Смирнов В.М. Нейрофизиология и высшая нервная деятельность детей и подростков - файл n1.doc

приобрести
Смирнов В.М. Нейрофизиология и высшая нервная деятельность детей и подростков
скачать (1607.3 kb.)
Доступные файлы (1):
n1.doc3317kb.02.11.2006 20:58скачать

n1.doc

1   ...   5   6   7   8   9   10   11   12   ...   43

2.4. ФУНКЦИОНАЛЬНЫЕ СТРУКТУРЫ КЛЕТОЧНОЙ МЕМБРАНЫ


Клеточная мембрана (оболочка клетки) представляет собой тонкую (6 нм) липопротеиновую пластинку, содержание липидов в которой составляет около 40%, белков - около 60%. Изнутри клеточная мембрана выстлана тонким, более плотным слоем гиалоплазмы, практически лишенной органелл. На внешней поверхности мембраны имеется небольшое количество (5-10%) углеводов, молекулы которых соединены либо с белками (гликопротеиды), либо с липидами (гликолипиды) и образуют гликокаликс. Углеводы участвуют в процессах рецепции биологически активных веществ, реакциях иммунитета. Структурную основу клеточной мембраны (матрикс) составляет бимолекулярный слой фосфолипидов, являющихся барьером для заряженных частиц и молекул водорастворимых веществ. Липиды обеспечивают высокое электрическое сопротивление мембраны нейрона - до 100 Ом/см2.

Молекулы фосфолипидов мембраны состоят из двух частей: одна из них несет заряд и гидрофильна, другая - не заряжена и гидрофобна. Это определяет способность липидов самопроизвольно образовывать двуслойные мембранные структуры под влиянием собственных зарядов. В клеточной мембране заряженные гидрофильные участки молекул фосфолипидов от одних молекул направлены внутрь клетки, а от других молекул - кнаружи. В толще клеточной мембраны молекулы фосфолипидов взаимодействуют незаряженными гидрофобными участками (они «спрятаны» от внутриклеточной и внеклеточной воды). В липидном слое клеточных мембран много холестерина. Обмен липидов в отличие от обмена белков происходит медленнее, однако возбуждение нейронов мозга приводит к уменьшению содержания в них липидов. В частности, после длительной умственной работы, при утомлении количество фосфолипидов в нейронах уменьшается (возможно, это связано с более яркой памятью у лиц напряженного умственного труда). Состав мембранных липидов определяется средой обитания и характером питания. Так, повышение количества растительных жиров в пищевом рационе уменьшает плотность липидов клеточных мембран и улучшает функции последних. Избыток холестерина в мембранах повышает их микровязкость, ухудшает транспортные функции клеточной мембраны. Однако недостаток жирных кислот и холестерина в пище нарушает липидный состав и функции клеточных мембран. Оптимальное соотношение жиров животного и растительного происхождения в пищевом рационе человека должно быть 60-70% и 40-30% соответственно.

Молекулы белков встроены в фосфолипидный матрикс клеточной мембраны. В клеточных мембранах встречаются тысячи различных белков, которые можно объединить в основные классы: структурные белки, переносчики, ферменты, белки, образующие каналы, ионные насосы, специфические рецепторы. Один и тот же белок может быть рецептором, ферментом и насосом.

Каналы образованы белковыми молекулами, вкрапленными в липидный матрикс, они пронизывают мембрану. Через эти каналы могут проходить полярные молекулы. Многие мембранные белки, так же как фосфолипиды, состоят из двух частей - заряженной и незаряженной. Незаряженные участки белков погружены в липидный слой, не несущий заряда. Заряженные участки белков взаимодействуют с заряженными участками липидов, что является важным фактором, определяющим взаиморасположение структурных элементов клеточной мембраны и ее прочность. Большинство белков, пронизывающих липидный слой, прочно связано с фосфолипидами (интегральные белки), главной их функцией является транспорт веществ через клеточную мембрану. Большая часть интегральных белков - гликопротеиды. Белки, прикрепленные к поверхности клеточной мембраны (в основном к внутренней ее части) называют периферическими, они, как правило, являются ферментами; например, ацетилхолинэстераза, фосфатазы, аденилатциклаза, протеинкиназы. Некоторые интегральные белки также выполняют функцию ферментов, например АТФаза. Рецепторами и антигенами мембраны могут быть как интегральные, так и периферические белки. Белки, примыкающие к мембране с внутренней стороны, являются также составной частью цитоскелета, который обеспечивает клеточной мембране дополнительную прочность и эластичность.

Обновление белков мембраны происходит очень быстро - в течение 2-5 дней (срок их жизни).

Клеточная мембрана нейрона, как и большинства клеток организма, имеет отрицательный поверхностный заряд, который обеспечивается выступающей из мембраны клетки углеводной частью гликолипидов, фосфолипидов, гликопротеидов (см. раздел 3.3.2). Мембрана обладает текучестью: ее отдельные части могут перемещаться из одного участка на другой.

Клеточные мембраны обладают избирательной проницаемостью: одни вещества пропускают, другие не пропускают. В частности, мембрана легкопроницаема для жирорастворимых веществ, проникающих через липидный слой; большинство мембран пропускает воду. Анионы органических кислот не проходят через мембрану, но имеются каналы, избирательно пропускающие ионы K+, Na+ Ca2+, Сl-. При действии нервных импульсов проницаемость мембраны нейрона для различных ионов изменяется, это обеспечивает движение ионов согласно концентрационному и электрическому градиентам, что выражается в возникновении возбуждающих и тормозных потенциалов (см. разделы 4.5; 4.8).

2.5. ФУНКЦИИ КЛЕТОЧНОЙ МЕМБРАНЫ НЕЙРОНА



Основными функциями клеточной мембраны являются следующие.

1. Барьерная (защитная) функция - наиболее очевидная функция клеточной мембраны, образующей поверхностную оболочку клетки. Особую роль в выполнении этой функции играют клеточные мембраны эпителиальной ткани. Они обычно образуют поверхности, отделяющие внутреннюю среду организма от внешней. Барьерная функция клеточных мембран нарушается при многих патологических процессах (атеросклероз, гипоксия, интоксикация, раковое перерождение). Многие лекарственные вещества реализуют свое влияние посредством действия на мембрану, при ее повреждении эффекты лекарственных веществ могут изменяться. Клетки, образующие наружный слой эпителия, обычно соединены с помощью плотных контактов, которые ограничивают межклеточный перенос веществ.

2. Восприятие изменений внутренней и внешней среды организма с помощью рецепторов - специальных структур, обеспечивающих узнавание различных раздражителей и реакцию на них, В клеточной мембране имеется большой набор различных рецепторов, обладающих специфической чувствительностью к различным агентам: гормонам, медиаторам, антигенам, химическим и физическим раздражителям. Рецепторы отвечают за взаимное распознавание клеток, иммунитет. На поверхности клеток рецепторами могут служить гликопротеиды и гликопептиды мембран. Возбужденный рецептор активирует G-белок мембраны, который с помощью фермента-предшественника, расположенного на внутренней поверхности клеточной мембраны, активирует второго посредника. Последний помогает реализовать эффект от раздражителя, подействовавшего на рецептор. Например: адреналин - ?-адренорецептор - GS-белок - аденилатциклаза - АТФ - ЦАМФ - протеинкиназы - фосфорилирование белков - метаболизм - функция клетки. Восприятие физических и химических раздражителей (изменений внутренней и внешней среды организма) у возбудимых клеток осуществляется с помощью трансформации энергии раздражения в нервный импульс.

3. Создание электрического заряда клетки, благодаря которому у клеток возбудимых тканей возникает локальный потенциал и ПД (возбуждение) и проведение последнего. Распространение возбуждения обеспечивает быструю связь возбудимых клеток между собой, а также посылку эфферентного сигнала от нервной клетки к эффекторной (исполнительной) и получение обратных (афферентных) импульсов от нее. Следует заметить, что электрический заряд имеют не только нервные, но и все другие клетки организма. Электрические заряды клеток различаются лишь величиной. Например, мембранный потенциал эритроцита составляет около 35 мВ, а клеток нейроглии достигает 90 мВ; мембранный потенциал нейронов варьирует в пределах 60-80 мВ. Клетки растений также имеют заряд (рис. 2.2). Потенциал действия (возбуждение) генерируют только клетки возбудимых тканей (мышечной и нервной).

4. Передача сигналов от одной клетки к другой осуществляется с помощью специальных структур ~ синапсов, образуемых в области контакта нейронов друг с другом.


Рис. 2.2. Потенциалы действия различных клеток животных н растений (по Г.Шеперд, 1987). а - тыквы; б - яйцеклетки круглого червя; в - гипофиза крысы; г - поджелудочной железы крысы

5. Транспортная функция вместе с барьерной определяют состав веществ в клетке. Наличие концентрационных и электрических градиентов различных веществ и ионов вне клетки и внутри нее свидетельствует о том, что клеточная мембрана осуществляет тонкую регуляцию содержания в цитоплазме ионов и молекул. Благодаря транспорту частиц формируется состав внутриклеточной среды, наиболее благоприятный для оптимального протекания метаболических реакций.
1   ...   5   6   7   8   9   10   11   12   ...   43


2.4. ФУНКЦИОНАЛЬНЫЕ СТРУКТУРЫ КЛЕТОЧНОЙ МЕМБРАНЫ
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации