Кагиров Р.Р. Лекции по Организации ЭВМ - файл n1.doc

Кагиров Р.Р. Лекции по Организации ЭВМ
скачать (7700 kb.)
Доступные файлы (1):
n1.doc7700kb.11.06.2012 06:29скачать

n1.doc

  1   2   3   4   5   6   7   8   9   ...   13




История развития ЭВМ.
Точкой отсчета можно считать начало XVII века (1623 год), когда ученый В. Шикард создал машину, умеющую складывать и вычитать числа. Но первым арифмометром, способным выполнять четыре основных арифметических действия, стал арифмометр знаменитого французского ученого и философа Блеза Паскаля. Основным элементом в нем было зубчатое колесо, изобретение которого уже само по себе стало ключевым событием в истории вычислительной техники. Правнуки этого колеса еще совсем недавно, каких-нибудь полтора десятка лет назад, использовались в арифмометрах (соответствующая модель была создана в 1842 году) на столах советских бухгалтеров. Хотелось бы отметить, что эволюция в области вычислительной техники носит неравномерный, скачкообразный характер: периоды накопления сил сменяются прорывами в разработках, после чего наступает период стабилизации, во время которого достигнутые результаты используются практически и одновременно накапливаются знания и силы для очередного рывка вперед. После каждого витка процесс эволюции выходит на новую, более высокую ступень.
В 1671 году немецкий философ и математик Густав Лейбниц также создает арифмометр на основе зубчатого колеса особенной конструкции — зубчатого колеса Лейбница. Арифмометр Лейбница, как и арифмометры его предшественников, выполнял четыре основных арифметических действия. На этом данный период закончился, и человечество в течение почти полутора веков копило силы и знания для следующего витка эволюции вычислительной техники. XVIII и XIX века были временем, когда бурно развивались различные науки, в том числе математика и астрономия. В них часто возникали задачи, требующие длительных и трудоемких вычислений.
Еще одним известным человеком в истории вычислительной техники стал английский математик Чарльз Бэббидж. В 1823 году Бэббидж начал работать над машиной для вычисления полиномов, но, что более интересно, эта машина должна была, кроме непосредственного производства вычислений, выдавать результаты — печатать их на негативной пластине для фотопечати. Планировалось, что машина будет приводиться в действие паровым двигателем. Из-за технических трудностей Бэббиджу до конца не удалось реализовать свой проект. Здесь впервые возникла идея использовать некоторое внешнее (периферийное) устройство для выдачи результатов вычислений. Другой ученый, С. Шойц, в 1853 году все же реализовал машину, задуманную Бэббиджем (она получилась даже меньше, чем планировалась). В 1834 году он изложил принципы работы очередной маши­ны, которая была названа им «аналитической». Технические трудности вновь не позволили ему до конца реализовать свои идеи. Бэббидж смог довести машину лишь до стадии эксперимента. Но именно идея является двигателем научно-тех­нического прогресса. Очередная машина Чарльза Бэббиджа была воплощением следующих идей:
О Управление производственным процессом. Машина управляла работой ткацкого станка, изменяя узор создаваемой ткани в зависимости от сочетания отверстий на специальной бумажной ленте. Эта лента стала предшественницей таких знакомых нам всем носителей информации, как перфокарты и перфоленты.
О Программируемостъ. Работой машины также управляла специальная бумаж­ная лента с отверстиями. Порядок следования отверстий на ней определял команды и обрабатываемые этими командами данные. Машина имела ариф­метическое устройство и память. В состав команд машины входила даже ко­манда условного перехода, изменяющая ход вычислений в зависимости от некоторых промежуточных результатов.
В разработке этой машины принимала участие графиня Ада Августа Лавлейс, которую считают первой в мире женщиной-программистом.
Идеи Чарльза Бэббиджа развивались и использовались другими учеными. Так, в 1890 году, на рубеже XX века, американец Г. Холлерит разработал машину, рабо­тающую с таблицами данных (первый Excel?). Машина управлялась программой на перфокартах. Она использовалась при проведении переписи населения в США в 1890 году. В 1896 году Г. Холлерит основал фирму, явившуюся предшественни­цей корпорации IBM. Co смертью Бэббиджа в эволюции вычислительной техни­ки наступил очередной перерыв вплоть до 30-х годов XX века.
В 1938 году центр разработок ненадолго смещается из Америки в Германию, где К. Цузе создает машину, которая оперирует, в отличие от своих предшественниц, не десятичными числами, а двоичными. Эта машина также была все еще механи­ческой, но ее несомненным достоинством было то, что в ней была реализована идея обработки данных в двоичном коде. Продолжая свои работы, Цузе в 1941 году создал электромеханическую машину, арифметическое устройство которой было выполнено на базе реле. Машина умела выполнять операции с плавающей точкой.
В Америке, в этот период также шли работы по созданию подобных электромеханических машин. В 1944 году Г. Айкен спроектировал машину, кото­рую назвали MARK-1. Она, как и машина К. Цузе, работала на реле. Но из-за того, что эта машина явно была создана под влиянием работ Бэббиджа, она оперирова­ла с данными в десятичной форме.
Естественно, из-за большого удельного веса механических частей эти машины были обречены. Нужно было искать новую, более технологичную элементную базу. И тогда вспомнили об изобретении Л. Фореста, который в 1906 году создал трехэлектродную вакуумную лампу, названную триодом. В силу своих функциональных свойств она стала наиболее естественной заменой реле. В 1946 году в США, в университете города Пенсильвания, была создана первая универсальная ЭВМENIAC. ЭВМ ENIAC содержала 18 тыс. ламп, весила 30 тонн, занимала площадь 200 м2 и потребляла огромную мощность. В ней все еще использовались десятичные операции, и программирование осуществлялось путем коммутации разъемов и установки переключателей. Естественно, что такое «программирование» влекло за собой появление множества проблем, вызванных, прежде всего, неверной установкой переключателей. С проектом ENIAC связано имя еще одной ключевой фигуры в истории вычислительной техники — матема­тика Джона фон Неймана. Именно он впервые предложил записывать программу и ее данные в память машины так, чтобы их можно было при необходимости модифицировать в процессе работы. Этот ключевой принцип, получивший назва­ние принципа хранимой программы, был использован в дальнейшем при создании принципиально новой ЭВМ EDVAC (1951 год). В этой машине уже применяется двоичная арифметика и используется оперативная память, построенная на ультра­звуковых ртутных линиях задержки. Память могла хранить 1024 слова. Каждое слово состояло из 44 двоичных разрядов.
Далее, до середины 80-х годов процесс эволюции вычислительной техники принято делить на поколения. Для полноты изложения дадим этим поколениям краткие качественные характеристики:
1-е поколение (1945-1954 гг.) — время становления машин с фон-неймановской архитектурой. В этот период формируется типовой набор структурных элемен­тов, входящих в состав ЭВМ. К этому времени у разработчиков уже сложилось примерно одинаковое представление о том, из каких элементов должна состоять типичная ЭВМ. Это — центральный процессор (ЦП), оперативная память (или оперативное запоминающее устройство — ОЗУ) и устройства ввода-вывода (УВВ). ЦП, в свою очередь, должен состоять из арифметико-логического устрой­ства (АЛУ) и управляющего устройства (УУ). Машины этого поколения рабо­тали на ламповой элементной базе, из-за чего поглощали огромное количество энергии и были очень ненадежны. С их помощью, в основном, решались научные задачи. Программы для этих машин уже можно было составлять не на машинном языке, а на языке ассемблера.
2-е поколение (1955-1964 гг.). Смену поколений определило появление новой эле­ментной базы: вместо громоздкой лампы в ЭВМ стали применяться миниатюрные транзисторы, линии задержки как элементы оперативной памяти сменила память на магнитных сердечниках. Это в конечном итоге привело к уменьшению габари­тов, повышению надежности и производительности ЭВМ. В архитектуре ЭВМ появились индексные регистры и аппаратные средства для выполнения операций с плавающей точкой. Были разработаны команды для вызова подпрограмм. Появи­лись языки высокого уровня — Algol, FORTRAN, COBOL, — создавшие предпо­сылки для появления переносимого программного обеспечения, не зависящего от типа ЭВМ. С появлением языков высокого уровня возникли компиляторы для них, библиотеки стандартных подпрограмм и другие хорошо знакомые нам сейчас вещи. Важное новшество, которое хотелось бы отметить, — это появление так называе­мых процессоров ввода-вывода. Эти специализированные процессоры позволили освободить ЦП от управления вводом-выводом и осуществлять ввод-вывод с по­мощью специализированного устройства одновременно с процессом вычислений. На этом этапе резко расширился круг пользователей ЭВМ и возросла номенклату­ра решаемых задач. Для эффективного управления ресурсами машины стали ис­пользоваться операционные системы (ОС).
3-е поколение (1965-1970 гг.). Смена поколений вновь была обусловлена обновле­нием элементной базы: вместо транзисторов в различных узлах ЭВМ стали исполь­зоваться интегральные микросхемы различной степени интеграции. Микросхемы позволили разместить десятки элементов на пластине размером в несколько санти­метров. Это, в свою очередь, не только повысило производительность ЭВМ, но и снизило их габариты и стоимость. Появились сравнительно недорогие и малогаба­ритные машины — мини-ЭВМ. Они активно использовались для управления раз­личными технологическими производственными процессами в системах сбора и обработки информации. Увеличение мощности ЭВМ сделало возможным одновре­менное выполнение нескольких программ на одной ЭВМ. Для этого нужно было научиться координировать между собой одновременно выполняемые действия, для чего были расширены функции операционной системы. Одновременно с активны­ми разработками в области аппаратных и архитектурных решений растет удель­ный вес разработок в области технологий программирования. В это время активно разрабатываются теоретические основы методов программирования, компиляции, баз данных, операционных систем и т. д. Создаются пакеты прикладных программ для самых различных областей жизнедеятельности человека. Наблюдается тенденция к созданию семейств ЭВМ, то есть машины становятся совместимы снизу вверх на программно-аппаратном уровне. Примерами таких семейств была серия IBM System 360 и наш отечественный ана­лог - ЕС ЭВМ.
4-е поколение (1970-1984 гг.). Очередная смена элементной базы привела к сме­не поколений. В 70-е годы активно ведутся работы по созданию больших и сверх­больших интегральных схем (БИС и СБИС), которые позволили разместить на одном кристалле десятки тысяч элементов. Это повлекло дальнейшее существен­ное снижение размеров и стоимости ЭВМ. Работа с программным обеспечением стала более дружественной, что повлекло за собой рост количества пользовате­лей. В принципе, при такой степени интеграции элементов стало возможным попытаться создать функционально полную ЭВМ на одном кристалле.
На этом этапе оформилось разделение ЭВМ на классы

Классификацию вычислительных машин по таким показателям, как габариты и производительность, можно представить следующим образом:




Отметим, что понятия «большие», «средние» и «малые» для отечественных ЭВМ весьма условны и не соответствуют подобным категориям зарубежных ЭВМ.
Исторически первыми появились большие ЭВМ (универсальные ЭВМ общего назначения), элементная база которых прошла путь от электронных ламп до схем со сверхвысокой степенью интеграции. В процессе эволюционного развития больших ЭВМ можно выделить отдельные периоды, связываемые с пятью поколениями ЭВМ. Поколение ЭВМ определяется элементной базой (лампы, полупроводники, микросхемы различной степени интеграции), архитектурой и вычислительными возможностями.
Основное назначение больших ЭВМ — выполнение работ, связанных с обработкой и хранением больших объемов информации, проведением сложных расчетов и исследований в ходе решения вычислительных и информационно-логических задач. Такими машинами, как правило, оснащаются вычислительные центры, используемые совместно несколькими организациями. Большие машины составляли основу парка вычислительной техники до середины 70-х годов. К ним относятся большинство моделей фирмы IBM (семейства 360, 370, 390) и их отечественные аналоги ЕС ЭВМ.
Производительность больших ЭВМ оказывалась недостаточной для ряда приложений, например, таких как прогнозирование метеообстаиовки, ядерная энергетика, оборона и т. д. Эти обстоятельства стимулировали создание сверхбольших или суперЭВМ. Стоимость отдельной ЭВМ такого класса достигала десятков миллионов долларов. Представители этого класса ЭВМ — компьютеры фирм Cray Research, Control Data Corporation (CDC) и отечественные супер-ЭВМ семейства Эльбрус.
Средние ЭВМ. Вычислительные машины этого класса обладают несколько меньшими возможностями, чем большие ЭВМ, но зато им присуща и более низкая стоимость. Они предназначены для использования всюду, где приходится постоянно обрабатывать достаточно большие объемы информации с приемлемыми временными затратами. В настоящее время трудно определить четкую грань между средними ЭВМ и большими с одной стороны и малыми — с другой. К средним могут быть отнесены некоторые модели ЕС ЭВМ, например: ЕС-1036, ЕС-1130, ЕС-1120. За рубежом средние ЭВМ выпускают фирмы IBM (International Business Machinery), DEC (Digital Equipment Corporation), Hewlett Packard, СОМРАРЕХ и др.
Малые ЭВМ составляли самый многочисленный класс ЭВМ. Их популярность объяснялась малыми размерами, низкой стоимостью (по сравнению с большими и средними ЭВМ) и универсальными возможностями.
Класс мини-ЭВМ появился в 60-е годы (12-разрядная ЭВМ PD5-5 фирмы DEC). Их появление было обусловлено развитием элементной базы и избыточностью ресурсов больших и средних ЭВМ для ряда приложений. Для мини-ЭВМ характерно представление данных с узким диапазоном значений (машинное слово — 2 байта), использование принципа магистральности в архитектуре и более простое взаимодействие человека и ЭВМ. Такие машины широко применялись для управления сложными видами оборудования, создания систем автоматизированного проектирования и гибких производственных систем. К мини-ЭВМ относятся машины серии PDP (затем VAX) фирмы DEC и их отечественные аналоги — модели семейства малых ЭВМ (СМ ЭВМ).
При переходе от схем с малой и средней степенями интеграции к интегральным микросхемам с большой и сверхбольшой степенями интеграции оказалось возможным создание на одной БИС или СБИС функционально законченного устройства обработки информации, выполняющего функции процессора. Такое устройство принято называть микропроцессором. Изобретение микропроцессора привело к появлению еще одного класса ЭВМ — микро-ЭВМ. Определяющим признаком микро-ЭВМ является наличие одного или нескольких микропроцессоров. Создание микропроцессора не только изменило центральную часть ЭВМ, но и привело к необходимости разработки малогабаритных устройств ее периферийной части. Микро-ЭВМ, благодаря малым размерам, высокой производительности, повышенной надежности и небольшой стоимости нашли широкое pacnpocтpaнение во всех сферах народного хозяйства и оборонного комплекса. С появлением микропроцессоров и микро-ЭВМ становится возможным создание так называемых интеллектуальных терминалов, выполняющих сложные процедуры предварительной обработки информации.
Успехи в развитии микропроцессоров и микро-ЭВМ привели к появлению персональных ЭВМ (ПЭВМ), предназначенных для индивидуального обслуживания пользователя и ориентированных на решение различных задач неспециалистами в области вычислительной техники.
В начале 70-х годов фирмой Intel был выпущен микропроцессор (МП) i4004. И если до этого в мире вычислительной техники были только три направления (суперЭВМ, большие ЭВМ (мэйнфреймы) и мини-ЭВМ), то теперь к ним прибавилось еще одно — мик­ропроцессорное. В общем случае под процессором понимают функциональный блок ЭВМ, предназначенный для логической и арифметической обработки ин­формации на основе принципа микропрограммного управления. По аппаратной реа­лизации процессоры можно разделить на микропроцессоры (полностью интегри­рующие все функции процессора) и процессоры с малой и средней интеграцией. Конструктивно это выражается в том, что микропроцессоры реализуют все функ­ции процессора на одном кристалле, а процессоры других типов реализуют их путем соединения большого количества микросхем.
Итак, первый МП i4004 был создан фирмой Intel на рубеже 70-х годов. Он представлял собой 4-разрядное параллельное вычислительное устройство, и его возможности были сильно ограничены. 4004 мог производить четыре основные арифметические операции и применялся поначалу только в карманных калькуля­торах. Позднее сфера его применения была расширена за счет использования в различных системах управления (например, для управления светофорами). Фир­ма Intel, правильно предугадав перспективность микропроцессоров, продолжила интенсивные разработки, и один из ее проектов в конечном итоге привел к крупно­му успеху, предопределившему будущий путь развития вычислительной техники. Им стал проект по разработке 8-разрядного микропроцессора 8008 (1972 г.). Этот микропроцессор имел довольно развитую систему команд и умел делить числа. Именно он был использован при создании персонального компьютера Альтаир, для которого молодой Билл Гейтс написал один из своих первых интерпретаторов язы­ка Basic. Наверное, именно с этого момента следует вести отсчет 5-го поколения.
5-е поколение можно назвать микропроцессорным. Заметьте, что 4-е поколение за­кончилось только в начале 80-х, то есть «родители» в лице больших машин и их быстро взрослеющее и набирающее силы «чадо» в течение почти 10 лет относи­тельно мирно существовали вместе. Для них обоих это время пошло только на пользу. Проектировщики больших компьютеров накопили огромный теоретический и практический опыт, а программисты микропроцессоров сумели найти свою, пусть поначалу очень узкую, нишу на рынке. В 1976 году фирма Intel закончила разра­ботку 16-разрядного микропроцессора i8086. Он имел достаточно большую разряд­ность регистров (16 бит) и системной шины адреса (20 бит), за счет чего мог адре­совать до 1 Мбайт оперативной памяти. В 1982 году был создан i80286. Этот микропроцессор представлял собой улучшенный вариант i8086. Он поддерживал уже несколько режимов работы: реальный, когда формирование адреса производи­лось по правилам i8086, и защищенный, который аппаратно реализовывал многоза­дачность и управление виртуальной памятью, i80286 имел также большую разряд­ность шины адреса — 24 разряда против 20 у i8086, и поэтому он мог адресовать до 16 Мбайт оперативной памяти. Первые компьютеры на базе этого микропроцессо­ра появились в 1984 году. По своим вычислительным возможностям этот компью­тер стал сопоставим с IBM 370. Поэтому можно считать, что на этом 4-е поколение развития ЭВМ завершилось.

Этапы развития процессоров Intel Pentium.
Процессор Pentium
Родоначальником обширного семейства под общим названием Pentium (Pentium, Pentium MMX, Pentium II, Pentium HI, Pentium 4) стал процес­сор с индексом Р5, оснащенный интерфейсом Socket 4, чье производство началось в 1993 г. В том же году произошел переход на ядро Р54С с ин­терфейсом Socket 5, позднее — Socket 7. Линейка процессоров собственно Pentium включала модели с рабочими частотами 75-200 МГц. Процессоры производились с использованием различных технологических норм. Модели с частотами 75-120 МГц выполнены по 0,5-микронной техноло­гии, а процессоры с частотами 120-200 МГц — по 0,35-микронной. Ядро Р54С содержит 3,3 милли­она транзисторов, 16 Кбайт кэш-памяти перво­го уровня. Кэш-память второго уровня объемом до 1024 Кбайт размещалась на системной плате. Процессоры семейства Pentium имеют следую­щие основные особенности:


Процессор Pentium MMX

Процессоры Pentium (ядро Р55С) с техно­логией MMX (Multi Media extension) стали существенным шагом вперед в семействе Pentium. В основе технологии ММХ лежит метод SIMD (Single Instruction Multiple Data), который позволяет увеличить про­изводительность широкого набора муль­тимедийных приложений. Pentium MMX поддерживал 57 новых инструкций и че­тыре новых 64-разрядных типа данных. Производство Pentium MMX по технор-мам 280 нм развернулось в 1997 г. Кэш данных и кэш команд в Pentium MMX имеют объем по 16 Кбайт каждый. Разделение кэша увеличивает производительность, сокращая среднее время доступа к памяти и обеспечивая быстрый доступ к часто используемым инструкциям и данным. Кэш данных поддерживает два обращения одновременно, метод обратной записи (Writeback) или по­строчной сквозной записи (Writethrough). Динамическое предсказание ветвления использует буфер адреса перехода Branch Target Buffer (BTB), который предсказывает наиболее вероятный набор инструкций для ис­полнения. Для повышения производительности была добавлена допол­нительная стадия конвейерной обработки. Запись в память происходит через область, состоящую из четырех буферов, которые используются совместно двумя конвейерами. Основные характеристики процессора:





Конвейерный блок вычислений с плавающей запятой (FPU) поддер­живает 32- и 64-битные форматы. Это дает возможность исполнения в одном такте двух инструкций с плавающей запятой. Многие инструкции, требовавшие микрокода в процессорах х86, теперь аппаратно встроены в процессор для обеспечения высокой производительности. Контрольные сигналы шины управляют согласованием кэш-памяти в мультипроцес­сорных системах.
Встроенный контроллер прерываний микропроцессора обеспечивает симметричную многопроцессорную обработку с минимальными затрата­ми. Впервые встроена аппаратная поддержка виртуальных прерываний. Проводится идентификация ядра процессора для получения информа­ции о семействе, модели и характеристиках процессора с помощью ко­манды CPUID. Определение ошибок внутренних устройств и интерфейса шины обеспечивает система защиты контроля четности и Machine Check Exception (MCE). Также обеспечивается аппаратная поддержка для про­верки заверЩения цикла шины.
Процессор Pentium II

Процессор Pentium II на ядре Klamath начали выпускать в 1997 г. по тех­нологическим нормам 350 нм. Ядро размещалось в новом конструктиве — картридже с односторонним контактом (Single Edge Contact SEC), на­считывающим 242 контакта. Высокая интеграция данных и надежность обеспечивались шиной памяти и системной шиной с поддержкой ЕСС, механизмом анализа отказов, функцией восстановления и проверкой функциональной избыточности. Кэш-память второго уровня объемом 512 Кбайт располагалась на плате процессора и работала на половинной частоте.

В 1998 г. начался выпуск Pentium II на ядре Deschutes по технормам 250 нм. Семейство процессоров Intel Pentium II включало модели с так­товыми частотами 233—450 МГц. Существенное увеличение производи­тельности процессоров Pentium II по сравнению с предыдущими процес­сорами архитектуры Intel основано на сочетании технологии Pentium Pro с поддержкой новых инструкций ММХ. Укажем некоторые особенности архитектуры Pentium II:


Архитектура двойной независимой шины (системная шина и шина кэша) обеспечивает повышение пропускной способности и производи­тельности, а также масштабируемость при использовании более одного процессора. Системная шина поддерживает множественные транзакции, что повышает пропускную способность. Производительность повышает­ся и за счет использования выделенной 64-разрядной шины кэш-памяти. Процессор имеет раздельный кэш первого уровня (16 + 16 Кбайт).
Конвейерный блок вычислений с плавающей запятой (FPU) поддер­живает 32- и 64-разрядные форматы данных, а также формат 80 бит. Контроль четности сигналов адресации запроса и ответа системной шины с возможностью повторения обеспечивает высокую надежность и инте­грацию данных.
Технология ЕСС (Error Correction Code) позволяет корректировать од­нобитные и выявлять двухбитные ошибки системной шины. Встроенный Self Test (BIST) обеспечивает те же функции, что и в Pentium ММХ. Встроенные счетчики производительности обеспечивают управление производительностью и подсчет событий.
В результате целенаправленной политики Intel по разделению сек­торов рынка персональных компьютеров в 1998 г. появились процессоры Celeron, основанные на архитектуре Pentium П. Первые модификации (с ядром Covington) не имели кэш-памяти второго уровня, поэтому от­ставали в производительности от Pentium II, но отличались прекрасной разгоняемостью. Процессоры Celeron с ядром Mendocino получили кэш­память второго уровня объемом 128 Кбайт. В 1999 г. на смену процессору Pentium II (Deschutes) пришел Pentium III на новом ядре Katmai, которое получило блок SSE (Streaming SIMD Extensions), расширенный набор команд ММХ и усовершенствованный механизм потокового доступа к памя­ти. Процессор насчитывал 9,5 миллионов транзисторов и выпускался по технормам 250 нм с интерфейсом Slot 1. Кэш второго уровня, размещен­ный в ядре, имел объем 512 Кбайт.
Интерфейс Socket 370
Celeron 233-533 МГц (апрель 1998 - январь 2000) Pentium III 500-1133 МГц (октябрь 1999 - июль 2001) Celeron II 533-1100 МГц (январь 2000 - июль 2001) Celeron/Pentium III 1000-1400 МГц (январь 2000 - июль 2001)
В 1998 г. для процессоров Pentium III был раз­работан интерфейс Socket 370, кристалл уста­навливался в пластиковый корпуса PPGA. Важным преимуществом Pentium III стала возможность исполнения расширенного на­бора инструкций SIMD, оперирующих со спе­циальными 128-битными регистрами. Каждый из них хранит четыре действительных числа одинарной точности. Таким образом, выполняя операцию над двумя регистрами, SSE факти­чески оперирует четырьмя парами чисел. То есть, благодаря этому процессор может выполнять до четырех операций одновременно. Однако разработчик программы должен использовать специальные команды, а также позаботиться о помещении и извлечении данных из четырех местных регистров, поэтому для использования всех вычислительных мощностей Pentium III необходима целенаправленная оптимизация кода. Таким образом, в Pentium III появился блок, подобный ММХ, но оперирующий действительными числами. Это решение способ­ствовало улучшению производительности процессора в следующих обла­стях:


С 2000 г. начался выпуск процессоров в корпусах FC-PGA. Последней модификацией Pentium III и Celeron стали процессоры на ядре Tualatin, изготавливаемом по технормам 130 нм. Модель Pentium III-S Tualatin имеет рабочую частоту до 1400 МГц, кэш-память второго уровня объе­мом 512 Кбайт. Ядро получило блок Data Prefetch, который стал одним из ключевых элементов будущей архитектуры Pentium 4. К сожалению, Pentium III-S потребовал новой модификации интерфейса Socket 370, что исключило возможность апгрейда действующих систем.
Интерфейс Socket 423

Pentium 4 1300-2000 МГц (ноябрь 2000 - август 2001)

Процессор Pentium 4 на ядре Willamette имел новую архитектуру, основанную на техноло­гии NetBurst, ставшую логическим развитием архитектуры Pentium III-S на ядре Tualatin. Важным достоинством архитектуры Pentium 4 стал механизм термоконтроля, автоматиче­ски снижавший рабочую частоту, если темпе­ратура ядра превышала заданный порог. В ядро Willamette впервые внедрена поддерж­ка расширенного набора мультимедийных инструкций SSE2. Вместе с тем, интерфейс

Socket 423 оказался не очень технологичным, и компания Intel была вы­нуждена отказаться от его использования.

Интерфейс Socket 478

Pentium 4 1300-2800 МГц (июль 2001 - март 2004) Celeron 1700-2930 МГц (июль 2001 - октябрь 2004) Pentium 4 ЕЕ 3200-3400 МГц (сентябрь 2003 - март 2004)

Интерфейс Socket 478 был внедрен одновремен­но с переходом процессоров Pentium 4 на ядро Northwood, оснащенное кэш-памятью второго уровня объемом 512 Кбайт. Платформа комплек­товалась чипсетами, поддерживающими один из трех видов оперативной памяти: Rambus DRAM (RDRAM), SDRAM, DDR SDRAM. С упорством, достойным лучшего применения, Intel поддер­живала дорогую память RDRAM в ущерб более дешевой DDR SDRAM, что вызвало недовольство как производителей системных плат, так и пользователей. И только под давлением партнеров и потребителей был выпущен чипсет 845D, поддерживающий DDR SDRAM.

Длинный конвейер Pentium 4 позволил постоянно наращивать рабо­чие частоты процессора и частоту системной шины. Частота процессора с ядром Northwood выросла до 3400 МГц, а частота системной шины — до 800 МГц. Модификация Celeron отличается от Pentium 4 урезанным вдвое объемом кэша L2 и ограниченной 400 МГц частотой системной шины.
Интерфейс Socket 775

Pentium 4 2666-3800 МГц (с июня 2004) Celeron D 2533-3200 МГц (с июня 2004) Pentium 4 ЕЕ 3460-3730 МГц (с июня 2004)

Следующим крупным шагом компании Intel по совершенствованию тех­нологии стал перевод всех процессоров для настольных систем на интер­фейс Socket 775 LGA (Land Grid Array). Несколько ранее была внедрена усовершенствованная архитектура ядра Prescott (технормы 90 нм). Ядро отличается удлиненным исполнительным конвейером, увеличенным до 1024 Кбайт объемом кэша L2, поддержкой набора ин­струкций SSE3. При этом тепловая мощ­ность процессора Pentium 4 на ядре Prescott с частотой 3,8 ГГц достигла 125 Вт.

Процессоры семейства Celeron D обяза­ны своим появлением внедрению технорм 90 нм. Соответственно политике компании Intel, бюджетная модификация получила вдвое урезанный кэш (то есть 256 Кбайт) и ограниченную до 533 МГц частоту системной шины.

Переход на новый интерфейс ознаменовался знаменательным событием: компания Intel отказалась от маркировки процессоров по рабочей частоте и по примеру компании AMD ввела маркировку по рейтингу (процессорному номеру).

Особое место в семействе Pentium 4 занимают процессоры с маркировкой Extreme Edition (ЕЕ). Они построены на совершенно ином ядре Gallatin (технормы 130 нм). Основное отличие Pentium 4 ЕЕ заключается в наличии кэш-памяти третьего уровня объемом 2 Мбайт и увеличенной до 1066 МГц частоте системной шины.
  1   2   3   4   5   6   7   8   9   ...   13


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации