Дмитриев М.Н.,Кошечкин С.А. Количественный анализ риска инвестиционных проектов - файл n1.doc

приобрести
Дмитриев М.Н.,Кошечкин С.А. Количественный анализ риска инвестиционных проектов
скачать (977 kb.)
Доступные файлы (1):
n1.doc977kb.23.08.2012 12:26скачать

n1.doc

1   2   3   4   5   6




Вероятностные методы анализа рисков

И. Волков, М. Грачева

Оглавление:

Построение дерева решений проекта
Вероятностная оценка риска
Метод Монте-Карло
Метод Монте-Карло (продолжение)



Метод Монте-Карло (продолжение)

Рассмотрим 5 иллюстративных случаев на Рис.3 принятия решений (см. учебные материалы Института экономического развития Всемирного банка). Случаи 1-3 имеют дело с решением инвестировать в отдельно взятый проект, тогда как два последних случая (4, 5) относятся к решению-выбору из альтернативных проектов. В каждом случае рассматривается как кумулятивный, так и некумулятивный профили риска для сравнительных целей. Кумулятивный профиль риска более полезен в случае выбора наилучшего проекта из представленных альтернатив, в то время как некумулятивный профиль риска лучше индуцирует вид распределения и показателен для понимания концепций, связанных с определением математического ожидания. Анализ базируется на показателе чистой текущей стоимости.

Случай 1: Минимальное возможное значение NPV выше, чем нулевое (см. Рис.3а,кривая 1).



Вероятность отрицательного NPV равна 0, так как нижний конец кумулятивного профиля риска лежит справа от нулевого значения NPV. Так как данный проект имеет положительное значение NPV во всех случаях, ясно, что проект принимается.

Случай 2: Максимальное возможное значение NPV ниже нулевого(см. Рис.3а, кривая 2).

Вероятность положительного NPV равна 0 (см. следующий рисунок)., так как верхний конец кумулятивного профиля риска лежит слева от нулевого значения NPV. Так как данный проект имеет отрицательное значение NPV во всех случаях, ясно, что проект не принимается.

Случай 3: Максимальное значение NPV больше, а минимальное меньше нулевого (см. Рис3а, кривая 3).

Вероятность нулевого NPV больше, чем 0, но меньше, чем 1, так как вертикаль нулевого NPV пересекает кумулятивный профиль рисков. Так как NPV может быть как отрицательным, так и положительным, решение будет зависеть от предрасположенности к риску инвестора. По-видимому, если математическое ожидание NPV меньше или равно 0 (пик профиля рисков слева от вертикали или вертикаль точно проходит по пику) проект должен отклоняться от дальнейшего рассмотрения.

Случай 4: Непересекающиеся кумулятивные профили рисков альтернативных (взаимоисключающих) проектов (см. Рис.3б).



При фиксированной вероятности отдача проекта В всегда выше, нежели у проекта А. Профиль рисков также говорит о том, что при фиксированной NPV вероятность, с которой та будет достигнута, начиная с некоторого уровня будет выше для проекта В, чем для проекта А. Таким образом, мы подошли к правилу 1.

Правило 1: Если кумулятивные профили рисков двух альтернативных проектов не пересекаются ни в одной точке, тогда следует выбирать тот проект, чей профиль рисков расположен правее.

Случай 5: Пересекающиеся кумулятивные профили рисков альтернативных проектов . (см. Рис.3в).



Склонные к риску инвесторы предпочтут возможность получения высокой прибыли и, таким образом, выберут проект А. Несклонные к риску инвесторы предпочтут возможность нести низкие потери и, вероятно, выберут проект В.

Правило 2: Если кумулятивные профили риска альтернативных проектов пересекаются в какой-либо точке, то решение об инвестировании зависит от склонности к риску инвестора.

Ожидаемая стоимость агрегирует информацию, содержащуюся в вероятностном распределении. Она получается умножением каждого значения результативного показателя на соответствующую вероятность и последующего суммирования результатов. Сумма всех отрицательных значений показателя, перемноженных на соответствующие вероятности есть ожидаемый убыток. Ожидаемый выигрыш - сумма всех положительных значений показателя, перемноженных на соответствующие вероятности. Ожидаемая стоимость есть, конечно, их сумма.

В качестве индикатора риска ожидаемая стоимость может выступать как надежная оценка только в ситуациях, где операция, связанная с данным риском, может быть повторена много раз. Хорошим примером такого риска служит риск, страхуемый страховыми компаниями, когда последние предлагают обычно одинаковые контракты большому числу клиентов. В инвестиционном проектировании мера ожидаемой стоимости должна всегда применяться в комбинации с мерой вариации, такой как стандартное отклонение.

Инвестиционное решение не должно базироваться лишь на одном значении ожидаемой стоимости, потому что индивид не может быть равнодушен к различным комбинациям значения показателя отдачи и соответствующей вероятности, из которых складывается ожидаемая стоимость.

2. Издержки неопределенности

Издержки неопределенности или ценность информации, как они иногда называются, - полезное понятие, помогающее определить максимально возможную плату за получение информации, сокращающей неопределенность проекта. Эти издержки можно определить как ожидаемую стоимость возможного выигрыша при решении отклонить проект или как ожидаемую стоимость возможного убытка при решении принять проект.

Ожидаемая стоимость возможного выигрыша при решении отклонить проект иллюстрируется на Рис.4 и равна сумме возможных положительных значений NPV, перемноженных на соответствующие вероятности.



Ожидаемая стоимость возможного убытка при решении принять проект, показанная в виде заштрихованной площади на Рис.5, и равна сумме возможных отрицательных значений NPV, перемноженных на соответствующие вероятности.



Оценив возможное сокращение издержек неопределенности при приобретении дополнительной информации, инвестор решает, отложить решение принять или отклонить проект и искать дополнительную информацию или принимать решение немедленно. Общее правило таково: инвестору следует отложить решение, если возможное сокращение в издержках неопределенности превосходит издержки добывания дополнительной информации.

3. Нормированный ожидаемый убыток

Нормированный ожидаемый убыток (НОУ) - отношение ожидаемого убытка к ожидаемой стоимости:

НОУ = ожидаемый убыток/(ожидаемый выигрыш + ожидаемый убыток)

Этот показатель может принимать значения от 0 (отсутствие ожидаемого убытка) до 1 (отстутствие ожидаемого выигрыша). На Рис.5 он представляется как отношение площади под профилем риска слева от нулевого NPV ко всей площади под профилем риска

Проект с вероятностным распределением NPV, таким, что область определения профиля риска NPV выше 0, имеет нормируемый ожидаемый убыток, равный 0, что означает абсолютную неподверженность риску проекта. С другой стороны, проект, область определения профиля риска NPV которого ниже 0, полностью подвержен риску.

Данный показатель определяет риск как следствие двух вещей: наклона и положения профиля риска NPV по отношению к разделяющей вертикали нулевого NPV.

4. Коэффициент вариации

Он представляет собой стандартное отклонение результативного показателя, деленное на его ожидаемую стоимость. При положительной ожидаемой стоимости чем ниже коэффициент вариации, тем меньше проектный риск.

Как видим, два последних рассмотренных показателя характеризуют риск исследуемого проекта. Однако, если нормируемый ожидаемый убыток есть относительный показатель и дает возможность судить о риске отдельно взятого проекта (скажем, неудовлетворительным считается проект, НОУ которого более 40%), то коэффициент вариации - это абсолютный показатель, и потому представляется более удобным его использовать при сравнении альтернативных проектов.

5. Показатели предельного уровня

Степень устойчивости проекта по отношению к возможным изменениям условий реализации, а значит и степень риска может быть охарактеризована показателями предельного уровня объемов производства, цен производимой продукции и других параметров проекта. Предельное значение параметра проекта для некоторого t-го года его реализации определяется как такое значение этого параметра в t-ом году, при котором чистая прибыль участника в этом году становится нулевой. Одним из наиболее важных показателей этого типа является рассмотренная ранее точка безубыточности, характеризующая объем продаж, при котором выручка от реализации продукции совпадает с издержками производства. Для подтверждения работоспособности проектируемого производства (на данном шаге расчета) необходимо, чтобы значение точки безубыточности было меньше значений номинальных объемов производства и продаж (на этом шаге). Чем дальше от них значение точки безубыточности (в процентном отношении), тем устойчивее проект. Проект обычно признается устойчивым, если значение точки безубыточности не превышает 75% от номинального объема производства. Подробно данный показатель, а также его плюсы и минусы уже рассматривались ранее .

Как видно, данный показатель никак не связан с вероятностным методом и в отличие от последнего не уточняет вероятности и спектр возможных значений для результативных показателей. Кроме того, каждый показатель предельного уровня характеризует степень устойчивости в зависимости лишь от конкретного параметра проекта (объем производства и т.д.), в то время как вероятностный подход проводит комплексный анализ риска при неопределенности одновременно всех интересуемых параметров проекта, т.е. в последнем случае учитывается синхронность их изменения.

На практике не имеет смысла считать большое количество показателей предельного уровня с надеждой определить риски, так как основная цель расчета такого несомненно важного показателя как точка безубыточности состоит в том, чтобы определить минимально допустимый уровень объема производства на прединвестиционной фазе, что необходимо при описании проекта и построении его идеи.

Несмотря на свои достоинства, метод Монте-Карло не распространен и не используется слишком широко в бизнесе. Одна из главных причин этого - неопределенность функций плотности переменных, которые используются при подсчете потоков наличности.

Другая проблема, которая возникает как при использовании метода сценариев, так и при использовании метода Монте-Карло, состоит в том, что применение обоих методов не дает однозначного ответа на вопрос о том, следует ли реализовывать данный проект или следует отвергнуть его.

При завершении анализа, проведенного методом Монте-Карло, у эксперта есть значение ожидаемой чистой приведенной стоимости проекта и плотность распределения этой случайной величины. Однако наличие этих данных не обеспечивает аналитика информацией о том, действительно ли прибыльность проекта достаточно велика, чтобы компенсировать риск по проекту, оцененный стандартным отклонением и коэффициентом вариации.

Ряд исследователей избегает использования данного метода ввиду сложности построения вероятностной модели и множества вычислений, однако при корректности модели метод дает весьма надежные результаты, позволяющие судить как о доходности проекта, так и о его устойчивости (чувствительности).

В зависимости от результатов завершенного анализа рисков, а также и от того, насколько склонен к риску инвестор, последний принимает решение принять, изменить, или отклонить проект.

Например, инвестор, исходя из своей склонности к риску, действовал бы следующим образом :

1. Риск >= 30%

В случае, если показатель риска, а это прежде всего нормированный ожидаемый убыток (НОУ), равен или превышает 30%, то для принятия проекта необходимо предварительно внести и осуществить предложения по снижению риска. Под предложениями понимаются любые действия по изменению данных на входе, способные уменьшить риск, не обрекая проект на убыточность.

В этих целях используются:

Разработанные заранее правила поведения участников в определенных “нештатных” ситуациях (например, сценарии, предусматривающие соответствующие действия участников при тех или иных изменениях условий реализации проекта).

В проектах могут предусматриваться также специфические механизмы стабилизации, обеспечивающие защиту интересов участников при неблагоприятном изменении условий реализации проекта (в том числе в случаях, когда цели проекта будут достигнуты не полностью или не достигнуты вообще) и предотвращающие возможные действия участников, ставящие под угрозу его успешную реализацию. В одном случае может быть снижена степень самого риска (за счет дополнительных затрат на создание резервов и запасов, совершенствование технологий, уменьшение аварийности производства, материальное стимулирование повышения качества продукции), в другом - риск перераспределяется между участниками (индексирование цен, предоставление гарантий, различные формы страхования, залог имущества, система взаимных санкций).

Как правило, применение в проекте стабилизационных механизмов требует от участников дополнительных затрат, размер которых зависит от условий реализации мероприятия, ожиданий и интересов участников, их оценок степени возможного риска. Такие затраты подлежат обязательному учету при определении эффективности проекта.

Здесь работает балансировка между риском и прибыльностью. Если на этом этапе удается снизить риск так, что НОУ становится меньше 30%, и есть выбор среди такого рода вариантов проекта, то лучше выбрать тот из них, у которого коэффициент вариации меньше. Если же не удается снизить риск до указанной отметки, проект отклоняется.

2. Риск < 30%

Проекты с риском менее 30% (НОУ<30%) лучше подстраховать. Предлагается создать страховой фонд в размере определенной доли от основной суммы инвестирования. Как определить эту долю - это вопрос методики. Можно принять ее равной значению показателя риска (нормированный ожидаемый убыток). То есть, например, если риск равен 25%, то необходимо, скажем, предусмотреть отчисления от нераспределенной прибыли в процессе осуществления проекта или заключить договор со страховой компанией на сумму в размере 25% от основной суммы инвестирования и направить эти деньги в резерв, подлежащий использованию только в случае наступления крайних ситуаций, связанных, например, с незапланированным недостатком свободных денежных средств, а также другими проблемами в целях нормализации финансово-экономической ситуации. На самом деле, источник оплаты страхового фонда скорее всего будет зависеть от периода осуществления проекта. В самый трудный в финансовом отношении начальный момент осуществления проекта у предприятия вряд ли найдется возможность обойтись без внешнего окружения при создании страхового фонда, например, на базе страховой компании. Но по мере осуществления проекта у предприятия накапливается прибыль, ежегодные отчисления от которой могли бы составить страховой фонд.

Проанализируем результативность анализа рисков:

Анализ рисков

Полезность

Ограниченность

1.Совершенствует уровень принятия решений по малоприбыльным проектам.

Проект с малым значением NPV может быть принят, в случае если анализ рисков установит, что шансы получить удовлетворительный доход превосходят вероятность неприемлемых убытков.

2.Помогает идентифицировать производственные возможности.

Анализ рисков помогает сэкономить деньги, потраченные на получение информации, издержки на получение которой превосходят издержки неопределенности.

3.Освещает сектора проекта, требующие дальнейшего исследования и управляет сбором информации.

4.Выявляет слабые места проекта и дает возможность внести поправки.

5.Предполагает неопределенность и возможные отклонения факторов от базовых уровней. В связи с тем, что присвоение распределений и границ варьирования переменных несет оттенок субъективизма, необходимо критически подходить даже к результатам анализа рисков.

1.Проблема коррелированных переменных, которые, если неправильно специфицированы, могут привести к обманчивым заключениям.

2. Анализ рисков предполагает доброкачественность моделей проектного оценивания.

Если модель неправильна, то результаты анализа рисков также будут вводить в заблуждение




Анализ проектных рисков

И. Волков, М. Грачева

Оглавление:

Анализ проектных рисков: процедурные вопросы
Качественный анализ проектных рисков
Количественный анализ



Материал посвящен изучению методологии анализа проектных рисков. Необходимость такого анализа обоснована прежде всего тем, что построенные по любому инвестиционному проекту потоки денежных средств относятся к будущим периодам и носят прогнозный характер. Поэтому возрастает вероятность недостоверности используемых для расчетов числовых данных, а значит и самих результатов. Следовательно, наиболее важной частью экспертизы становится учет и оценка возможных негативных последствий таких ошибок. Основным инструментом подобных исследований служит анализ рисков проекта, являющийся важнейшей составной частью экспертизы инвестиционного проекта и играющий значительную роль в принятии решения об инвестировании. Кроме того, анализ рисков должен играть роль своеобразного “переходного моста” от экспертизы проекта к управлению его реализацией. В данном разделе представлены практически используемые подходы к анализу проектных рисков, исследованы качественный и количественный аспекты анализа, вероятностный способ оценки рисков.

Анализ проектных рисков: процедурные вопросы

Теория риска начала интенсивно развиваться примерно с 50-х годов нашего столетия за рубежом. Наибольшее число исследований, посвященных анализу риска, принадлежит американским ученым, хотя эта проблема активно изучалась и в западноевропейских странах. В то же время в нашей стране происходило серьезное развитие математического аппарата анализа рисков применимо к теории планирования эксперимента в технических и естественных областях знаний.

В современной отечественной практике инвестиционного проектирования понятие “анализ проектных рисков” появилось недавно. Оно объединило накопленный ранее международный опыт и основательную российскую теоретическую базу, став обязательным разделом любого бизнес-плана инвестиционного проекта, “законодательно” закрепленным в “Методических рекомендациях по оценке эффективности инвестиционных проектов и их отбору для финансирования”.

Необходимо различать понятия “риск” и “неопределенность”.

Неопределенность предполагает наличие факторов, при которых результаты действий не являются детерминированными, а степень возможного влияния этих факторов на результаты неизвестна; это неполнота или неточность информации об условиях реализации проекта. Факторы неопределенности подразделяются на внешние и внутренние. Внешние факторы — законодательство, реакция рынка на выпускаемую продукцию, действия конкурентов; внутренние — компетентность персонала фирмы, ошибочность определения характеристик проекта и т.д.

Риск — потенциальная, численно измеримая возможность потери. Риск проекта — это степень опасности для успешного осуществления проекта. Понятием риска характеризуется неопределенность, связанная с возможностью возникновения в ходе реализации проекта неблагоприятных ситуаций и последствий, при этом выделяются случаи объективных и субъективных вероятностей.

Инвестиция в любой проект сопряжена с определенным риском, что, как уже указывалось, отражается в величине процентной ставки: проект может завершиться неудачей, т.е. оказаться нереализованным, неэффективным или менее эффективным, чем ожидалось. Риск связан с тем, что доход от проекта является случайной, а не детерминированной величиной (т.е. неизвестной в момент принятия решения об инвестировании), равно как и величина убытков. При анализе инвестиционного проекта следует учесть факторы риска, выявить как можно больше видов рисков и постараться минимизировать общий риск проекта.

По своему отношению к риску инвесторы могут быть разделены группы:

Непосредственно отношение к риску зависит как от целей инвестирования (степени рискованности проекта), так и от финансового положения инициатора (инвестора). Для принятия правильного инвестиционного решения необходимо не только определить величину ожидаемого дохода, степень риска, но и оценить, насколько ожидаемый доход компенсирует предполагаемый риск. Однако сложность заключается в том, что оценка риска осуществления инвестиций в меньшей степени, чем другие способы оценки, поддается формализации. Тем не менее, анализ риска является необходимым и чрезвычайно важным этапом инвестиционной экспертизы.

К сожалению, в настоящее время ряд бизнес-планов инвестиционных проектов, содержащих раздел анализа рисков, сужает проблему до анализа только финансовых рисков или подменяет анализом банковских рисков, что не отражает весь спектр проектных рисков.

Данный раздел отражает анализ существующей теории (risk analysis) и практический известный авторам опыт оценки рисков проекта, что дает право на описание в этом разделе специального инструментария под общим названием анализ проектных рисков.

Анализ проектных рисков подразделяется на качественный (описание всех предполагаемых рисков проекта, а также стоимостная оценка их последствий и мер по снижению) и количественный (непосредственные расчеты изменений эффективности проекта в связи с рисками).

В число проектных рисков обычно включаются такие как: технические, риски участников проекта, политические, юридические, финансовые, маркетинговые, экологические, военные, строительно-эксплуатационные, специфические, риски обстоятельств непреодолимой силы и др.

Наиболее часто встречающимися количественными методами анализа рисков являются анализ чувствительности (уязвимости), анализ сценариев и имитационное моделирование рисков по методу Монте-Карло.

Предрисковая оценка чистых выгод инвестиционного проекта, анализ его эффективности базируется на утверждении о наиболее успешном осуществлении и эксплуатации проекта просто уже потому, что априори отсекает неопределенность исходных факторов (переменных). Дело в том, что основываясь на ретроспективном анализе, исследователь прогнозирует определенную величину (оценку) исследуемого фактора (переменной). Однако при этом результативный проектный показатель, зависящий от данного фактора, также принимает определенное точечное значение, которое может ввести в заблуждение, так как при некотором внепрогнозном изменении переменной изменится и результативность проекта.

Даже если эксперт-аналитик использует наиболее вероятные значения каждой проектной переменной, это вовсе не приведет к тому, что полученный результат будет также наиболее вероятным результатом.

ПРИМЕР

Рассмотрим две переменных (фактора), в качестве которых выберем цену (Р) и объем (Q) проданной продукции.

Фактор

Вероятность, %

Значение, долл.

Цена

(P1)=60
(P2)=40

10.00
20.00

Объем

(Q1)=60
(Q2)=40

100 ед.
200 ед.

Посчитаем выручку как произведение цены на объем для различных комбинаций переменных:

Выручка
(Цена • Объем)


Вероятность, %

Значение, долл.

P1•Q1

36

1000

P1•Q2

24

2000

P2•Q1

24

2000

P2•Q2

16

4000

Выручка, равная $2000 с вероятностью 48%, полученная в комбинациях (P1•Q2) и (P2•Q1), является в этом примере наиболее вероятной, а не выручка в $1000 с вероятностью 36%, получаемая при наиболее вероятных оценках цены и объема (т.е. P1•Q1).

Таким образом, представленный пример показывает, что если исследователь абстрагируется от неопределенности и выберет наиболее вероятные значения переменных (факторов), то на выходе значение результативного показателя, являющегося функцией этих факторов, совсем не обязательно будет наиболее вероятным, и это может привести к ошибочным выводам и решениям.

При проведении анализа проектного риска сначала определяются вероятные пределы изменения всех его “рискованных” факторов (или критических переменных), а затем проводятся последовательные проверочные расчеты при допущении, что переменные случайно изменяются в области своих допустимых значений. На основании расчетов результатов проекта при большом количестве различных обстоятельств анализ риска позволяет оценить распределение вероятности различных вариантов проекта и его ожидаемую ценность (стоимость).

Анализ рисков, как уже говорилось, важнейший этап анализа инвестиционного проекта. Согласно финансовой теории, каждая фирма в процессе инвестиционной деятельности стремится максимизировать свою стоимость. В условиях полной определенности и отсутствия риска эта задача эквивалентна задаче максимизации прибыли, т.е. показателя NPV. Но как только предпосылки снимаются, задачи перестают быть эквивалентными. В реальности же для большинства инвесторов и разработчиков важна не только максимизация прибыли, но и минимизация риска рассматриваемого инвестиционного проекта.

Подчеркнем еще одно важное обстоятельство: анализ рисков проекта базируется на осуществленном расчете всех его показателей и критериев, так называемом базисном варианте (на основе фактической и прогнозной информации), доказавшем эффективность проекта.

Использование методов математического программирования для принятия оптимальных инвестиционных решений.

ПРИМЕР

Некий бизнесмен решил создать компанию, сдающую в аренду клиентам офисное оборудование (например, факсы и ксероксы), которое он предполагает закупить. Предположим (для простоты), что каждый договор с клиентом об аренде имеет длительность два года и заключается в момент закупки оборудования компанией, т.е. в начале первого года. Проведенный компанией анализ рынка позволяет утверждать, что существует неограниченный спрос на предлагаемое в аренду оборудование по стандартной арендной плате, общая сумма которой будет выплачена в конце второго года. Чистый дисконтированный доход, полученный бизнесменом от сдачи в аренду каждого факса и каждого ксерокса, составит 400 и 500 ден. ед. соответственно. Стоимость факса 300 ден. ед., из которых часть (100 ден. ед.) выплачивается в конце первого года, а остальная сумма (200 ден. ед.) — в конце второго, ксерокс стоит 400 ден. ед., и схема выплат аналогична: 300 ден. ед. выплачиваются в конце первого года, а остальная сумма (100 ден. ед.) — в конце второго. Бизнесмен предполагает, что доступные ему ежегодные фонды ограничены и составляют 40 000 ден. ед. (в первый год) и 30 000 ден. ед. (во второй год).

Какое количество факсов и ксероксов следует приобрести бизнесмену, чтобы максимизировать суммарный чистый дисконтированный доход проекта?

ОТВЕТ

Решение данной задачи можно получить с помощью методов линейного программирования.

Для построения модели задачи обозначим число единиц оборудования, которое нужно приобрести:

f — число факсов;
х — число ксероксов.

Введем ограничения:
100f + 300x <= 40 000 (1.1);
200f + 100x <= 30 000 (1.2).

Экономический смысл построенных ограничений (1.1), (1.2) состоит в том, что ежегодные суммарные выплаты за приобретенные бизнесменом факсы и ксероксы не могут превышать размеров доступных ему ежегодных фондов. Кроме того, для реальных экономических величин должны выполняться ограничения:
f >= 0 (1.3);
х >= 0 (1.4).

Требуется максимизировать функцию

z = 400f + 500х (1.5)

при ограничениях (1.1)—(1.4).

Известно, что в случае двух переменных решение задачи математического программирования можно провести не только аналитически (например, используя симплекс-метод), но и графически. В нашем примере интерес представляет только целочисленное решение.

Рассмотрим графический вариант решения модели сконструированной по выражениям (1.1)—(1.5).



Рис. 1.1. Графический вариант решения модели (1.1)—(1.5):
1 — в соответствии с выражением (1.1);
2 — в соответствии с выражением (1.2).

Заменив неравенство (1.1) равенством, построим в декартовой системе координат соответствующую прямую 1 (рис. 1.1).

Она разделит плоскость на две полуплоскости, расположенные над и под прямой. Неравенству (1.1) будут удовлетворять все точки, принадлежащие нижней полуплоскости и самой прямой 1.

Аналогичным образом отразим на графике решения неравенств (1.2) — (1.4).

Допустимое множество решений задачи линейного программирования находится в заштрихованной области и на ее границах.

Функционал (1.5) задачи строится аналогичным образом.

Из всего допустимого множества (согласно теории математического программирования) представляют интерес только точки, расположенные в вершинах заштрихованной области:

А (0; 150); В (100; 100); С (400/3; 0); О (0; 0).

Максимального значения, равного 90 000 ден. ед., функционал (1.5) достигает в вершине В, т.е. максимальный чистый дисконтированный доход, равный 90 000 ден. ед., бизнесмен может получить, если приобретет 100 факсов и 100 ксероксов.

Итак, в качестве функционала нашей модели был рассмотрен некий простейший аналог критерию NPV , а в качестве значений правых частей ограничений модели использовались, вообще говоря, лимиты ресурсов проекта в денежном выражении. Неизвестными в данной задаче являлись стоимостные значения объемов проектных услуг.

На основании теории двойственности в математическом программировании можно построить задачу, двойственную к данной, а полученные при ее решении так называемые двойственные переменные (объективно обусловленные оценки, теневые цены, скрытые цены) позволяют определить альтернативную стоимость используемых в проекте дефицитных ресурсов.

Построим двойственную к нашей задаче.

Пусть p1 — двойственная оценка фондов в первый год;
p2 — двойственная оценка фондов во второй год.

В этих обозначениях, необходимо минимизировать общие альтернативные стоимости совокупного объема фондов в целом за период проекта, то есть минимизировать функцию Z= (40000р1 + 30000р2) при ограничениях:

100р1 + 200р2 >= 400
300р1 + 100р2 >= 500,

экономический смысл которых в том, что продажа всех ресурсов (фондов), затрачиваемых на единицу каждого вида оборудования (факса или ксерокса) по их альтернативной стоимости в сумме не может быть меньше величины чистого дисконтированного дохода от одного факса или ксерокса соответственно. Кроме того, альтернативные стоимости, как реальные экономические величины, не могут иметь отрицательных значений, поэтому

р1 >= 0;
р2 >= 0.

Уже этот простой пример наглядно демонстрирует возможности и преимущества использования методов математического программирования для принятия проектных решений.
1   2   3   4   5   6


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации