Садохин А.П. Концепции современного естествознания - файл n1.doc

приобрести
Садохин А.П. Концепции современного естествознания
скачать (2870 kb.)
Доступные файлы (1):
n1.doc2870kb.26.08.2012 15:40скачать

n1.doc

1   2   3   4   5   6   7   8   9   10   ...   17
Глава 7

Земля как предмет естествознания

7.1. Форма и размеры Земли Комплекс наук о Земле

В настоящее время Земля является объектом изучения многих наук — от геологии и географии до экономики и политологии. В совокупности этих наук выделяются отраслевые науки, изучающие отдельные части вертикальной и горизонтальной структуры Земли (геология, климатология, почвоведение и др.), а также системные науки, синтезирующие в себе всю совокупность знаний о Земле для решения теоретических или прикладных проблем (география, физическая география, социально-экономическая география и др.).

Среди отраслевых наук особое развитие получили геология (наука о литосфере), гидрология (наука о гидросфере), климатология (наука об атмосфере), геофизика (наука о Земле как физическом теле), геохимия (наука о естественных химических процессах, протекающих в пределах Земли), геоморфология (наука о рельефе Земли), почвоведение (наука о почвах), биогеография (наука о распределении живого вещества на поверхности Земли).

К системным наукам относится география, синтезирующая знания отраслевых наук применительно к поверхности Земли. При этом география подразделяется на физическую, изучающую естественные природные комплексы, формирующиеся на поверхности Земли, и социально-экономическую, предметом которой являются социально-экономические комплексы, формирующиеся на поверхности Земли в результате освоения человеком территорий. В рамках этих наук с древности развивались представления о Земле, неразрывно связанные с историей представления об устройстве Вселенной в целом.

История развития представлений

Долгое время, пока господствовала мифологическая картина мира, Земля считалась плоским диском, стоящим на грех слонах,

157

китах или черепахе и покрытым сверху полукруглым небесным сводом. Лишь в VI в. до н.э. один из основоположников античной науки Пифагор высказал мысль о шарообразности Земли. То, что Земля имеет шарообразную форму, доказал Аристотель в IV в. до н.э. В качестве аргументов он использовал лунные затмения, которые происходят из-за того, что Земля, встав между Солнцем и Луной, отбрасывает на Луну круглую тень. Кроме того, было известно, что в южных странах на небе появляются созвездия, невидимые на севере. Так, постепенно утвердилось представление о том, что Земля — это шар, неподвижно висящий в центре Космоса без всякой опоры, а вокруг него вращаются по идеальным круговым орбитам Луна, Солнце и пять известных тогда планет. Неподвижные звезды замыкали сложившуюся в античности геоцентрическую модель мира.

В 300 г. до н.э. географ Эратосфен достаточно точно определил размеры земного шара. Он заметил, что в день летнего солнцестояния в городе Сиене Солнце находится в зените и освещает дно самого глубокого колодца. Затем он измерил угол падения солнечных лучей в тот же день в Александрии. Зная расстояние между городами, Эратосфен вычислил длину окружности земного шара.

Тем не менее, представления о шарообразности Земли во многом вытекали из чисто умозрительных рассуждений об идеальных телах. В античности такими телами считались шар, сфера, круг, а потому в гармоничном соразмерном Космосе Земля должна иметь форму самой совершенной фигуры — шара. Ничем другим она просто не могла быть.

Лишь с началом эпохи Великих географических открытий шарообразность Земли была подтверждена на опыте. В 1522 г. португальский мореплаватель Фернан Магеллан завершил первое кругосветное путешествие, в ходе которого он обогнул Землю и доказал наличие единого Мирового океана.

Казалось бы, вопрос о форме Земли можно было считать закрытым. Но в это же время было опровергнуто античное учение об идеальных телах. Поэтому встал вопрос, насколько близка форма Земли к идеальной сфере. К концу XVII в. сложились две точки зрения по этому вопросу. С одной стороны, И. Ньютон считал, что Земля имеет форму сфероида, несколько сплющенного у полюсов, вследствие ее вращения и действия сил притяжения составляющих ее масс (напоминает тыкву). С другой стороны, Р. Декарт, основываясь на теории вихрей, утверждал, что Земля сплющена у экватора и удлинена по направлению к полюсам (похожа на дыню).

Чтобы решить этот вопрос, надо было измерить кусочки дуг меридиана на разных широтах и посмотреть, как соотносятся расстояния, приходящиеся на один градус. В 1735 г. Парижская акаде-

158



мия наук отправила с этой целью две экспедиции: одну — в Перу, на экватор, а другую — в Лапландию, к полюсу. Восемь лет потребовалось ученым, чтобы измерить с помощью сосновых жердей с выверенной длиной в десять метров дугу длиной в три градуса восемь минут. Выяснилось, что чем ближе к полюсу, тем длиннее становился градус.

С тех пор форма Земли уточнялась еще несколько раз. С большой точностью ее удалось определить лишь в XX в. с помощью приборов, установленных на искусственных спутниках Земли. Сегодня точно известно, что Земля — не вполне правильный шар. Она немного сжата у полюсов и несколько вытянута к Северному полюсу. Эта фигура называется геоидом. Термин для обозначения фигуры Земли был введен в 1873 г. немецким физиком И. Листингом. Сжатие у полюсов объясняется вращением Земли вокруг своей оси. Вытянутость Земли к Северному полюсу до сих пор окончательного объяснения не получила.

Окружность Земли по экватору равна 40 075,7 км, окружность по меридиану — 40 008,5 км.

Масса Земли была вычислена на основе закона всемирного тяготения в опытах Г. Кавендиша с крутильными весами, на которых он измерял, с какой силой большой свинцовый шар притягивает к себе маленькие свинцовые шарики, а затем сравнивал эту силу с силой притяжения маленьких шариков Землей, т.е. с их весом. Этот опыт был поставлен в 1798 г. Масса Земли оказалась равной 5976 • 1021 кг.

Поверхность Земли составляет приблизительно 510 млн. км2, при этом на долю суши приходится 149 млн. км2, или около 29%, так что правильнее было бы назвать нашу планету не Землей, а Океаном.

7.2. Земля среди других планет Солнечной системы

В последнее время среди многочисленных наук, изучающих нашу планету, появилась еще одна — сравнительная планетология. Она позволяет сопоставить данные о Земле с тем, что нам известно о других планетах Солнечной системы. Мы уже говорили, что в состав Солнечной системы входит девять планет. Они делятся на д в е группы:

  1. внутренние планеты (планеты земной группы) — Меркурий, Венера, Земля, Марс;

  2. внешние планеты (газовые гиганты) — Юпитер, Сатурн, Уран, Нептун, Плутон.

Отличия планет земной группы от газовых гигантов очевидны. Поэтому посмотрим, чем отличаются друг от друга внутренние пла-

159

неты. Среди них нет двух одинаковых планет. Они отличны по размерам, физико-химическим параметрам, строению недр и поверхностей, составом атмосфер. В основном эти различия обусловлены начальными условиями формирования планет — химическим составом, плотностью вещества в тех частях протопланетного облака, где эти планеты формировались, а также расстоянием от Солнца, резонансным взаимодействием с ним и другими планетами.

Из всех планет земной группы Земля — самая большая планета. Но как показывают оценки, даже такие размеры и масса оказываются минимальными, при которых планета способна удержать свою газовую атмосферу. Тем не менее, Земля теряет водород и другие легкие газы, что заметно по шлейфу, который тянется за нашей планетой. Венера почти равна по размерам и массе Земле, но она ближе к Солнцу и получает от него больше тепла. Поэтому она давно потеряла весь свой свободный водород. У остальных двух планет атмосфера либо вообще отсутствует (Меркурий), либо сохранилась в очень разреженном состоянии (Марс).

Из всех планет только Земля обладает сильным магнитным полем, на два порядка превосходящим значения магнитных полей у других планет. Как считают ученые, это одна из причин появления жизни на Земле.

Ни одна из планет не имеет развитой системы спутников, как у планет — газовых гигантов. Луна — спутник Земли, не вписывается ни в одну из современных гипотез образования Солнечной системы. Тем более, что Луна имеет планетные размеры (сравнимые с размерами Меркурия).

Различия в составе и плотности атмосферы

Важнейшей характеристикой любой планеты является наличие (или отсутствие) атмосферы. Три из четырех планет обладают заметной атмосферой. Атмосфера Земли кардинально отличается от атмосфер других планет: в ней мало углекислого газа, много молекулярного кислорода и паров воды. Это связано с тем, что вода морей и океанов Земли хорошо поглощает углекислый газ, а живое вещество биосферы планеты насыщает атмосферу кислородом, образующимся в процессе фотосинтеза. Подсчеты показывают, что если освободить всю поглощенную водой океанов углекислоту и одновременно убрать из атмосферы кислород, накопленный за счет жизнедеятельности растений, то состав земной атмосферы станет подобным составу атмосфер Венеры и Марса.

Относительно малые размеры Марса не позволили ему удержать плотную атмосферу. Тем не менее, раньше она была более плотной из-за процессов активного выделения газов из недр планеты. Тогда,

160

очевидно, условия на планете были более мягкими, без резких перепадов дневных и ночных температур. Сейчас же в разреженной атмосфере Марса возникают настолько мощные пылевые бури, что они поднимают массы песка на высоту многих километров, практически скрывая поверхность планеты от наблюдателей за непроницаемой пылевой завесой.

Венера, напротив, имеет очень плотную атмосферу, в основном состоящую из углекислого газа. Возникший в связи с этим парниковый эффект обусловил разогревание поверхности Венеры до огромных температур.

Наличие или отсутствие гидросферы

Близость Венеры к Солнцу способствовала быстрой потере планетой водорода, что, в свою очередь, привело к невозможности появления воды и снижению температуры на поверхности планеты до приемлемого уровня.

На Венере, таким образом, отсутствует гидросфера. Да и в атмосфере пары воды присутствуют в очень незначительном количестве. Причины этого до сих пор неизвестны. Тем не менее, существует предположение, что отсутствие гидросферы, очень медленное обратное вращение и отсутствие собственного магнитного поля у Венеры — все это следствия некоей общей причины, породившей различия в путях развития Венеры и Земли.

На Марсе в прошлом (примерно, миллиард лет назад) существовала гидросфера. А три миллиарда лет назад там, возможно, был океан. В наши дни вода на Марсе существует в виде инея и льда в полярных шапках этой планеты. Также вода должна быть на планете в слое вечной мерзлоты. Поэтому на Марсе может существовать жизнь, по крайней мере, простейшие ее формы.

Лишь на Земле гидросфера развита настолько хорошо, что существует в виде Мирового океана, занимающего большую часть поверхности нашей планеты.

Различия в рельефе

Существенно различаются также и рельефы планет земной группы. Это обусловлено различием вулканических и геологических процессов на них. Сегодня считается, что тектоническая активность может служить мерилом жизнеспособности планеты в целом. Если тектоническая деятельность отсутствует или значительно сокращается, то можно делать вывод об умирании планеты. Это связано с тем, что при тектонической деятельности идет активный обмен веществом и энергией между поверхностью и недрами планеты. При

161

этом формируется и поддерживается атмосфера, гидросфера и господствующие типы рельефа местности. С прекращением тектонической активности планета превращается в мертвое небесное тело, на котором преобладают процессы деградации.

В прошлом Земля отличалась большой геологической активностью. Однако и в наши дни для Земли характерна высокая тектоническая активность, а потому ее геологическая история далека от завершения. Это проявляется в периодически случающихся землетрясениях и извержениях вулканов, иногда носящих катастрофический характер. Поэтому современный рельеф Земли продолжает меняться. Огромную роль при этом играет воздействие не только эндогенных (тектонических), но и экзогенных процессов — гидро-сферных, атмосферных и биосферных. На других планетах подобное сочетание факторов отсутствует.

Рельеф земной поверхности отличается глобальной асимметрией. Она хорошо заметна при сравнении Северного и Южного полушарий. Одно из них в основном заполнено водой, в другом же сосредоточены поднятия коры, образующие континенты. То, что участки суши и моря асимметричны относительно центра Земли, хорошо заметно на глобусе.

Асимметричны не только рельефы, но и тепловые режимы Северного и Южного полушарий. Северное полушарие более теплое, чем Южное. Так, в Северном полушарии температура опускается до —70°С, а в Южном — до -90°С. Кроме того, в Южном полушарии расположен абсолютный полюс ветров (в Антарктиде) и «ревущие сороковые» широты — зона постоянных бурь и ураганов. Неодинаковы также тепловые режимы Западного и Восточного полушарий. Так, в Америке климат более умеренный, чем в Азии. Это связано с тем, что в Азии горные цепи расположены по параллелям и задерживают перемещение воздушных масс в направлении с юга на север. Поэтому значительная часть азиатской территории содержит многолетнемерзлые фунты. А в Восточной Сибири зимой обьино устанавливается устойчивый антициклон с низкими температурами. Кроме того, в Западном полушарии больше воды, чем в Восточном. Это также смягчает климат американского континента.

Рельефы Марса и Венеры формировались в иных условиях, чем на Земле. Отсутствие гидросферы исключает разделение на океанский и континентальный рельефы. Иначе проходила и тектоническая деятельность на этих планетах.

В наши дни на Марсе отсутствует вулканическая активность, хотя еще сто миллионов лет назад она была довольно бурной. От того времени сохранились конусы потухших вулканов, покрытая лавами большая часть поверхности планеты, а также характерные разломы и сбросы марсианской коры.

162

Одним из следствий затухания вулканической деятельности стало резкое сокращение поступления газов из недр планеты в атмосферу. А поскольку масса Марса недостаточна для удержания плотной атмосферы, она начала редеть. Все говорит о том, что геологическая эволюция Марса завершилась.

Поверхность Венеры в основном представляет собой равнину, на фоне которой выделяются две обширные горные области — Земля Иштар и Земля Афродиты. Их средняя высота над равниной составляет около 4 км, простираются они на несколько тысяч километров. Средний возраст исследованной территории Венеры оценивается в 1 млрд. лет. Процессы разрушения поверхностных структур, бурно протекающие на Земле, на Венере идут удивительно медленно: за миллиард лет разрушенный слой не превысил нескольких десятков метров. Такие темпы разрушения характерны для малых безатмосферных планет типа Меркурия. На Венере причинами такой стабильности являются отсутствие гидросферы, окислительной атмосферы, а также тектонической активности в наши дни.

Таким образом, утверждения о том, что Венера — молодая планета, только начинающая свою геологическую историю, неверны. Она уже миновала пору активного планетного развития и в этом отношении близка к Марсу. Сходство Венеры и Марса объяснимо — основным геологообразующим процессом на этих планетах была тектоническая активность.

В современную эпоху только Земля остается «живой» планетой, ее геологическое развитие продолжается. По-иному, чем на Марсе и Венере, протекают процессы в недрах Земли. На это указывает существование континентальной коры с гранитными породами и явно выраженных литосферных плит с их перемещениями.

Главным же отличием Земли от других планет является хорошо развитая биосфера. Вершиной эволюции жизни на нашей планете стал человек, обладающий разумом.

7.3. Образование Земли

В современном естествознании существует несколько противоречивых точек зрения, касающихся образования Земли как космического тела. Одну из них — гипотезу Альвена—Аррениуса мы рассматривали ранее.

Возраст Земли

Согласно современным космологическим представлениям, Земля образовалась примерно 4,5 млрд. лет назад. К такому выводу

163

ученые пришли в результате исследования возраста древнейших минералов и горных пород, а также на основе изучения процессов распада радиоактивных веществ. Кроме того, на данный возраст Земли указывают и материалы исследования метеоритов. Они относятся к числу наиболее изученных космических объектов и несут ценную научную информацию. Исследования метеоритов показывают, что возраст как железных, так и каменных метеоритов совпадает и составляет примерно 4,5—4,6 млрд. лет.

Схожие данные получены и при исследовании лунных пород. Образцы этих пород были доставлены на Землю как с помощью космических станций «Луна», так и экипажами американских космических кораблей «Аполлон». Оказалось, что возраст самых древних лунных образцов совпадает с возрастом самой Луны и составляет 4—4,5 млрд. лет. Значит, первичная лунная кора возникла вскоре после образования Луны, и отдельные участки этой коры сохранились до сегодняшнего дня. Такое совпадение данных для разных тел Солнечной системы не может считаться случайным, поэтому делается вывод о возрасте нашей планеты, равном примерно 4,5 млрд. лет. К этому времени завершилось формирование. При этом считается, что ее геологическая история составляет около 4 млрд. лет, из них 0,6 млрд. лет — это ранняя история Земли.

Древнейший период в истории нашей планеты, составляющий 5/6 всей геологической истории Земли, называется докембрийским, или криптозойским. Он делится на архей (закончился 3,5 млрд. лет назад) и протерозой (до 600 млн. лет назад). Последние 600 млн. лет называются фанерозоем и делятся на три эры: палеозой (240 млн. лет), мезозой (163 млн. лет) и кайнозой (67 млн. лет). Эти эры, в свою очередь, подразделяются на более мелкие периоды (табл. 7.1).

Таблица 7.1 Геохронологическая шкала фанерозоя

Группа (эра)

Система (период)

Начало, млн. лет назад

Продолжительность, млн. лет

1

2

3

4

Кайнозойская (67 млн. лет)

Антропогеновая (четвертичная) Неогеновая Палеогеновая

1,5 25 67

1,5

23,5 42

Мезозойская (163 млн. лет)

Меловая

Юрская

Триасовая

137 195 230

70 58 35

164

Окончание табл. 7.1

1

2

3

4

Палеозойская

Пермская

285

55

(240 млн. лет)

Каменноугольная

350

75-65




Девонская

410

60




Силурийская

440

30




Ордовикская

500

60




Кембрийская

570

70 ■

Ранняя история развития Земли

Ранняя история развития Земли включает три фазы эволюции:

  1. фазу аккреции (рождения);

  2. фазу расплавления внешней сферы земного шара;

  3. фазу первичной коры (лунную фазу).

Фаза аккреции представляла собой непрерывное выпадение на растущую Землю все большего количества крупных тел, укрупняющихся в своем полете при соударениях между собой, а также в результате притяжения к ним более удаленных мелких частиц. Кроме того, на Землю падали и самые крупные объекты — планетезима-лии, достигавшие в поперечнике многих километров. В фазу аккреции Земля приобрела примерно 95% современной массы. На это ушло около 17 млн. лет (правда, некоторые исследователи увеличивают этот срок до 400 млн. лет). При этом Земля оставалась холодным космическим телом, и только в конце этой фазы, когда началась предельно интенсивная бомбардировка ее крупными объектами, произошло сильное разогревание, а затем и полное расплавление вещества поверхности планеты.

Фаза расплавления внешней сферы земного шара наступила в промежутке 4—4,6 млрд. лет назад. В это время произошла общепланетарная химическая дифференциация вещества, которая привела к формированию центрального ядра Земли и обволакивающей его мантии. Позже образовалась земная кора.

В этой фазе поверхность Земли представляла собой океан тяжелой расплавленной массы с вырывающимися из него газами. В него продолжали стремительно падать мелкие и крупные космические тела, вызывая всплески тяжелой жидкости. Над раскаленным океаном нависало сплошь затянутое густыми тучами небо, с которого не могло упасть ни капли воды.

Лунная фаза — это время остывания расплавленного вещества поверхности Земли из-за излучения тепла в космос и ослабления метеоритной бомбардировки. Так образовалась первичная кора базальтового состава. Тогда же происходило образование гранитного

165

слоя материковой коры. Правда, механизм этого процесса до сих пор неясен.

В лунную фазу шло постепенное остывание поверхности Земли от температуры плавления базальтов, составляющей 800— 1000°С до 100°С. Когда температура опустилась ниже 100°С, из атмосферы выпала вся вода, покрывшая Землю. В результате сформировались поверхностные и грунтовые стоки, появились водоемы, в том числе и океан.

Геологическое развитие и строение Земли

Результатом геологического развития Земли стало формирование самых верхних оболочек — атмосферы, гидросферы и литосферы. Это произошло в результате остывания поверхности Земли и привело к образованию первичной базальтовой или близкой к ней по составу коры Земли. Почти одновременно за счет конденсации водяных паров образовалась водная оболочка планеты — гидросфера.

Образование и строение литосферы. Земная кора образована горными породами, имеющими различные формы залегания. Породы лежат горизонтальными слоями или нарушены разломами и смяты складками. Залегание горных пород чаще всего обусловлено внутренними (эндогенными) силами. Строение земной коры, созданное эндогенными процессами, называется тектоническим строением, или тектоникой.

Современный рельеф планеты складывался на протяжении многих сотен миллионов лет и продолжает видоизменяться под влиянием совместного действия на ее поверхности тектонических, гид-росферных, атмосферных и биологических процесов. Начало этому было положено около 3,5 млрд. лет назад, когда начали формироваться вулканические дуги. Формирование вулканических дуг происходило на первичной остаточной или вторичной коре, образованной при растяжении океанической коры над зонами подлезания (столкновения литосферных плит и подлезания их друг под друга с образованием вулканической дуги). В результате примерно 2,7—2,5 млрд. лет назад возникли значительные площади континентальной коры, которые, по-видимому, соединились в единый суперконтинент — первую Пангею в истории Земли. Толщина этой коры уже достигала современной толщины в 35—40 км. Ее нижняя часть под влиянием высоких давлений и температур испытывала значительные превращения, а на средних уровнях произошло выплавление больших масс гранита.

Следующий важный момент в развитии Земли имел место примерно 2,5 млрд. лет назад. Возникший на предыдущем этапе суперконтинент — первая Пангея — претерпел существенные изменения и 2,2 млрд. лет назад распался на отдельные, относительно неболь-

166

шие континенты, разделенные бассейнами с новообразованной океанической корой. Отдельные следы этих этапов тектоники плит можно обнаружить и сейчас. Первый этап (до возникновения Пан-геи) принято называть эмбриональной тектоникой плит, а второй — тектоникой малых плит. К концу второго периода, около 1,7 млрд. лет назад, континенты вновь слились в единый суперконтинент. Образовалась Пангея-Н. Ее распад начался около 1 млрд. лет назад, хотя частичные разъединения и воссоединения могли иметь место и до этого.

В интервале 1—0,6 млрд. лет назад структурный план Земли претерпел радикальные изменения и существенно приблизился к современному. С этого момента началась полномасштабная тектоника плит. Она связана с тем, что литосфера Земли разделена на ограниченное число крупных (5 тыс. км) и средних (1 тыс. км) по размерам поперечника жестких и монолитных плит, которые расположены на более пластичной и вязкой оболочке — астеносфере. Литосферные плиты стали двигаться по астеносфере в горизонтальном направлении, образуя раздвижения и подлезания, которые в среднем компенсируют друг друга в масштабах планеты. Таким образом, в истории Земли как планеты неоднократно происходил процесс формирования и распада Пангеи. Длительность таких циклов составляет 500—600 млн. лет. На эту крупномасштабную периодичность накладывается периодичность меньших масштабов, связанная с растяжением и сжатием земной коры.

В результате тектонической активности рельеф земной поверхности сегодня характеризуется глобальной асимметрией двух полушарий (Северного и Южного): одно из них представляет собой гигантское пространство, заполненное водой. Это океаны, занимающие более 70% всей поверхности. В другом полушарии сосредоточены поднятия коры, образующие континенты. Глобальная асимметрия в строении поверхности нашей планеты была замечена давно, что позволило планетарный рельеф поделить на две основные области — океаническую и континентальную. Дно океанов и континенты отличаются друг от друга строением земной коры, химическим и петрографическим составом, а также историей геологического развития. Кора имеет повышенную мощность в области континентов и пониженную в областях океанического дна.

Средняя мощность континентальной коры — 35 км. Ее верхний слой богат гранитными породами, нижний — базальтовыми магмами. На дне океанов гранитный слой отсутствует, и земная кора состоит только из базальтового слоя. Ее мощность — 5—10 км. Кроме того, континентальная кора содержит больше радиоактивных элементов, генерирующих тепло, чем тонкая океаническая кора.

Земная кора, образующая верхнюю часть литосферы, в основном состоит из восьми химических элементов: кислорода, кремния, алю-

167

миния, железа, кальция, магния, натрия и калия. Половина всей массы коры приходится на кислород, который содержится в ней в связанном состоянии, главным образом, в виде окислов металлов.

Земная кора сложена горными породами различного типа и различного происхождения. Более 70% приходится на магматические породы, 20% — на метаморфические, 9% составляют осадочные породы.

Не следует забывать и о том, что поверхность Земли сложена из литосферных плит, число и положение которых менялось от эпохи к эпохе. Плита — это вся масса земной коры и подстилающей мантии, которые движутся как единое целое по поверхности Земли. Сегодня выделяют 8—9 больших плит и более 10 малых. Плиты медленно перемещаются горизонтально (глобальная тектоника плит). В районах рифтовых долин, где вещество мантии выносится наружу, плиты расходятся, а в местах, где горизонтальные смещения соседних плит оказываются встречными, они надвигаются друг на друга. Вдоль границ литосферных плит расположены зоны повышенной тектонической активности. При движении плит сминаются их края, образуя горные хребты или целые горные области. Океанические плиты, берущие свое начало в рифтовых разломах, наращивают толщину по мере приближения к континентам. Они уходят под островные дуги или континентальную плиту, увлекая за собой накопившиеся осадочные породы. Вещество погружающейся плиты достигает в мантии глубин до 500—700 км, где оно начинает плавиться.

Возникновение атмосферы и гидросферы. Составные части атмосферы и гидросферы Земли являются летучими веществами, которые появились в результате ее химической дифференциации. Согласно имеющимся данным, пары воды и газы атмосферы возникли в недрах Земли и поступили на ее поверхность в результате внутреннего разогрева совместно с наиболее легкоплавкими веществами первичной мантии в процессе вулканической активности.

Вода и углекислый газ как компоненты газопылевого облака долго пребывали в виде молекул, когда большая часть твердых конденсатов уже сформировалась. Поэтому оставшиеся газы в какой-то мере поглощались пылевыми частицами путем адсорбции и различных химических реакций. Так летучие вещества внедрились в планеты земного типа. Из недр Земли они поступают на поверхность в результате вулканической деятельности. Кроме того, как считают Альвен и Аррениус, уже в период бомбардировки Земли планетези-малиями, когда шел разогрев и плавление земных пород, выделялись газы и пары воды, содержавшиеся в породах. При этом Земля теряла водород и гелий, но сохраняла более тяжелые газы. Таким образом, именно дегазация земных недр стала источником атмо-

168

сферы и гидросферы. По некоторым расчетам, от 65 до 80% общего количества летучих компонентов Земли выделилось в результате ударной дегазации.

Мировой океан возник из паров мантийного материала, и первые порции конденсированной воды были кислыми. Затем появились минерализованные воды, а собственно пресные воды образовались значительно позже в результате испарения с поверхности первичных океанов в процессе естественной дистилляции.

Проблема происхождения океана связана с проблемой происхождения не только воды, но и растворенных в ней веществ. Гидросфера Земли, как и атмосфера, также появилась в результате дегазации недр планеты. Материал океана и вещество атмосферы возникли из общего источника.

Океаническая вода представляет собой уникальный природный раствор, содержащий в среднем 3,5% растворенных веществ, что и обеспечивает соленость воды. В воде земных океанов содержится множество химических элементов. Среди них важнейшую роль играют натрий, магний, кальций, хлор, азот, фосфор, кремний. Эти элементы усваиваются живыми организмами, и их концентрация в морской воде контролируется ростом и размножением морских растений и животных. Большую роль в составе морской воды играют растворенные в ней природные газы — азот, кислород, углекислый газ, которые тесно связаны с атмосферой и живым веществом суши и моря.

Как считается сегодня, первичная атмосфера Земли по своему составу была близка к составу вулканических и метеоритных газов. Скорее всего, она напоминала современную атмосферу Венеры. На поверхность Земли поступали вода, углекислый газ, окись углерода, метан, аммиак, сероводород и др. Они и составили первичную атмосферу Земли. В целом первичная атмосфера имела восстановительный характер и была практически лишена свободного кислорода, хотя незначительные его доли образовывались в верхней части атмосферы в результате фотолиза воды.

Таким образом, состав первичной атмосферы Земли, возникшей в результате ударной дегазации и вулканической активности, весьма сильно отличался от состава современной атмосферы. Эти отличия связаны с наличием жизни на Земле, оказывающей самое существенное воздействие на все процессы, протекающие на нашей планете. Таким образом, химическая эволюция атмосферы и гидросферы проходила с неизменным участием живых организмов, причем ведущую роль при этом играли фотосинтезирующие зеленые растения.

Современная азотно-кислородная атмосфера — результат деятельности Жизни на Земле. То же можно сказать и о современном составе вод Мирового океана планеты. Поэтому сегодня на нашей

169

планете жизнь и преобразованная им окружающая среда образуют самостоятельную оболочку Земли — биосферу.

7.4. Геосферы Земли

Формирование Земли сопровождалось дифференциацией вещества, результатом которой явилось разделение Земли на концентрически расположенные слои — геосферы. Геосферы различаются химическим составом, агрегатным состоянием и физическими свойствами. В центре образовалось ядро Земли, окруженное мантией. Из наиболее легких компонентов вещества, выделившихся из мантии, возникла расположенная над мантией земная кора. Это так называемая «твердая» Земля, заключающая в себе почти всю массу планеты. Далее возникли водная и воздушная оболочки нашей планеты. Кроме того, Земля обладает гравитационным, магнитным и электрическими полями.

Таким образом, можно выделить ряд геосфер, из которых состоит Земля: ядро, мантия, литосфера, гидросфера, атмосфера, магнитосфера.

Кроме названных оболочек Земли, ниже мы будем рассматривать биосферу и ноосферу. Кроме того, в литературе можно встретить анализ и других оболочек — антропосферы, техносферы, со-циосферы, но их рассмотрение выходит за рамки естествознания.

Геосферы различаются, главным образом, плотностью составляющих их веществ. Самые плотные вещества сосредоточены в центральных частях планеты. Ядро составляет 1/3 массы Земли, кора и мантия — 2/3.

Все земные оболочки взаимосвязаны и проникают друг в друга. Гидросфера всегда присутствует в литосфере и атмосфере, атмосфера — в литосфере и гидросфере и т.д. С атмосферой, гидросферой и литосферой тесно связаны внутренние оболочки Земли. Кроме того, во всех оболочках, кроме мантии и ядра, присутствует биосфера.

Ядро Земли

Ядро занимает центральную область нашей планеты. Это самая глубокая геосфера. Средний радиус ядра составляет около 3500 км, располагается оно глубже 2900 км. Ядро состоит из двух частей — большого внешнего и малого внутреннего ядер.

Внутреннее ядро Природа внутреннего ядра Земли начиная с глубины 5000 км остается загадкой. Это шар диаметром 2200 км, который, как полагают ученые, состоит из железа (80%) и никеля

170

(20%). Соответствующий сплав при существующем давлении внутри земных недр имеет температуру плавления порядка 4500° С.

Внешнее ядро. Судя по геофизическим данным, внешнее ядро представляет собой жидкость — расплавленное железо с примесью никеля и серы. Это связано с тем, что давление в этом слое меньше. Внешнее ядро представляет собой шаровой слой толщиной 2900—5000 км. Чтобы внутреннее ядро оставалось твердым, а внешнее — жидким, температура в центре Земли не должна превышать 4500° С, но и не быть ниже 3200° С.

С жидким состоянием внешнего ядра связывают представления о природе земного магнетизма. Магнитное поле Земли изменчиво, из года в год меняется положение магнитных полюсов. Палеомаг-нитные исследования показали, что, например, на протяжении последних 80 млн. лет имело место не только изменение напряженности поля, но и многократное систематические перемагничивание, в результате которого Северный и Южный магнитные полюса Земли менялись местами. В периоды смены полярности наступали моменты полного исчезновения магнитного поля. Следовательно, земной магнетизм не может создаваться постоянным магнитом за счет стационарной намагниченности ядра или какой-либо его части. Предполагается, что магнитное поле создается процессом, названным эффектом динамо-машины с самовозбуждением. Роль ротора (подвижного элемента), или динамо, может играть масса жидкого ядра, перемещающаяся при вращении Земли вокруг своей оси, а система возбуждения образуется токами, создающими замкнутые петли внутри сферы ядра.

Мантия

Мантия — наиболее мощная оболочка Земли, занимающая 2/3 ее массы и большую часть объема. Она также существует в виде двух шаровых слоев — нижней и верхней мантии. Толщина нижней части мантии — 2000 км, верхней — 900 км. Все слои мантии расположены между радиусами 3450 и 6350 км.

Данное о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты в результате мощных тектонических поднятий с выносом мантийного материала. Материал верхней мантии собран со дна разных участков океана. Плотность и химический состав мантии резко отличаются от соответствующих характеристик ядра. Мантию образуют различные силикаты (соединения на основе кремния), прежде всего, минерал оливин.

Благодаря высокому давлению вещество мантии, скорее всего, находится в кристаллическом состоянии. Температура мантии со-

171

ставляет около 2500°С. Именно высокие давления обусловили такое агрегатное состояние вещества, в ином случае указанные температуры привели бы к его расплавлению.

В расплавленном состоянии находится астеносфера — нижняя часть верхней мантии. Это подстилающий верхнюю мантию и литосферу слой. Литосфера как бы «плавает» в нем. В целом же верхняя мантия обладает интересной особенностью — по отношению к кратковременным нагрузкам она ведет себя как жесткий, а по отношению к длительным нагрузкам — как пластичный материал.

На не слишком вязкую и пластичную астеносферу опирается более подвижная и легкая литосфера. В целом литосфера, астеносфера и остальные слои мантии могут рассматриваться в качестве трехслойной системы, каждая из частей которой подвижна относительно других компонентов.

Литосфера

Литосферой называют земную кору с частью подстилающей ее мантии, которая образует слой толщиной порядка 100 км. Земная кора обладает высокой степенью жесткости, но вместе с тем и большой хрупкостью. В верхней части она слагается гранитами, в нижней — базальтами.

Резкая асимметрия строения поверхности нашей планеты была замечена давно. Поэтому планетарный рельеф делится на две основные области — океаническую и континентальную. Средняя мощность континентальной коры — 35 км. Ее верхний слой богат гранитными породами, а нижний — базальтовыми магмами. На дне океанов гранитный слой отсутствует, и земная кора состоит только из базальтового слоя. Мощность океанической коры составляет 5—10 км.

Первые порции вулканического материала имели состав базальтов или близкий к нему. Базальтовая магма, поднимаясь к поверхности, теряла газы, уходившие в атмосферу, и превращалась в базальтовую лаву, которая растекалась по первичной поверхности планеты. При остывании она образовывала твердые покровы — первичную кору океанического типа. Однако процесс выплавления этих масс был асимметричным, и на одном полушарии планеты их сосредоточилось больше, чем на другом. В областях будущих континентов молодая земная кора была динамически неустойчивой и перемещалась вверх и вниз под влиянием внутренних причин, природа которых еще недостаточно хорошо изучена.

При общих колебательных движениях отдельные части первичной коры временами оказывались выше уровня океана и подвергались разрушению под воздействием химически активных газов первичной атмосферы, воды, а также других физических агентов. Про-

172

дукты разрушения сносились в пониженные участки суши и водоемы, образуя осадочные породы с механической сортировкой частиц по величине и минералогическому составу. Еще более активно эти процессы пошли с появлением биосферы. Области поднятия суши — места будущих континентов — стали обрастать поясами, образованными толщами осадочных пород, возникших за счет разрушения более приподнятых участков суши. Эти пояса впоследствии подвергались складчатости и поднятиям, в них проявлялась вулканическая деятельность. Возникли древние горные цепи вокруг ядер материков, впоследствии также разрушенные геологическими агентами. Так формировалась континентальная часть земной коры.

Океаническая часть, вероятно, редко или совсем не выступала выше уровня Мирового океана, и в ней не происходили процессы дифференциации вещества, не шли отложения осадочных пород.

Геологические особенности земной коры определяются совместными действиями на нее атмосферы, гидросферы и биосферы — трех внешних оболочек планеты. Состав коры и внешних оболочек непрерывно обновляется. Благодаря выветриванию и сносу вещество континентальной поверхности полностью обновляется за 80—100 млн. лет. Убыль вещества континентов восполняется поднятиями их коры. Если бы этих поднятий не было, то за несколько геологических периодов вся суша оказалась снесенной в океан, а наша планета покрылась сплошной водной оболочкой.

На поверхности литосферы в результате совокупной деятельности ряда факторов возникает почва. Основоположник почвоведения русский ученый В. В. Докучаев назвал почвой наружные горизонты горных пород, естественно измененных совместным влиянием воды, воздуха и различного рода организмов, включая их остатки. Таким образом, почва — это сложнейшая система, стремящаяся к равновесному взаимодействию с окружающей средой.

Гидросфера

Водная оболочка Земли представлена на нашей планете Мировым океаном, пресными водами рек и озер, ледниковыми и подземными водами. Общие запасы воды на Земле составляют 1,5 млрд. км3. Из этого количества 97% приходится на соленую морскую воду, 2% составляет замерзшая вода ледников и 1% — пресная вода.

Гидросфера — это сплошная оболочка Земли, так как моря и океаны переходят в подземные воды на суше, а между сушей и морем идет постоянный круговорот воды, ежегодный объем которого оценивается в 100 тыс. км3. Большая часть воды, испаренной с поверхности морей и океанов, выпадает в виде осадков над ними же,

173

около 10% — уносится на сушу, падает на нее, а затем или реками уносится в океан, или уходит под землю, или консервируется в ледниках. Круговорот воды в природе не является абсолютно замкнутым циклом. Сегодня доказано, что наша планета постоянно теряет часть воды и воздуха, которые уходят в мировое пространство. Поэтому с течением времени встанет проблема сохранения воды на нашей планете.

Вода — вещество, обладающее многими уникальными физическими и химическими свойствами. В частности, вода имеет высокую теплоемкость, теплоту плавления и испарения и в силу этих качеств является важнейшим климатообразующим фактором на Земле. Вода — хороший растворитель, поэтому в ней содержится множество химических элементов и соединений, необходимых для поддержания жизни. Не случайно именно Мировой океан стал колыбелью Жизни на нашей планете.

Мировой океан. Большую часть поверхности Земли занимает Мировой океан (71% поверхности планеты). Он окружает материки (Евразию, Африку, Северную и Южную Америку, Австралию и Антарктиду) и острова. Океан делится материками на четыре части: Тихий (50% площади Мирового океана), Атлантический (25), Индийский (21) и Северный Ледовитый (4%) океаны. Мировой океан часто называют «печкой планеты». В теплое время года вода согревается медленнее суши, поэтому она охлаждает воздух, зимой же, наоборот, теплая вода согревает холодный воздух.

В Мировом океане постоянно происходят поступательные движения масс воды — морские течения. Они образуются под влиянием господствующих ветров, приливных сил Луны и Солнца, а также из-за существования слоев воды разной плотности. Под влиянием вращения Земли все течения в Северном полушарии отклоняются вправо, а в Южном полушарии — влево. Огромную роль в морях и океанах играют приливы и отливы, вызывающие периодические колебания уровня воды и смену приливных течений. В открытом океане высота прилива достигает одного метра, у берегов — до 18 метров. Самые высокие приливы наблюдаются у берегов Франции (14,7 м) и в Англии, в устье реки Северн (16,3 м), в России — в Мензен-ском заливе Белого моря (10 м) и в Пенжинской губе Охотского моря (11 м).

Огромны продовольственные, энергетические и минеральные запасы Мирового океана.

Реки. Важной частью гидросферы Земли являются реки — водные потоки, текущие в естественных руслах и питающиеся за счет поверхностного и подземного стока с их бассейнов. Реки с притоками образуют речную систему. Течение и расход воды в них зависят от уклона русла. Обычно выделяют горные реки с быстрым те-

174

чением и узкими речными долинами и равнинные реки с медленным течением и широкими речными долинами.

Реки являются важной частью круговорота воды в природе. Их суммарный годовой сток в Мировой океан составляет 38,8 тыс. км3. Реки — это источники питьевой и промышленной воды, источник гидроэнергии. В реках обитает большое количество растений, рыб и других пресноводных организмов. Самые большие реки на планете — Амазонка, Миссисипи, Енисей, Лена, Обь, Нил, Амур, Янцзы, Волга.

Озера и болота — также часть гидросферы Земли. Озера — это заполненные водой водоемы, вся поверхность которых открыта атмосфере и которые не имеют уклонов, создающих течения, а также не связаны с морем иначе, чем через реки и протоки. Понятие «озера» включает в себя большой круг водоемов, в том числе пруды (небольшие мелкие озера), водохранилища, а также болота и трясины со стоячей водой. По происхождению озера могут быть ледниковыми, проточными, термокарстовыми, солеными. С геологической точки зрения озера имеют малую продолжительность жизни. Как правило, они постепенно исчезают из-за нарушения равновесия между притоком и стоком воды из озера. К числу крупнейших озер относятся: Каспийское и Аральское моря, Байкал, озера Верхнее, Гурон и Мичиган в США и Канаде, Виктория, Ньянза и Танганьика в Африке.

Подземные воды — еще одна часть гидросферы. Подземными являются все воды, находящиеся под земной поверхностью. Существуют подземные реки, свободно текущие по подземным каналам — трещинам и пещерам. Есть также фильтрующиеся воды, просачивающиеся через рыхлые породы (песок, гравий, гальку). Самый ближний к поверхности земли горизонт подземных вод называют грунтовыми водами.

Вода, попавшая в грунт, доходит до водоупорного слоя, накапливается на нем и пропитывает вышележащие породы. Так образуются водоносные горизонты, могущие служить источниками воды. Иногда водоупорный слой может создавать вечная мерзлота.

Ледники, образующую ледяную оболочку Земли (криосферу), также являются частью гидросферы нашей планеты. Они занимают площадь, равную 16 млн. км2, что примерно составляет 1/10 часть поверхности планеты. Именно в них содержатся основные запасы пресной воды (3/4). Если бы льды, находящиеся в ледниках, вдруг растаяли, уровень Мирового океана повысился бы на 50 метров.

Ледяные массивы образуются там, где возможно не только накопление снега, выпавшего за зиму, но и сохранение его в течение лета. Со временем такой снег уплотняется до состояния льда и может закрыть собой всю местность как ледниковый покров или ледяная шапка. Места, где может происходить накопление многолет-

175

него льда, определяются географической широтой и высотой над уровнем моря. В полярных районах граница многолетнего льда лежит на уровне моря, в Норвегии — на высоте 1,2—1,5 км над уровнем моря, в Альпах — на высоте 2,7 км, а в Африке — на высоте 4,9 км.

Гляциологи различают материковые покровы, или щиты, и горные ледники. Самые мощные материковые ледниковые покровы расположены в Антарктиде и Гренландии. В некоторых местах толщина льда достигает 3,2 км. Постепенно сползающие к океану толщи льда рождают ледяные горы — айсберги. Горные ледники — это ледяные реки, спускающиеся по склонам гор, хотя их движение идет очень медленно — со скоростью от 3 до 300 м в год. При своем движении ледники меняют картину ландшафта, увлекая за собой валуны, обдирая склоны гор и обламывая при этом значительные куски породы. Продукты разрушения уносятся ледником по склону и оседают по мере его таяния.

Вечная мерзлота. Частью криосферы Земли помимо ледников являются многолетнемерзлые грунты (вечная мерзлота). Толщина таких грунтов в среднем достигает 50—100 м, а в Антарктиде доходит до 4 км. Вечная мерзлота занимает огромные территории в Азии, Европе, Северной Америке и Антарктиде, ее общая площадь составляет 35 млн. км2. Вечная мерзлота возникает в местах, где среднегодовые температуры имеют отрицательные значения. В ней содержится до 2% общего объема льда на Земле.

Атмосфера

Атмосфера — это воздушная оболочка Земли, окружающая ее и вращающаяся вместе с ней. По химическому составу атмосфера представляет собой смесь газов, состоящую из 78% азота, 21% кислорода, а также инертных газов, водорода, углекислого газа, паров воды, на которые приходится около 1% объема. Кроме того, воздух содержит большое количество пыли и различных примесей, порождаемых геохимическими и биологическими процессами на поверхности Земли.

Масса атмосферы довольно велика и составляет 5,15 • 1018кг. Это значит, что каждый кубический метр окружающего нас воздуха весит около 1 кг. Вес воздуха, давящего на нас, называют атмосферным давлением. Среднее атмосферное давление на поверхности Земли равно 1 атм, или 760 мм ртутного столба. Это означает, что на каждый квадратный сантиметр нашего тела давит груз атмосферы массой в 1 кг. С высотой плотность и давление атмосферы быстро убывают.

В атмосфере есть районы с устойчивыми минимумами и максимумами температур и давлений. Так, в районе Исландии и Алеут-

176

ских островов располагается такая область, являющаяся традиционным местом рождения циклонов, определяющих погоду в Европе. А в Восточной Сибири область низкого давления летом сменяется областью высокого давления зимой. Неоднородность атмосферы вызывает перемещение воздушных масс — так появляются ветры.

Атмосфера Земли имеет слоистое строение, причем слои отличаются по физическим и химическим свойствам. Важнейшими из них являются температура и давление, изменение которых лежит в основе выделения атмосферных слоев. Таким образом, в атмосфере Земли выделяют: тропосферу, стратосферу, ионосферу, мезосферу, термосферу и экзосферу.

Тропосфера — это нижний слой атмосферы, определяющий погоду на нашей планете. Его толщина — 10—18 км. С высотой падает давление и температура, опускаясь до —55°С. В тропосфере содержится основное количество водяных паров, образуются облака и формируются все виды осадков.

Следующий слой атмосферы — это стратосфера, простирающаяся до 50 км в высоту. Нижняя часть стратосферы имеет постоянную температуру, в верхней части наблюдается повышение температуры из-за поглощения солнечного излучения озоном.

Ионосфера — эта часть атмосферы, которая начинается с высоты 50 км. Ионосфера состоит из ионов — электрически заряженных частиц воздуха. Ионизация воздуха происходит под действием Солнца. Ионосфера обладает повышенной электропроводностью и в силу этого отражает короткие радиоволны, позволяя осуществлять дальнюю связь.

С высоты в 80 км начинается мезосфера, роль которой состоит в поглощении озоном, водяным паром и углекислым газом ультрафиолетовой радиации Солнца.

На высоте 90 — 200—400 км находится термосфера. В ней происходят основные процессы поглощения и преобразования солнечного ультрафиолетового и рентгеновского излучений. На высоте более 250 км постоянно дуют ураганные ветры, причиной которых считают космические излучения.

Верхняя область атмосферы, простирающаяся от 450—800 км до 2000—3000 км, называется экзосферой. В ней содержится атомарный кислород, гелий и водород. Часть этих частиц постоянно уходит в мировое пространство.

Результатом саморегулирующихся процессов в атмосфере Земли является климат нашей планеты. Это не то же самое, что погода, которая может меняться каждый день. Погода очень изменчива и зависит от колебаний тех взаимосвязанных процессов, в результате которых она формируется. Это — температура, ветры, давление, осадки. Погода в основном является результатом взаимодействия атмосферы с сушей и океаном.

177

Климат — это состояние погоды какого-либо региона за длительный промежуток времени. Он формируется в зависимости от географической широты, высоты над уровнем моря, воздушных потоков. Меньше влияют рельеф и тип почвы. Выделяют ряд климатических зон мира, обладающих комплексом сходных характеристик, относящихся к сезонным температурам, количеству осадков и силе ветра:

Климат Земли имеет ярко выраженную цикличность. Самым известным примером цикличности климата являются периодически случавшиеся на Земле оледенения. За два последних миллиона лет наша планета пережила от 15 до 22 ледниковых периодов. Об этом свидетельствуют исследования осадочных пород, накопившихся на дне океанов и озер, а также исследования образцов льда из глубин Антарктического и Гренландского ледниковых покровов. Так, в последний ледниковый период Канада и Скандинавия были покрыты гигантским ледником, а Северо-Шотландское нагорье, горы Северного Уэльса и Альпы имели огромные ледяные шапки.

Сейчас мы живем в период глобального потепления. С 1860 г. средняя температура Земли поднялась на 0,5°С. В наши дни увеличение средних температур идет еще более быстрыми темпами. Это грозит серьезнейшими изменениями климата на всей планете и другими последствиями, которые более подробно будут рассмотрены в главе, посвященной проблемам экологии.

178

Магнитосфера

Магнитосфера — самая внешняя и протяженная оболочка Земли — представляет собой область околоземного пространства, физические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц космического происхождения. С дневной стороны она простирается на 8—24 земных радиусов, с ночной — доходит до нескольких сотен радиусов и образует магнитный хвост Земли. В магнитосфере находятся радиационные пояса.

Магнитное поле Земли образуется во внешней оболочке ядра благодаря циркуляции электрических токов. Поэтому Земля представляет собой огромный магнит с четко выраженными магнитными полюсами. Северный магнитный полюс находится в Северной Америке на полуострове Ботия, Южный магнитный полюс — в Антарктиде на станции Восток.

В настоящее время установлено, что магнитное поле Земли не является неизменным. Его полярность в истории существования Земли менялась несколько раз. Так, 30 000 лет назад Северный магнитный полюс находился на Южном полюсе. Кроме того, периодически происходят возмущения магнитного поля Земли — магнитные бури, главной причиной возникновения которых является колебание солнечной активности. Поэтому особенно часты магнитные бури в годы активного Солнца, когда на нем появляется много пятен, а на Земле возникают полярные сияния.

7.5. Геодинамические процессы

Облик нашей планеты не является чем-то застывшим, раз и навсегда сформировавшимся. Благодаря разнообразным геодинамическим процессам на планете постоянно происходит видоизменение земной коры и ее поверхности. Эти процессы в геологии делят на две большие группы — эндогенные (внутренние) и экзогенные (внешние).

Эндогенные процессы

Геодинамические процессы, вызванные внутренними силами Земли и протекающие в ее недрах, называются эндогенными.

Они обусловлены энергией и действием сил тяжести, возникающих при вращении Земли, а проявляются в виде тектонических движений (поднятие и опускание земной коры, землетрясения, образование крупных элементов рельефа и т.п.), процессов магматиз-

179

ма (вулканизма), метаморфизма горных пород и формирования месторождений полезных ископаемых.

Движение тектонических плит — это грандиозный геологический процесс, ведущий к деформации верхних частей земной коры, но протекающий очень медленно. Поэтому в течение исторического времени движение континентов можно зафиксировать только с помощью особо точных измерений. Кроме того, движение плит вызывает эффекты, проявляющиеся в форме бедствий и катастроф.

Линии, по которым стыкуются плиты, — это эквивалент трещин в земной коре. Они называются «сдвигами» и представляют собой слабые места, через которые тепло и расплавленный камень, находящийся под корой, могут выйти наверх. Такое тепло способно согревать грунтовые воды, образовывать выходы пара и горячие источники. Иногда вода может нагреваться до тех пор, пока давление не достигает критической точки, после чего она вырывается на поверхность высоко в воздух. Так образуются гейзеры.

Вулканическая деятельность. В некоторых районах вверх по трещинам поднимается и застывает расплавленный камень. Новый расплавленный камень вскипает сквозь возвышенность отвердевшего камня и увеличивает ее высоту. Так образуется гора с центральным проходом, по которому расплавленная каменистая масса, или лава, может подниматься и оседать. Также она может затвердевать на более или менее длительный период, а затем плавиться снова. Этот процесс получил название магматизма. Магматизм — проявление глубинной активности Земли, он тесно связан с ее тепловыми процессами и тектонической эволюцией. В результате магматизма формируются горные породы внутри земли или вулканы, т.е. происходят излияния расплавленной магмы из глубин Земли на ее поверхность.

По степени активности вулканы могут быть действующими или недействующими. Если вулкан демонстрирует определенную активность в течение длительных периодов времени, он не очень опасен, хотя периодические извержения, в ходе которых потоки лавы изливаются наружу, вынуждают эвакуировать находящиеся поблизости населенные пункты.

Намного опаснее вулканы, длительное время пребывающие в неактивном состоянии. У таких вулканов центральный проход, по которому лава поднималась раньше, обычно затвердевает, и потому новые потоки лавы, поднимающиеся из глубин в период усиления активности, не находят себе прохода. Нарастающее давление приводит к тому, что верхушка вулкана прорывается. При этом происходит резкий, неожиданный выброс газа, пара, твердых камней и раскаленной лавы. Если до этого вулкан долгое время оставался неактивным и возле него возникли людские поселения, то последствия из-

180

вержения могут быть катастрофическими. В результате извержения Везувия в 79 г. н.э. были полностью уничтожены города Помпеи и Геркуланум, располагавшиеся на его южном склоне.

Самое крупное вулканическое извержение произошло на острове Кракатау 27 августа 1883 г., в результате которого остров был практически полностью разрушен. В воздух оказалось выброшено около 21 км3 вулканического вещества. Пепел выпал на площади 800 тыс. км2 и затемнил окружающий район на два с половиной дня. Пыль достигла стратосферы и распространилась по всей Земле, вызывая эффектные закаты на протяжении почти двух лет. Звук взрыва был слышен на расстоянии 1/13 земного шара, а сила извержения в 26 раз превосходила мощность самой современной водородной бомбы. Кроме того, взрыв вызвал волну цунами, которая достигла высоты 36 метров и уничтожила 163 деревни и унесла жизни почти 40 тысяч человек.

Землетрясения. Еще более губительным следствием движения тектонических плит являются землетрясения.

Землетрясениями называют подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний.

Их сложно предсказать, так как они зарождаются по разным причинам и на разной глубине. Небольшие тектонические поднятия и опускания образуются в результате процессов, происходящих внутри земной коры на глубине 10—20 км, а самые глубокие очаги землетрясений локализованы на глубине 700 км. В основном землетрясения происходят на границах соединения тектонических плит, которые могут подниматься или опускаться друг относительно друга, а также двигаться в разных направлениях.

Само землетрясение продолжается лишь несколько минут и состоит из нескольких толчков. Но за это время оно может нанести огромный ущерб обширному району. Сила землетрясений характеризуется по специальной 12-балльной шкале, предложенной в 1935 г. американским сейсмологом Ч. Рихтером и носящей его имя. Каждая последующая цифра этой шкалы соответствует десятикратному увеличению количества энергии, высвобождаемой при землетрясении. Так, разрушение зданий начинается при 5 баллах. Землетрясение в 7 баллов считается сильным, а в 8 баллов и выше — катастрофическим.

В историческом масштабе самое сильное землетрясение произошло в Китае в 1556 г., когда одновременно погибло 830 тыс. человек. В Западной Европе очень крупным было землетрясение 1755 г.

181

в Португалии. При этом полностью была разрушена столица Португалии город Лиссабон, погибло 60 тыс. человек. Часто случаются землетрясения в Сан-Франциско, который стоит на тектоническом разломе. На территории бывшего СССР также достаточно много сейсмически опасных зон. В 1988 г. произошло землетрясение в Армении, при котором погибло свыше 20 тыс. человек и более 500 тыс. остались без крова. А в 1995 г. сильнейшее землетрясение полностью разрушило город Нефтегорск на Сахалине.

Экзогенные процессы

К экзогенным относятся геодинамические процессы, которые происходят на поверхности Земли или на небольшой глубине в земной коре и обусловлены энергией солнечного излучения, гравитационной силой и жизнедеятельностью организмов.

Экзогенными являются следующие процессы: выветривание, заболачивание, оползни, лавины, обвалы, криогенные процессы, деятельность водных потоков, морей, озер и ледников. Внешние экзогенные процессы происходят на поверхности Земли при давлениях и температурах, близких к нормальным, поэтому они доступнее для изучения, чем эндогенные процессы.

Выветривание. Основу всех экзогенных процессов составляет выветривание — процесс механического разрушения и химического изменения горных пород и минералов в условиях земной поверхности, происходящий под влиянием различных атмосферных явлений, грунтовых и поверхностных вод, жизнедеятельности растительных и животных организмов и продуктов их разложения. Выветривание имеет большое значение, поскольку с ним тесно связан процесс почвообразования, т.е. зарождение и формирование почвы.

Флювиальные процессы. Преобразованию земной поверхности в огромной мере способствуют также флювиальные процессы — совокупность процессов, осуществляемых текучими поверхностными водными потоками. Результатом флювиальных процессов является размыв водными потоками земной поверхности в одних местах и одновременный перенос и отложение продуктов размыва в других. Флювиальные процессы развиваются в пределах речных бассейнов, в которые входят речные, овражно-балочные и склоновые системы. Главным элементом этих процессов являются реки — водные потоки, текущие в естественных условиях и питающиеся за счет поверхностного и подземного стока со своих бассейнов.

Гляциальные процессы. К экзогенным относятся также и гляци-альные процессы, связанные с деятельностью льда, т.е. современным и прошлым оледенением территории. Такие процессы проис-

182

ходят в условиях длительного существования большого количества льда в пределах участка земной поверхности, в первую очередь в виде ледников — движущихся скоплений льда. Эрозионная деятельность ледников сводится к выпахиванию коренного ложа ледника обломками горных пород, к формированию специфических отложений в виде скопления несортированных обломков горных пород, переносимых или отложенных ледниками образований. В результате таяния ледников образуются мощные водные потоки, которые формируют флювиогляциальные отложения и рельеф.

Гравитационные процессы. Наконец, в пределах Мирового океана распространены гравитационные процессы, в возникновении и развитии которых основная роль принадлежит силе тяжести. В настоящее время среди гравитационных процессов дна Мирового океана ученые особо вьщеляют процесс медленного сползания или оплывания толщ осадков на относительно пологих склонах, подводные оползни, донные и постоянные поверхностные течения и т.д.

Литература для самостоятельного изучения

  1. Азимов А. Выбор катастроф. СПб., 2001.

  2. Будыко М.И. Климат в прошлом и будущем. Л., 1980.

  3. Войткевич Г. В. Рождение Земли. Р-н-Д, 1996.

  4. Гаврилов В.П. Путешествие в прошлое Земли. М., 1987.

  5. Гангус А.А. Тайна земных катастроф. М., 1985.

  6. Грушинский Н.П. Круглая ли Земля? М., 1989.

  7. Зигель Ф.Ю. Планета Земля, ее прошлое, настоящее и будущее. М., 1974.

  8. Израилев В.М. Земля — планета парадоксов. М., 1991.

  9. Криволуцкий А.Е. Голубая планета Земля среди планет. М., 1985.




  1. Львович М.И. Вода и жизнь. М., 1986.

  2. Максаковский В.П. Географическая культура. М., 1998.

  3. Монин А.С. История земли. М., 1977.

  4. Мукитанов U.K. От Страбона до наших дней. Эволюция географических представлений и идей. М., 1985.

  5. Рингвуд А.Е. Происхождение Земли и Луны. М., 1982.

  6. Сорохтин О.Г., Ушаков СА. Глобальная эволюция Земли. М., 1991.

  7. Ушаков С.А., Ясаманов Н.А. Дрейф материков и климат Земли. М., 1984.

1   2   3   4   5   6   7   8   9   10   ...   17


Глава 7 Земля как предмет естествознания
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации