Лазеры и их применение - файл n1.docx
приобрестиЛазеры и их применениескачать (162.7 kb.)
Доступные файлы (1):
n1.docx
ФГОУ ВПО ОмГАУ
Институт Ветеринарной Медицины
Реферат «Лазеры и их применение». Работу выполнила: Янушкевич Кристина Александровна.
Студентка 201-С группы
товароведческого факультета.
Научный руководитель: Жойдик Эра Федоровна.
Омск
2008
Содержание.1. Введение.
2. Принцип действия лазеров.
3. Основные свойства лазерного луча.
3. 1. Монохроматичность лазерного излучения. Его мощность.
3. 2. Гигантский импульс.
4. Характеристики некоторых типов лазеров.
5. Практическое применение оптических квантовых генераторов.
5.1. Применение лазерного луча в промышленности и технике.
5.2. Применение лазеров в медицине.
5.2.1. Лазер в офтальмологии.
5.2.2 Протонная терапия опухолей.
5.3. Лазеры в вычислительной технике.
5.3.1. Лазерные технологии – средство записи и обработки информации.
5.3.2. Лазерный принтер.
5.3.3. Оптическая цифровая память.
5.3.4. Лазерная связь и локация.
5.3.5. Лазерные системы навигации и обеспечения безопасности полетов.
5.3.6. Лазерные системы управления оружия.
6. Мощные лазеры - новая угроза.
7. Заключение.
8. Литература.
1. Введение. Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора оптического квантового генератора, или лазера.
Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего ”усиление света в результате вынужденного излучения”.
Изобретение лазеров стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 году, и с тех пор происходит бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства, непрерывно расширяется область использования лазеров в научных исследованиях - физических, химических, биологических. Лазерный луч становится надежным помощником медиков, строителей, картографов, археологов, криминалистов. Цель данного реферата – узнать и понять самой, а также ознакомить окружающих с таким изобретением, как лазер. Узнать: принцип его действия, его разновидности, область применения, а также перспективы развития данной технологии.
2. Принцип действия лазеров. Лазерное излучение - есть свечение объектов при нормальных температурах. Но при обычных условиях большинство атомов находятся в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.
Лазеры генерируют в видимой, инфракрасной и ультрафиолетовой областях (в оптическом диапазоне). Лазер обязательно имеет три основных компонента: 1)
активную среду, в которой создаются состояния с инверсией населенностей; 2)
систему накачки (устройство для создания инверсии в активной среде); 3)
оптический резонатор (устройство, выделяющее в пространство избирательное направлении пучка фотонов и формирующее выходящий световой пучок).
Каждый фотон, случайно родившийся при спонтанных переходах, в принципе может инициировать (порождать) в активной среде множество вынужденных переходов 2?1, в результате чего появляется лавина вторичных фотонов, являющихся копиями первичных. Таким образом и зарождается лазерная генерация. Однако спонтанные переходы носят случайные характер, и спонтанно рождающиеся фотоны испускаются в разных направлениях. Тем самым в самых разных направлениях распространяются и лавины вторичных фотонов. Следовательно, излучение, состоящее из подобных лавин, не может обладать высокими когерентными свойствами.
3. Основные свойства лазерного луча. Лазерное излучение обладает следующими свойствами:
1. Временная и постоянная когерентность. Время когерентности составляет 10
-3 с, что соответствует длине когерентности порядка 10
5 м, т.е на семь порядков выше, чем для обычных источников света.
2. Строгая монохроматичность (∆?<10
-11 м).
3. Большая плотность потока энергии. Если, например, рубиновый стержень при накачке получил энергию
W = 20 Дж и высветился за 10
-3 с, то поток излучения
Фе = 20/10
-3 Дж/c = 2

10
4 Вт. Фокусируя это излучение на площади 1 мм
2, получим плотность потока энергии
Фе / S = 2

10
4/10
-6 Вт/м
2.
4. Очень малое угловой расхождение в пучке Например, при использовании специальной фокусировки луч лазера, направленный с Земли, дал бы на поверхности Луны световое пятно диаметром примерно 3 км ( луч прожектора осветил бы поверхность диаметром 40 000 км).
К.п.д лазеров колеблется в широких пределах – от 0,01%( для гелий-неонового лазера) до 75% ( для лазера на стекле с неодимом), хотя у большинства лазеров к.п.д. составляет 0,1-1%.
3.1. Монохроматичность лазерного излучения. Его мощность. Для некоторых квантовых генераторов характерна чрезвычайно высокая степень монохроматичности их излучения. Любой поток электромагнитных волн всегда обладает набором частот. Излучение и поглощение атомной системы характеризуется не только частотой, но и некоторой неопределенностью этой величины, называемой шириной спектральной линии (или полосы). Абсолютно монохроматического одноцветного потока создать нельзя, однако, набор частот лазерного излучения чрезвычайно узок, что и определяет его очень высокую монохроматичность.
Нужно отметить, что линии лазерного излучения имеют сложную структуру и состоят из большого числа чрезвычайно узких линий. Применяя соответствующие оптические резонаторы, можно выделить и стабилизировать отдельные линии этой структуры, создав тем самым одночастотный лазер.
Мощность лазера. Лазеры являются самыми мощными источниками светового излучения. В узком интервале спектра кратковременно (в течение промежутка времени, продолжительностью порядка 10
-13 с. у некоторых типов лазеров достигается мощность излучения порядка 10
17 Вт/см
2, в то время как мощность излучения Солнца равна только 7*10
3 Вт/см
2, причём суммарно по всему спектру. На узкий же интервал =10
-6 см (это ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см
2. Если задача заключается в преодолении порога в 10
17 Вт/см
2, то прибегают к различным методам повышения мощности.
3. 2 Гигантский импульс. Применительно к лазерным технологиям используется термин гигантский импульс. Таковым называют импульс, обладающей очень большой энергией при сверхмалой длительности.
Сама по себе идея создания гигантского импульса проста при использовании оптического затвора - специального устройства, которое по сигналу может переходить из открытого состояния в закрытое и наоборот. В открытом состоянии затвор пропускает через себя лазерное излучение, в закрытом - поглощает или отклоняет его в другую сторону. При создании гигантского импульса затвор переводят в закрытое состояние еще до того, как начнется высвечивание энергии накачки. Затем, по мере поглощения энергии активные центры (атомы, участвующие в генерации) переходят в массовом порядке на долгоживущий верхний уровень. Генерация в лазере пока не осуществляется, ведь затвор закрыт. В результате на рассматриваемом уровне накапливается чрезвычайно большое число активных центров - создается очень сильная инверсная заселенность уровней. В определенный момент затвор переключают в открытое состояние. В некотором отношении это похоже на то, если бы высокая плотина, создававшая огромный перепад уровней воды, вдруг неожиданно исчезла. Происходит быстрое и очень бурное высвечивание активных центров, в результате чего и рождается короткий и мощный лазерный импульс - гигантский импульс. Его длительность составляет 10
-8 с., а максимальная мощность 10
8 Вт.
4. Характеристики некоторых типов лазеров. В настоящее время имеется громадное разнообразие лазеров, отличающихся между собой активными средами, мощностями, режимами работы и другими характеристиками. Нет необходимости все их описывать. Поэтому здесь даётся краткое описание лазеров, которые достаточно полно представляют характеристики основных типов лазеров (режим работы, способы накачки и т. д.)
Рубиновый лазер. Первым квантовым генератором света был рубиновый лазер, созданный в 1960 году.
Рабочим веществом является рубин, представляющий собой кристалл оксида алюминия Аl
2O
3 (корунд), в который при выращивании введен в виде примеси оксид хрома Сr
2Оз. Красный цвет рубина обусловлен положительным ионом Сr
+3. В решетке кристалла А
2О
3 ион Сг
+3 замещает ион Аl
+3. Вследствие этого в кристалле возникают две полосы поглощения: одна—в зеленой, другая—в голубой части спектра. Густота красного цвета рубина зависит от концентрации ионов Сг
+3: чем больше концентрация, тем гуще красный цвет. В темно-красном рубине концентрация ионов Сг
+3 достигает 1%.
Наряду с голубой и зеленой полосами поглощения имеется два узких энергетических уровня Е
1 и Е
1’ , при переходе с которых на основной уровень излучается свет с длинами волн 694,3 и 692,8 нм. Ширина линий составляет при комнатных температурах примерно 0,4 нм. Вероятность вынужденных переходов для линии 694,3 нм больше, чем для 692,8 нм. Поэтому проще работать с линией 694,3 нм. Однако можно осуществить генерацию и линии 692,8 нм, если использовать специальные зеркала, имеющие большой коэффициент отражения для излучения 1 = 692,8 нм и малый — для 1 = 694,3 нм.
При облучении рубина белым светом голубая и зеленая части спектра поглощаются, а красная отражается. В рубиновом лазере используется оптическая накачка ксеноновой лампой, которая дает вспышки света большой интенсивности при прохождении через нее импульса тока, нагревающего газ до нескольких тысяч кельвин. Непрерывная накачка невозможна, потому что лампа при столь высокой температуре не выдерживает непрерывного режима работы. Возникающее излучение близко по своим характеристикам к излучению абсолютно черного тела. Излучение поглощается ионами Cr
+, переходящими в результате этого на энергетические уровни в области полос поглощения. Однако с этих уровней ионы Сr
+3 очень быстро в результате безызлучательного перехода переходят на уровни Е
1, Е
1’. При этом излишек энергии передается решетке, т. е. превращается в энергию колебаний решетки или, другими словами, в энергию фотонов. Уровни Е
1, Е
1’ метастабильны. Время жизни на уровне Е
1 равно 4,3 мс. В процессе импульса накачки на уровнях Е
1, Е
1’ накапливаются возбужденные атомы, создающие значительную инверсную заселенность относительно уровня Е
0 (это уровень невозбужденных атомов).
Кристалл рубина выращивается в виде круглого цилиндра. Для лазера обычно используют кристаллы размером: длина L = 5 см, диаметр d = 1 см. Ксеноновая лампа и кристалл рубина помещаются в эллиптическую полость с хорошо отражающей внутренней поверхностью. Чтобы обеспечить попадание на рубин всего излучения ксеноновой лампы, кристалл рубина и лампа, имеющая также форму круглого цилиндра, помещаются в фокусы эллиптического сечения полости параллельно ее образующим. Благодаря этому на рубин направляется излучение с плотностью, практически равной плотности излучения на источнике накачки.
Один из концов рубинового кристалла срезан так, что от граней среза обеспечивается полное отражение и возвращение луча обратно. Такой срез заменяет одно из зеркал лазера. Второй конец рубинового кристалла срезан под углом Брюстера. Он обеспечивает выход из кристалла рубина без отражения луча с соответствующей линейной поляризацией. Второе зеркало резонатора ставится на пути этого луча. Таким образом, излучение рубинового лазера линейно поляризовано. Лазер состоит из трех основных частей: активного (рабочего) вещества, резонансной системы, представляющей две параллельные пластины с нанесенными на них отражающими покрытиями, и системы возбуждения (накачки), в качестве которой обычно используется ксеноновая лампа-вспышка с источником питания (рис. 1).
Рис 1. Схема рубинового лазера. Газовый лазер. Для таких лазеров в качестве активного вещества используют либо смесь газов, либо вещество, находящееся в парообразном состоянии. Газовая среда облегчает получение непрерывного стимулированного излучения, поскольку для перевода вещества в возбужденное состояние требуется меньшая энергия. Впервые в качестве активного вещества применялась смесь гелия и неона.
Гелий-неоновый лазер. Активной средой является газообразная смесь гелия и неона. Генерация осуществляется за счет переходов между энергетическими уровнями неона, а гелий играет роль посредника, через который энергия передается атомам неона для создания инверсной заселенности.
Неон, в принципе, может генерировать лазерное изучение в результате более 130 различных переходов. Однако наиболее интенсивными являются линии с длиной волны 632,8 нм, 1,15 и 3,39 мкм. Волна 632,8 нм находится в видимой части спектра, а волны 1,15 и 3,39 мкм - в инфракрасной.
При пропускании тока через гелий-неоновую смесь газов электронным ударом атомы гелия возбуждаются до состояний 2
3S и 2
2S, которые являются метастабильными, поскольку переход в основное состояние из них запрещен квантово-механическими правилами отбора. При прохождении тока атомы накапливаются на этих уровнях. Когда возбужденный атом гелия сталкивается с невозбужденным атомом неона, энергия возбуждения переходит к последнему. Этот переход осуществляется очень эффективно вследствие хорошего совпадения энергии соответствующих уровней. Вследствие этого на уровнях 3S и 2S неона образуется инверсная заселенность относительно уровней 2P и 3P, приводящая к возможности генерации лазерного излучения. Лазер может оперировать в непрерывном режиме. Излучение гелий-неонового лазера линейно поляризовано. Обычно давление гелия в камере составляет 332 Па, а неона — 66 Па. Постоянное напряжение на трубке около 4 кВ. Одно из зеркал имеет коэффициент отражения порядка 0,999, а второе, через которое выходит лазерное излучение, — около 0,990. В качестве зеркал используют многослойные диэлектрики, поскольку более низкие коэффициенты отражения не обеспечивают достижения порога генерации.
Рис. 3. Поперечное сечение конструкции гелий-неонового лазера для космических исследований. СО2-лазер с замкнутым объемом. Молекулы углекислого газа, как и другие молекулы, имеют полосатый спектр, обусловленный наличием колебательных и вращательных уровней энергии. Используемый в CO
2 - лазере переход дает излучение с длиной волны 10,6 мкм, т. е. лежит в инфракрасной области спектра. Пользуясь колебательными уровнями, можно несколько варьировать частоту излучения в пределах примерно от 9,2 до 10,8 мкм. Энергия молекулам CO
2 передается от молекул азота N
2, которые сами возбуждаются электронным ударом при прохождении тока через смесь.
Такой закрытый CO
2-лазер, в состоянии работать в течение многих тысяч часов.
Проточный СО2-лазер. Важной модификацией является проточный СО
2-лазер, в котором смесь газов CO
2, N
2, Не непрерывно прокачивается через резонатор. Такой лазер может генерировать непрерывное когерентное излучение мощностью свыше 50 Вт на метр длины своей активной среды.
Т-лазер. Во многих практических приложениях важную роль играет СO
2-лазер, в котором рабочая смесь находится под атмосферным давлением и возбуждается поперечным электрическим полем (Т-лазер). Поскольку электроды расположены параллельно оси резонатора, для. получения больших значений напряженности электрического поля в резонаторе требуются сравнительно небольшие разности потенциалов между электродами, что дает возможность работать в импульсном режиме при атмосферном давлении, когда концентрация CO
2 в резонаторе велика. Следовательно, удается получить большую мощность, достигающую обычно 10 МВт и больше в одном импульсе излучения продолжительностью менее 1 мкс. Частота повторения импульсов в таких лазерах составляет обычно несколько импульсов в минуту.
Газодинамические лазеры.
Нагретая до высокой температуры (1000—2000 К) смесь CO
2 и N
2 при истечении с большой скоростью через расширяющееся сопло сильно охлаждается. Верхний и нижний энергетический уровни при этом термоизолируются с различной скоростью, в результате чего образуется инверсная заселенность. Следовательно, образовав на выходе из сопла оптический резонатор, можно за счет этой инверсной заселенности генерировать лазерное излучение. Действующие на этом принципе лазеры называются газодинамическими. Они позволяют получать очень большие мощности излучения в непрерывном режиме.
Лазеры на красителях. Красители являются очень сложными молекулами, у которых сильно выражены колебательные уровни энергии. Энергетические уровни в полосе спектра располагаются почти непрерывно. Если молекулы красителя взять в качестве активного вещества для генерации лазерного излучения, то в зависимости от настройки резонатора можно получить практически непрерывную перестройку частоты генерируемого лазерного излучения. Поэтому на красителях создаются лазеры с перестраиваемой частотой генерации. Накачка лазеров на красителях производится газоразрядными лампами или излучением других лазеров,
Генерация осуществлена со многими красителями, что позволило получить лазерное излучение не только во всем оптическом диапазоне, но и на значительной части инфракрасной и ультрафиолетовой областей спектра.
5.Практическое использование оптических квантовых генераторов. Прежде всего, следует отметить, что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой мощностью, может обратимо изменять физические характеристики вещества, что приводит к различным нелинейно-оптическим явлениям.
Лазер дает возможность осуществлять сильную концентрацию световой мощности в пределах весьма узких частотных интервалов: при этом возможна плавная перестройка частоты. Поэтому лазеры применяются для получения и исследования оптических спектров веществ. Лазерная спектроскопия отличается исключительно высокой степенью точности(высоким разрешением). Лазеры позволяют также осуществить избирательное возбуждение тех или иных состояний атомов и молекул, избирательный разрыв определенных химических связей. В результате оказывается возможным инициирование конкретных химических связей, управление развитием этих реакций, исследование их кинетики. Пикосекундные лазерные импульсы дали начало исследованиям целого ряда быстропротекающих процессов в веществе и, в частности, в биологических структурах. Отметим, например, фундаментальные исследования процессов фотосинтеза. Эти процессы весьма сложны и, к тому же, протекают крайне быстро – в пикосекундной временной шкале. Использование сверхкоротких световых импульсов дает уникальную возможность проследить за развитием подобных процессов и моделировать отдельные их звенья. Роль лазеров в фундаментальных научных исследованиях исключительно велика.
При обсуждении практических применения лазеров обычно выделяют два направления. Первое направление связывают с применениями, в которых лазерное излучение(как правило, достаточно высокой мощности) используется для целенаправленного воздействия на вещество. Сюда относят лазерную обработку материалов(например, сварку, термообработку, резку, пробивание отверстий), лазерное разделение изотопов,, применение лазеров в медицине и т.д. Второе направление связывают с так называемым информативным применением лазеров – для передачи и обработки информации, для осуществления контроля измерений.
5.1. Применение лазерного луча в промышленности и технике. Оптические квантовые генераторы и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается применение лазеров для сварки, обработки и разрезания металлических и диэлектрических материалов и деталей в приборостроении, машиностроении и в текстильной промышленности.
Начиная с 1964 года малопроизводительное механическое сверление отверстий стало заменяться лазерным сверлением. Термин лазерное сверление не следует понимать буквально. Лазерный луч не сверлит отверстие: он его пробивает за счет интенсивного испарения материала в точке воздействия. Пример такого способа сверления - пробивка отверстий в часовых камнях, которая сейчас уже является обычным делом. Для этой цели применяются твердотельные импульсные лазеры, например, лазер на стекле с неодимом. Отверстие в камне (при толщине заготовки около 0,1 - 0.5 мм.) пробивается серией из нескольких лазерных импульсов, имеющих энергию около 0,1 - 0,5 Дж. и длительностью около 10
-4 с. Производительность установки в автоматическом режиме составляет 1 камень в секунду, что в 1000 раз выше производительности механического сверления.
Лазер используется и при изготовлении сверхтонких проволок из меди, бронзы, вольфрама и других металлов. При изготовлении проволок применяют технологию протаскивания (волочения) проволоки сквозь отверстия очень малого диаметра. Эти отверстия (или каналы волочения) высверливают в материалах, обладающих особо высокой твердостью, например, в сверхтвердых сплавах. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстия в алмазе (алмазные фильеры). Только они позволяют получить проволоку диаметром всего 10 мкм. Однако, на механическое сверление одного отверстия в алмазе требуется 10 часов(!). Зато совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов. Как и в случае с пробивкой отверстий в часовых камнях, для сверления алмаза используются твердотельные импульсные лазеры.
Лазерное сверление широко применяется при получении отверстий в материалах, обладающих повышенной хрупкостью. В качестве примера можно привести подложки микросхем, изготовленные из глиноземной керамики. Из-за высокой хрупкости керамики механическое сверление выполняется на “сыром” материале. Обжигают керамику уже после сверления. При этом происходит некоторая деформация изделия, искажается взаимное расположение высверленных отверстий. При использовании “лазерных сверл” можно спокойно работать с керамическими подложками, уже прошедшими обжиг.
Интересно применение лазера и как универсального паяльника. Предположим, что внутри электронно-лучевой трубки произошла авария - перегорел или оборвался какой-нибудь провод, нарушился контакт. Трубка вышла из строя. Казалось бы, поломка неисправима, ведь ЭЛТ представляет собой устройство, все внутренние компоненты которого находятся в вакууме, внутри стеклянного баллона, и никакому паяльнику туда не проникнуть. Однако, лазерный луч позволяет решать и такие задачи. Направляя луч в нужную точку и должным образом фокусирую его, можно осуществить сварочную работу.
Лазеры с плавной перестройкой частоты служат основой для спектральных приборов с исключительно высокой разрешающей силой. Например, пусть требуется исследовать спектр поглощения какого-либо вещества. Измерив величину лазерного потока, падающего на изучаемый объект, и прошедшего через него, можно вычислить значение коэффициента поглощения. Перестраивая частоту лазерного излучения, можно, следовательно, определить коэффициент поглощения как функцию от длины волны. Разрешающая способность этого метода совпадает, очевидно, с шириной линии лазерного излучения, которую можно сделать очень малой. Ширина линии, равная, например, 10
-3 см
-1 обеспечивает такую же разрешающую способность, как и дифракционная решётка с рабочей поверхностью 5 м., а изготовление таких решёток представляет собой почти неразрешимую задачу.
Лазеры позволили осуществить светолокатор, с помощью которого расстояние до предметов измеряется с точностью до нескольких миллиметров. Такая точность недоступна для радиолокаторов.
В настоящее время в мире существует несколько десятков лазерных локационных систем. Многие из них уже имеют космическое значение. Они осуществляют локацию Луны и геодезических искусственных спутников Земли. В качестве примера можно назвать лазеро-локационную систему Физического института имени П. Н. Лебедева. Погрешность измерения при использовании данной системы составляет 40 см.
Проведение таких исследований организуется для того, чтобы поточнее узнать расстояние до Луны в течение некоторого периода времени, например, в течение года. Исследуя графики, описывающие изменение этого расстояния со временем, ученые получают ответы на ряд вопросов, имеющих научную важность.
Импульсные лазерные локаторы сегодня применяются не только в космонавтике, но и в авиации. В частности, они могут играть роль научных измерителей высоты. Лазерный высотомер применялся также в космическом корабле “Аполлон” для фотографирования поверхности Луны.
Впрочем, у оптических лазерных систем есть и свои слабые стороны. Например, не так просто при помощи остронаправленного луча лазера обнаружить объект, так как время обзора контролируемой области пространства оказывается слишком большим. Поэтому оптические локационные системы используются вместе с радиолокационными. Последние обеспечивают быстрый обзор пространства, обнаруживают цель, а затем оптическая система измеряет параметры цели и осуществляет слежение за ней.
Большой интерес представляют последние разработки в области создания телевизора на основе лазерных технологий. Согласно ожиданиям специалистов, такой телевизор должен отличаться сверхвысоким качеством изображения.
Стоит также отметить использование лазеров в уже давно известных принтерах высокого качества или лазерных принтерах. В этих устройствах лазерное излучение используется для создания на специальном светочувствительном барабане скрытой копии печатаемого изображения.
5.2 Применение лазеров в медицине. В медицине лазерные установки нашли свое применение в виде лазерного скальпеля. Его использование для проведения хирургических операций определяют следующие свойства:
Он производит относительно бескровный разрез, так как одновременно с рассечением тканей он коагулирует края раны “заваривая” не слишком крупные кровеносные сосуды;
Лазерный скальпель отличается постоянством режущих свойств. Попадание на твердый предмет (например, кость) не выводит скальпель из строя. Для механического скальпеля такая ситуация стала бы фатальной;
Лазерный луч в силу своей прозрачности позволяет хирургу видеть оперируемый участок. Лезвие же обычного скальпеля, равно как и лезвие электроножа, всегда в какой-то степени загораживает от хирурга рабочее поле;
Лазерный луч рассекает ткань на расстоянии, не оказывая никакого механического воздействия на ткань;
Лазерный скальпель обеспечивает абсолютную стерильность, ведь с тканью взаимодействует только излучение;
Луч лазера действует строго локально, испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются значительно меньше, чем при использовании механического скальпеля;
Как показала клиническая практика, рана от лазерного скальпеля почти не болит и быстрее заживляется.
Практическое применение лазеров в хирургии началось в СССР в 1966 году в институте имени А. В. Вишневского. Лазерный скальпель был применен в операциях на внутренних органах грудной и брюшной полостей. В настоящее время лазерным лучом делают кожно-пластические операции, операции пищевода, желудка, кишечника, почек, печени, селезенки и других органов. Очень заманчиво проведение операций с использованием лазера на органах, содержащих большое количество кровеносных сосудов, например, на сердце, печени.
5.2.1 Лазер в офтальмологии. В настоящее время интенсивно развивается новое направление в медицине - лазерная микрохирургия глаза. Исследования в этой области ведутся в Одесском Институте глазных болезней имени В. П. Филатова, в Московском НИИ микрохирургии глаза и во многих других “глазных центрах” стран содружества
Первое применение лазеров в офтальмологии было связано с лечением отслоения сетчатки. Внутрь глаза через зрачок посылаются световые импульсы от рубинового лазера (энергия импульса 0,01 - 0,1 Дж, длительность порядка - 0,1 с.) Они свободно проникают сквозь прозрачное стекловидное тело и поглощаются сетчаткой. Фокусируя излучение на отслоившемся участке, последнюю “приваривают” к глазному дну за счет коагуляции. Операция проходит быстро и совершенно безболезненно.
Вообще, из наиболее серьезных заболеваний глаза, приводящих к слепоте, выделяют пять. Это глаукома, катаракта, отслоение сетчатки, диабетическая ретинопатия и злокачественная опухоль. Сегодня все эти заболевания успешно лечатся при помощи лазеров, причем только для лечения опухолей разработано и используется три метода:
Лазерное облучение - облучение опухоли расфокусированным лазерным лучом, приводящее к гибели раковых клеток, потери ими способности к размножению
Лазерная коагуляция - разрушение опухоли умеренно сфокусированным излучением.
Лазерная хирургия - наиболее радикальный метод. Заключается в иссечении опухоли вместе с прилегающими тканями сфокусированным излучением.
5.2.2 Протонная терапия опухолей. Протонная терапия опухолей, остающаяся пока дорогой и мало распространенной процедурой, станет намного доступнее, когда в дело вступят лазерные ускорители протонов. Недавно появилось сразу несколько работ, приближающих эту эпоху.
Несколько лет назад вдруг выяснилось, что эту ситуацию можно резко изменить. Исследования по физике лазеров (казалось бы, совсем другой раздел физики!) привели к идее
лазерного ускорителя протонов, и сразу стало понято, что его можно будет применить и для протонной терапии.
Рис. 4. Схема получения и ускорения ионов в фокусе мощного лазерного луча Суть методики такова. Короткий, но очень мощный лазерный импульс, сфокусированный на тонкую мишень, порождает в фокусе маленькое облачко плазмы, а затем буквально сдувает его вперед. Далее с помощью магнитного поля протоны в этом потоке можно отделить от других ядер и от электронов. Так повторяется раз за разом (каждый раз под лазерный импульс подставляется новый участок мишени), и на выходе получается импульсный протонный пучок. Самое важное, что ускорение частиц до энергий в десятки МэВ происходит на длине всего в несколько микрон — то есть в миллион раз эффективнее, чем в обычных ускорителях!
5.3.Лазеры в вычислительной технике. Принципиально достигнутые малые времена переключения делают возможным применение лазеров и комбинаций с лазерами, включая интеграцию в микроэлектронных переключательных схемах (оптоэлектроника):
- в качестве логических элементов (да - нет);
- для ввода и считывания из запоминающих устройств в вычислительных машинах.
В этих целях рассматриваются исключительно инжекционные лазеры.
Преимущества таких элементов: малые времена переключения и считывания, очень маленькие размеры элементов, интеграция оптических и электрических систем.
Достижимым оказывается времена переключения примерно 10-10с(соответственно этому быстрые времена вычисления); емкости запоминающего устройства 107 бит/см2, и скорости считывания 109 бит/с.
5.3.1 Лазерные технологии - средство записи и обработки информации. В настоящее время лазерные технологии активно используются как средство записи и обработки больших объёмов информации. И здесь следует отметить появление принципиально нового вида носителя информации - компакт-диска. Как мы знаем, в аудио- и видеокассетах, которые до недавнего времени были, пожалуй, самым распространённым средством сохранения данных, использовались магнитные явления. В компакт-диске же применён другой подход.
Сам диск (CD-ROM или DVD-ROM) представляет собой пластину круглой формы, на одной стороне которого нанесена маркировка диска. Другая же сторона является рабочей и на первый взгляд она абсолютно гладкая. Однако, это не так, так как если бы это было так, то ни о каком сохранении информации не могло бы идти и речи. Внутри специального устройства рабочая поверхность диска как бы сканируется лазерным лучом небольшой мощности (как правило 0,14 мВт при длине волны 790 нм.). При таком сканировании определяется, что находится внутри пятна лазерного луча - углубление или нет? Не вдаваясь в компьютерную технику можно только сказать, что наличие углубления (или пита) соответствует логической единице, а во всех компьютерных технологиях используются только два состояния - НОЛЬ и ЕДИНИЦА. Далее используя специальные таблицы можно расшифровать последовательность этих нулей и единиц и получить исходную информацию.
Запись таких дисков производится также при помощи лазеров, но здесь речь идёт о гораздо большей мощности лазера.
Благодаря тому, что выжигание питов на поверхности диска производится при помощи лазера, можно достичь очень большой плотности записи информации, так как диаметр лазерного луча, а следовательно и пита очень мал.
По-моему, это очень прогрессивная технология. На современные DVD диски можно записать огромный объем информации – свыше 5 Гб (До 10 полнометражных фильма). Плюс ко всему, диски гораздо компактнее магнитных кассет. Я, в данный момент, не вижу явных конкурентов у данной технологии хранения информации.
Другое направление в сохранении информации - голография - метод, позволяющий сохранить информацию о внешнем виде любого объёмного тела с очень высокой точностью.
5.3.2.Лазерный принтер. Для печати в вычислительной технике и в других случаях часто применяется лазерное излучение. Преимущество их в более высокой скорости печати, по сравнению с обычными способами печати.
Принцип действия их такой: поступающий от считываемого оригинала свет преобразуется в ФЭУ в электрические сигналы, которые соответствующим образом обрабатываются в электронном устройстве вместе с управляющими сигналами (для определения высоты шрифта, состава краски и т. д.) и служат для модуляции лазерного излучения. С помощью записывающей головки экспонируется расположенная на валике пленка. При этом азерное излучение разделяется на ряд равных по интенсивности частичных лучей(6 или больше), которые посредством модуляции при данных условиях подключаются или отключаются.
Применяемые лазеры: ионный аргоновый лазер (мощность не более 10 мВт), инжекторный лазер.
5.3.3. Оптическая цифровая память. Для становящейся все более тесной связи между обработкой данных, текста и изображения необходимо применять новые методы записи информации, к которым предъявляются следующие требования:
Более высокая емкость запоминающего устройства;
Более высокая эффективность хранения архивных материалов;
Лучшее соотношение между ценой и производительностью.
Это может быть достигнуто с помощью записи и считывания цифровой информации.
5.3.4. Лазерная связь и локация. Средствами радиосвязи и радиолокации лазерные обладают двумя основными преимуществами: узкой направленностью передачи и широкой полосой пропускания передаваемых частот. Сам лазер создает направленный луч (расходимостью ок.10?), а применение оптической системы позволяет сформировать еще более параллельный луч (расходимостью ок.2-3?). Один лазерный луч позволяет передавать сигнал в полосе частот 100Мгц. Это дает возможность одновременной передачи 200 телевизионных каналов.
Первые сведения применения лазерной локации относятся в 1962 г., когда была осуществлена локация Луны. Увеличение мощности, излучаемой лазером, сделает возможным картографирование поверхности Луны с Земли с высокой точностью(около 1,5 м). Лазерная локация применяется также в геофизике для определения высоты облаков, исследования инверсионных и аэрозольных слоев в атмосфере, турбулентности и т.п.
5.3.5.Лазерные системы навигации и обеспечения безопасности полетов. Одним из основных элементов инерциальных систем навигации, широко используемых в авиации, являются гироскопы, которые в основном и определяют точность системы. Лазерные гироскопы обладают достаточно высокой точностью, большим диапазоном измерения угловых скоростей, малым собственным дрейфом, невосприимчивостью к линейным перегрузкам. Лазеры успешно применяются как измерители скорости полета (воздушной и путевой), высотомеры. Лазерные курсо-глссадные системы обеспечиваю безопасность полетов, связанную с увеличением точности систем посадки, снижения ограничения по метеоусловиям, обеспечением больших удобств работы экипажа при выполнении такого ответственного участка полета, как посадка. В близи взлетно-посадочного полотна установленные лазерные лучи создают геометрическую картину, позволяющую судить о правильности выдерживания траектории посадки.
5.3.6. Лазерные системы управления оружием. Лазерные системы управления оружием резко повысили точность попадания. Лазерная полуактивная система состоит из лазерного целеуказателя и боеприпаса с лазерной головкой самонаведения.
6. Мощные лазеры - новая угроза. Очередное достижение современной науки и техники грозит обернуться проклятием для всего человечества уже в скором будущем.
Бытовые лазеры перестают ассоциироваться со сравнительно «безобидными» лазерными указками. Китайская компания начала серийное производство 300 мВт «зеленых» лазеров компактного размера и по сравнительно доступным ценам.
Появившиеся на рынке и доступные каждому лазеры зеленого, а теперь уже и синего цвета способны на многое.
Компания Wicked Lasers со штаб-квартирой в Шанхае приступила к продажам «зеленых» лазеров серии Spyder. Это самые мощные лазеры данного спектрального диапазона, производимые сегодня серийно – предлагаются 3 модели мощностью 200, 250 и 300. Такая мощность требует наличия системы охлаждения, отводящей тепло. Характеристики этих лазеров показательны – речь идет о серьезном и неожиданно грозном оружии.
Лазер Spyder 300 мВт имеет пиковую мощность 450 мВт, заявленный радиус действия – около 200 км (120 миль), дивергенция пучка – менее 1,5 мРад, работает от источника питания напряжением 3,0 В, потребляемый ток не превышает 1,2 А. Длина волны излучения – 532 нм (зеленый свет).
Предполагаемая производителем сфера применения лазера – военная, он охарактеризован как «сверхмощный тактический».
Лазер подобной мощности, сохранив компактность бытовой лазерной указки, перестал быть игрушкой. По заверениям производителей и первых пользователей, мощности лазера достаточно, чтобы прожечь лист бумаги, прожечь воздушный шар с большого расстояния, зажечь сигарету или спичку, а в скором будущем, возможно – даже «выгравировать» заветное слово на видимой стороне Луны.
Заниматься этим особенно удобно при помощи лазера, работающего в видимой области спектра – излучение зеленого цвета хорошо видно даже в мало запыленной атмосфере, а сам лазер может использоваться в качестве указки – например, при изучении созвездий. Но ему могут очень быстро найти новые, не столь безобидные сферы применения. Когерентный пучок излучения такой мощности способен привести к необратимой потере зрения даже в случае попадания не прямого, а отраженного излучения. При желании становится возможным лишить зрения человека за десятки километров (в пределах прямой видимости – например, пилота самолета), оставаясь при этом в неуязвимости. В руках злоумышленников появляется новое оружие, в руках повстанцев – новый эффективный вид борьбы с технически превосходящим противником.
Судя по всему, лазерное оружие постепенно покидает страницы фантастических романов и приходит в нашу реальность. В США уже отмечен случай облучения лазером кабины самолета. Америка с негодованием отмечает, что в Китае предпринимались попытки вывода из строя американских спутников-шпионов с помощью лазерного излучения в момент их пролета над территорией Поднебесной. В США разрабатывается система ретрансляции лазерного излучения со сверхмощных стационарных лазерных комплексов с помощью космических зеркал, что позволит мгновенно уничтожать объекты в любой точке Земного шара. Аналогичный лазер воздушного базирования для борьбы с баллистическими ракетами также разрабатывается в США.
Однако быстрый рост мощности «карманных» лазеров, их ценовая доступность и удобство применения не позволяют сделать однозначный вывод о том, что мечтам стратегов «лазерной диктатуры» суждено сбыться. Современные войны уже давно доказали, что физическое уничтожение живой силы противника совсем не обязательно для победы – достаточно вывести ее из строя, и поражение органов зрения видится самым простым, «экономичным» и доступным методом.
Разумеется, от лазерного излучения есть защита – очки, ослабляющие световой поток определенных спектральных диапазонов. Компания Wicked Lasers предлагает защитные очки по относительно «демократичной» цене $49,99, подчеркивая, что не намерена наживаться на продаже средств защиты. Однако всех в очки не оденешь, а появление все новых и новых модификаций лазеров различных спектральных диапазонов позволяет говорить о том, что панацеи «от лазеров» уже не будет. Мощные лазеры уже пришли в нашу жизнь.
7.Заключение За последнее время в России за рубежом были проведены обширные исследования в области квантовой электроники. Созданы разнообразные лазеры, а также приборы, основанные на их использовании. Они необычайно расширили наши возможности в самых различных областях - обработке металлов, медицине, измерении, контроле, физических, химических и биологических исследованиях. Во многих случаях использование лазерного луча позволяет получить уникальные результаты. Можно не сомневаться, что в будущем луч лазера подарит нам новые возможности, представляющиеся сегодня фантастическими.
Главная причина стремительного роста внимания к лазерам кроется, прежде всего, в исключительных свойствах этих приборов. Уникальные свойства лазеров – монохроматичность (строгая одноцветность), высокая когерентность (согласованность колебаний), острая направленность светового излучения.
Изобретение лазеров стоит в одном ряду с наиболее выдающимися достижениями науки и техники ХХ века. Первый лазер появился в 1960 году, и с тех пор происходит бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач.
Однако есть одно «но»: мы уже начали привыкать, что “лазер все может”. Подчас это мешает трезво оценить реальные возможности лазерной техники на современном этапе ее развития. Неудивительно, что чрезмерные восторги по поводу возможностей лазера иногда сменяются некоторым охлаждением к нему. Все это, однако, не может замаскировать основной факт - с изобретением лазера человечество получило в свое распоряжение качественно новый, в высокой степени универсальный, очень эффективный инструмент для повседневной, производственной и научной деятельности. С годами этот инструмент будет все более совершенствоваться, а вместе с этим будет непрерывно расширяться и область применения лазеров.
8. Литература.1. Айден К. «Аппаратные средства РС: перевод».М.,1998.
2. Горбунов. Л. М. «
Зачем нужны сверхмощные лазерные импульсы?». «Природа», № 4, 2008.
3. Китайгородский А. И. – «Физика для всех: Фотоны и ядра». Наука, М., 1979.
4. Ландсберг Г. С. «Элементарный учебник физики». 1971.
5. Матвеев А. Н. «Оптика». М., Высшая школа, 1975.
6. Тарасов Л.В. «Лазеры. Действительность и надежды». Наука, М., 1985.
7. Трофимова Т.И. «Курс физики». М., Высшая школа, 1998.
8. S. S. Bulanov et al.
Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses //
Med. Phys. (2008). V. 35. Issue 5. P. 1770–1776.
9. Y. I. Salamin, Z. Harman, Ch. H. Keitel.
Direct High-Power Laser Acceleration of Ions for Medical Applications //
Phys. Rev. Lett. 100, 155004 (18 April 2008).
10.
www.scientific.ru.
11.
www.elementy.ru.