно влияет на КПД домкрата (?= 0,3-0,4).

Усилие F (Н) на рукоятке длиной l (мм), необходимое для подъема груза весом Q (Н):

F = Qdсрtg(?+?)/(2l) , (3-1)

где dср— средний диаметр резьбы винта, мм. Грузоподъемность винтовых домкратов достигает 50 т, высота подъема—до 0,5 м. Электромеханические винтовые подъемники, применяемые для подъема перекрытий строящихся зданий, имеют грузоподъемность до 100 т.





Реечный домкрат (рис. 3.1, б) состоит из металлического корпуса 14, в направляющих которого перемещается односторонняя зубчатая рейка 9. В верхней части рейки расположена грузовая поворотная головка 8, а внизу — лапа 15 для подъема низкорасположенных грузов.

Движение рейке сообщается от безопасной рукоятки 13 с грузоупорным тормозом через зубчатую передачу 10 с одной или двумя парами шестерен. Передаточное число одной зубчатой пары 4...6, а число зубьев малых (ведущих) шестерен не превышает 4...5. Для удержания поднятого груза служат храповое колесо 12 с собачкой 11.

Усилие F (Н) на рукоятке длиной l (мм), необходимое для подъема груза весом Q (Н):

F = Qdш/(2lu?), (3.2)

где dш — диаметр начальной окружности шестерни, находящейся в зацеплении с рейкой, мм;

и — передаточное число зубчатой передачи; ? = 0,65-0,85 — КПД передачи.

Грузоподъемность реечных домкратов достигает 10 т, высота подъема — до 0,4 м.

Гидравлический домкрат по сравнению с реечным и винтовым обладают большей грузоподъемностью и более высоким КПД. На рис. 3.1, в показана принципиальная схема гидравлического домкрата с ручным приводом. Подъем груза осуществляется плунжерным насосом, состоящим из цилиндра 20 и плунжера 21 с уплотняющей манжетой. С помощью приводной рукоятки 22 сообщается возвратно-поступательное движение плунжеру насоса, который перекачивает жидкость из бака 23 через всасывающий 24 и нагнетательный 19 клапаны в рабочий цилиндр 17. Возникшее в нижней части цилиндра давление жидкости перемещает вверх поршень 16 вместе с грузом. Опускание поршня происходит за счет сливания жидкости из рабочего цилиндра в бак через сливной кран 18. Рабочей жидкостью служат индустриальные масла и незамерзающие жидкости.

Усилие F (Н) на рукоятке длиной l (мм), необходимое для подъема груза весом Q (Н):

F = Qd2l1/(Dl2? (3.3)

где d — диаметр плунжера насоса, мм; D — диаметр поршня домкрата, мм; l1и l2 — плечи рукоятки, мм; ? = 0,8-0,9 — КПД домкрата.

Грузоподъемность гидравлических домкратов с ручным приводом достигает 200 т, высота подъема — до 0,2 м. Для подъема сборных этажей зданий, пролетов мостов применяют домкраты, соединенные в общую батарею и питаемые жидкостью от одного насоса с электроприводом. Применяемая при этом аппаратура позволяет регулировать скорость подъема и опускания любого домкрата в батарее. Грузоподъемность этих домкратов до 3-Ю3 т. Для подъема грузов на высоту, превышающую ход домкрата, используют телескопические и реверсивные (двойного действия) домкраты.


Вопрос 10. Ручные лебедки: конструктивно-кинематическая схема. Принцип действия. Расчет тягового усилия и скорости навивки каната на барабан. Правила безопасной эксплуатации.

Ручные лебедки приводятся в действие мускульной силой рабочего и могут быть однобарабанными или рычажными (без барабана).

Лебедки в рабочем положении крепятся на горизонтальной площадке и могут работать на открытом воздухе при температуре окружающей среды от - 40 до +40 °С.

Все лебедки имеют единую конструктивную схему, выполнены двухскоростными, оборудованы автоматически действующими грузоупорными дисковыми тормозами и различаются между собой тяговым усилием, канатоемкостью барабана, числом валов, габаритами и т. п.

Каждая лебедка (рис. 3.4) состоит из двух боковин 8, соединенных стяжными болтами 75, ведущего (рабочего) вала / с двумя приводными рукоятками 12, одного или двух промежуточных валов 4, блок-шестерни 13, зубчатых колес 5, 6, 9, 11, грузоупорного тормоза, оси 7 с гладким барабаном /4для навивки каната. Валы передач вращаются в подшипниках скольжения боковин. Ось барабана жестко закреплена в боковинах. Автоматический грузоупорный тормоз состоит из храпового останова (храпового колеса 2 с собачкой 3), дискового тормоза 10 и обеспечивает торможение барабана при опускании груза и мгновенную остановку его, если рабочий отпустит приводную рукоятку. Подъем или перемещение груза осуществляется вращением приводных рукояток; при этом собачка скользит по зубьям храпового колеса. Опускают груз вращением приводных рукояток в обратном направлении, причем собачка находится в зацеплении с храповым колесом. Изменение скорости подъема, опускания или перемещения груза производятся передвижением шестерни 11 вдоль оси промежуточного вала и вводом ее в зацепление с блок-шестерней.



фото0666.jpg
Лебедки обеспечивают наибольшее тяговое усилие каната 12,5...50 кН, канатоемкость барабана 50...75 м.

Крутящий момент на валу рукоятки (Н*м):

МР = FplP, (3.5)

где Fp — усилие на рукоятку, принимаемое для одного рабочего равным 100... 120 Н в зависимости от продолжительности работы; lр = 0,4 м — длина рукоятки.

Скорость навивки каната на барабан лебедки (м/мин)

vK = vPD5/(2lPu), (3.6)

где vp < 40 м/мин — средняя окружная скорость движения при вращении рукоятки рабочим; Dб— диаметр барабана, м; и — передаточное число зубчатых передач.


Вопрос 47. Специализированные транспортные средства для перевозки порошкообразных грузов (цементовозы, известковозы, керамзитовозы и др.): классификация. Конструктивные схемы, принцип действия, назначение отдельных узлов элементов, главные параметры, область применения.

Специализированный транспортные средства применяют в соответствии с их назначением и видом груза: для перевозки грунта, сыпучих грузов, бетонов и растворов, битума, топлива (автомобили самосвалы, керамзитовозы, автобетоносмесителя, авторастворовозы, автобитумовозы, топливовозы), порошкообразных грузов (автоцементовозы, известкововозы), строительных конструкций (панелевозы, фермовозы, плитовозы, сантехкабиновозы), длинномерных грузов (трубовозы, плетевозы, металловозы), строительных грузов в контейнерах (контейнеровозы), технологического оборудования и строительных машин (тяжеловозы).

Полуприцепы-керамзитовозы. Для первозки пористых заполнителей бетона применяют полуприцепы-керамзитовозы к седельным тягачам. Характерной особенностью конструкции является значительный объем кузова и наличие устройства для задней и боковой разгрузки. Для этого на раме тягача рядом седельным устройством находится подрамник для крепления силового гидроцилиндра, который обеспечивает наклон кузова на угол до 60 градусов.



Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации