Реферат - ГИС и Лес (Геоинформационные системы) - файл n1.doc

Реферат - ГИС и Лес (Геоинформационные системы)
скачать (274 kb.)
Доступные файлы (1):
n1.doc274kb.11.06.2012 06:20скачать

n1.doc




Федеральное агентство по образованию

Уральский Государственный Лесотехнический Университет
Кафедра Лесного хозяйства


Реферат

на тему: «Лес и ГИС»

Выполнил: Колесников И. В.

Шифр: 20119

Специальность: 250401

Курс: 5

Проверил:

Екатеринбург 2009

Оглавление

Введение……………………………………………………………………………….3

1. Геоинформатика и географические информационные системы(ГИС)…………4

1.1. Информатизация общества………………...……………………………...4


1.2. Основополагающие понятия и термины…………………………………6

1.3. История развития ГИС………………………………………………….…9 1.4. Сферы и уровни использования ГИС……………………...……………11

2. Классификация ГИС…………………………………………………………..…..12

3. Составные части ГИС…………………………………………………………..…13

4. Особенности графической информации в ГИС…………………………………14

4.1. Графическое представление объектов и атрибутов……………………14

4.2. Растровые модели………………………………………………………...16

4.3. Ввод данных, цифрование исходной информации…………………….16

4.4. Методы ввода векторных данных……………………………………....17

4.5. Методы ввода растровых данных……………………………………….18

4.6. Устройства ввода…………………………………………………………19

5. Базы данных в ГИС………………………………………………………………..22

5.1. Классификация современных СУБД…………………………………....22

5.2. Оценка современных СУБД на соответствие требованиям, предъявляемым к автоматизированным информационным системам кадастра...22

6. Использование ГИС в лесном хозяйстве и лесной промышленности…………25

Заключение……………………………………………………………………...……30

Список литературы…………………………………………………………………

Введение


ХХI век… Объем информации, существующий в современном мире , не может сравниться с тем, который был получен в прошлых веках. Темпы жизни стремительно растут, методы получения информации приобретают все более индустриальный характер. Для организованного хранения, поиска нужной информации, ее обработки и анализа требуются современные, основанные на компьютерных технологиях, средствах.

Законы, методы и способы накопления, обработки и передачи информации с помощью компьютеров и иных технических устройств относятся к сфере общей информатики. На ее базе развиваются специальные направления : лесная информатика, медицинская информатика и т. д..

Понятие информационная система (ИС) относится не только к сфере компьютерных технологий. Существуют также некомпьютерные системы, работающие с информацией в аналоговой, а не в цифровой форме.

Упорядоченные массивы данных называют базами данных (БД). Они создаются с помощью специальных программных комплексов, называемых системами управления базами данных (СУБД).

Программные и технические средства, предназначенные для обеспечения доступа к информационным ресурсам – ввода информации, ее хранения, преобразования, реализации различных запросов, представления информации, называют информационно-поисковыми системами (ИПС).

Для работы с пространственно распределенной информацией используют ИС особого рода, называемые географическими информационными системами (геоинформационными системами или сокращенно ГИС).

1. Геоинформатика и географические информационные системы(ГИС)

1.1. Информатизация общества


Информатизация коснулась сегодня всех сторон жизни общества, и трудно, пожалуй, назвать какую-либо сферу человеческой деятельности - от начального школьного образования до высокой государственной политики, - где не ощущалось бы ее мощное воздействие. Информатика дышит в затылок всем наукам, догоняя и увлекая их за собой, преобразуя, а порой и порабощая в стремлении к бесконечному компьютерному совершенству.

В науках о Земле информационные технологии породили геоинформатику и географические информационные системы (ГИС), причем слово "географические" обозначает в данном случае не столько "пространственность" или "территориальность", а скорее комплексность и системность исследовательского похода.

Первые ГИС были созданы в Канаде и США в середине 60-х годов, а сейчас в промышленно развитых странах существуют тысячи ГИС, используемых в экономике, политике, экологии, управлении ресурсами и охране природы, кадастре, науке и образовании. ГИС охватывают все пространственные уровни: глобальный, региональный, национальный, локальный, муниципальный, интегрируя разнообразную информацию о нашей планете: картографическую, данные дистанционного зондирования, статистику и переписи, кадастровые сведения, гидрометеорологические данные, материалы полевых экспедиционных наблюдений, результаты бурения и подводного зондирования.

В создании ГИС участвуют международные организации (Организация объединенных наций, Программа по окружающей среде, Продовольственная программа), правительственные учреждения, министерства и ведомства, картографические, геологические и земельные службы, статистические управления, частные фирмы, научно-исследовательские институты и университеты. На разработку ГИС ассигнуют значительные финансовые средства, в деле участвуют целые отрасли промышленности, создается разветвленная геоинформационная инфраструктура, сопряженная с телекоммуникационными сетями.

Во многих странах образованы национальные и региональные органы, в задачи которых входит развитие ГИС и автоматизированного картографирования, формирование государственной политики в области геоинформатики, национального планирования, сбора и распространения информации, включая и исследование правовых проблем, связанных с владением и передачей географической информации, с ее защитой. Федеральная программа России предусматривает создание цифровых и электронных карт масштабов 1 : 10 000 - 1 : 1 000 000 и банков данных для этих карт, разработку ГИС различного ранга и назначения (для органов государственного управления, для демаркации границ России, региональных ГИС по Северу, Байкалу, муниципальных, территориальных и отраслевых ГИС.

В Москве сформирован первый Российский научно-производственный центр геоинформации (Росгеоинформ). Одновременно развернуты региональные производственные центры в Санкт-Петербурге, Екатеринбурге, Новосибирске, Иркутске и Хабаровске. При создании разветвленной ГИС-инфраструктуры к этим центрам предполагается привязать местные и отраслевые ГИС разной проблемной ориентации, а также центры сбора и обработки аэрокосмической информации. В сеть ГИС России обязательно должны быть включены научные и научно-производственные базы и банки тематических данных, существующие в институтах Академии наук, вузах, отраслевых учреждениях и ведомствах.

Сущность ГИС состоит в том, что она позволяет так или иначе собирать данные, создавать базы данных, вводить их в компьютерные системы, хранить, обрабатывать, преобразовывать и выдавать по запросу пользователя чаще всего в картографической форме, а также в виде таблиц, графиков, текстов.

Повсеместность использования ГИС привела к многообразию толкований самого понятия. В научной литературе бытуют десятки определений ГИС, в них отмечается, что ГИС - это аппаратно-программный и одновременно человеко-машинный комплекс, обеспечивающий сбор, обработку, отображение и распространение пространственно-координированных данных, интеграцию данных и знаний о территории для их эффективного использования при решении научных и прикладных задач, связанных с инвентаризацией, анализом, моделированием, прогнозированием и управлением окружающей средой и территориальной организацией общества . Такая несколько тяжеловесная дефиниция верно отражает многие свойства ГИС, используемых в географии, геологии, экологии и других отраслях знания, но все же не является исчерпывающей. Попытка охватить в определении все функциональные, технологические и прикладные свойства ГИС неизбежно оборачивается неполнотой. Можно предложить несколько других толкований, характеризующих разные аспекты ГИС .

С научной точки зрения ГИС - это средство моделирования и познания природных и социально-экономических систем. ГИС применяется для исследования всех тех природных, общественных и природно-общественных объектов и явлений, которые изучают науки о Земле и смежные с ними социально-экономические науки, а также картография, дистанционное зондирование. В технологическом аспекте ГИС (ГИС-технология) предстает как средство сбора, хранения, преобразования, отображения и распространения пространственно-координированной географической (геологической, экологической) информации. И наконец, с производственной точки зрения ГИС является комплексом аппаратных устройств и программных продуктов (ГИС-оболочек), предназначенных для обеспечения управления и принятия решений, причем важнейший элемент этого комплекса - автоматические картографические системы. Таким образом, ГИС может одновременно рассматриваться как инструмент научного исследования, технология и продукт ГИС-индустрии. Это достаточно типичная ситуация на современном уровне научно-технического прогресса, характеризующегося интеграцией науки и производства.

1.2. Основополагающие понятия и термины

Геоинформационные технологии – бурно развивающееся направление современных информационных технологий. По этой причине пока нельзя говорить о существовании общепринятой терминологии в этой отрасли знаний. Достаточно привести многочисленные определения ГИС, предложенные разными авторами, чтобы понять, насколько еще молода эта сфера деятельности.

Итак: ГИС – это “внутренне позиционированная автоматизированная пространственная информационная система, создаваемая для управления данными, их картографического отображения и анализа”. (Berry J.)

Хочу отметить, что данное определение не совсем полное, поскольку не учитывает человека, как элемент информационной системы. Человек в любой информационной системе занимает важное место – это и наблюдатель, и эксперт, и аналитик. Очень часто исследователи в области геоинформатики для акцентирования роли человека в ГИС используют словосочетание “человеко-машинный комплекс”.

ГИС – это “аппаратно-программный человеко-машинный комплекс, обеспечивающий сбор, обработку, отображение и распространение пространственно-координированных данных, интеграцию данных и знаний о территории для их эффективного использования при решении научных и прикладных географических задач, связанных с инвентаризацией, анализом, моделированием, прогнозированием и управлением окружающей средой и территориальной организацией общества". (Кошкарев А.В.)

ГИС – это “система, состоящая из людей, а также технических и организационных средств, которые осуществляют сбор, передачу, ввод и обработку данных с целью выработки информации, удобной для дальнейшего использования в географическом исследовании и для ее практического применения”. (Konecny M.)

ГИС – это “комплекс аппаратно-программных средств и деятельности человека по хранению, манипулированию и отображению географических (пространственно соотнесенных) данных”. (AblerR.)

ГИС – это “динамически организованное множество данных динамическая база данных или банк данных), соединенное с множеством моделей, реализованных на ЭВМ для расчетных, графических и картографических преобразований этих данных в пространственную информацию в целях удовлетворения специфических потребностей определенных пользователей в пределах структуры точно определенных концепций и технологий”. (Degani A.)

ГИС – это: "система, включающая базу данных, аппаратуру, специализированное матобеспечение и пакеты программ, предназначенных для расширения базы данных, для манипулирования данными, их визуализации в виде карт или таблиц и, в конечном итоге, для принятия решений о том или ином варианте хозяйственной деятельности". (Lillesand T.)

ГИС – это: "реализованное с помощью автоматических средств (ЭВМ) хранилище системы знаний о территориальном аспекте взаимодействия природы и общества, а также программного обеспечения, моделирующего функции поиска, ввода, моделирования и др." (Трофимов А.М., Панасюк М.В.)

ГИС – это интегрированная компьютерная система, находящаяся под управлением специалистов-аналитиков, которая осуществляет сбор, хранение, манипулирование, анализ, моделирование и отображение пространственно соотнесенных данных (см. рис.1).

Рис. 1. Схема геоинформационной системы.

Как видно, определений ГИС много, но каждое из них является верным. Отличие их лишь в широте охвата рассматриваемой проблемы.

Чтение карты – восприятие карты (визуальное, тактильное или автоматическое), основанное на распознавании картографических образов, истолковании и понимании ее содержания. Эффективность чтения карты зависит от читаемости карты, т.е. от легкости и быстроты восприятия отдельных обозначений, картографических образов и всего изображения в целом. В свою очередь, читаемость определяется наглядностью условных знаков, качеством оформления карты, общей загруженностью карты, различимостью деталей изображения.

Цифровая карта – цифровая модель поверхности, сформированная с учетом законов картографической генерализации в принятых для карт проекции, разграфке, системе координат и высот. По сути, термин “цифровая карта” означает именно цифровую модель, цифровые картографические данные. Цифровая карта создается с полным соблюдением нормативов и правил картографирования, точности карт, генерализации, системы условных обозначений. Цифровая карта служит основой для изготовления обычных бумажных, компьютерных, электронных карт, она входит в состав картографической базы данных, является одним из важнейших элементов информационного обеспечения ГИС и одновременно может быть результатом функционирования ГИС.

Компьютерная карта – карта, полученная на устройстве графического вывода с помощью средств автоматизированного картографирования (графопостроителей, принтеров, дигитайзеров и др. на бумаге, пластике, фотопленке и иных материалах) или с помощью геоинформационной системы.

Иногда к компьютерной карте относят также карты, изготовленные на неспециализированных приборах, например, на алфавитно-цифровых печатных устройствах, так называемые ЭВМ-карты или АЦ-ПУ-карты.

ГИС-технологии – технологическая основа создания географических информационных систем, позволяющая реализовать их функциональные возможности.

Геоинформационный анализ – анализ размещения, структуры, взаимосвязей объектов и явлений с использованием методов пространственного анализа и геомоделирования.

Функциональные возможности ГИС – набор функций географических информационных систем и соответствующих программных средств:

• ввод данных в машинную среду путем импорта из существующих наборов цифровых данных

или с помощью оцифровки источников;

• преобразование данных, включая конвертирование данных из одного формата в другой,

трансформацию картографических проекций, изменение систем координат;

• хранение, манипулирование и управление данными во внутренних и внешних базах данных;

• картометрические операции;

• средства персональных настроек пользователей.

Геоинформатика – наука, технология и производственная деятельность:

• по научному обоснованию, проектированию, созданию, эксплуатации и использованию географических информационных систем;

• по разработке геоинформационных технологий;

• по прикладным аспектам или приложениям ГИС для практических или геонаучных целей.

Геоматика — это совокупность применений информационных технологий, мультимедиа и средств телекоммуникации для обработки данных, анализа геосистем, автоматизированного картографирования; также этот термин употребляется как синоним геоинформатики или геоинформационного картографирования.

Цифровое покрытие (слой, тема) – семейство однотипных (одной мерности) пространственных объектов, относящихся к одному классу объектов в пределах некоторой территории и в системе координат, общих для набора слоев. По типу объектов различают точечные, линейные и полигональные цифровые покрытия.

Пространственный объект (графический примитив) – цифровое представление объекта реальности (цифровая модель местности), содержащее его местоуказание и набор свойств, характеристик, атрибутов или сам этот объект. Выделяют четыре основных типа пространственных объектов:

(1) точечные, (2) линейные, (3) площадные (полигональные), контурные и (4)поверхности.

1.3. История развития ГИС

История ГИС берет своё начало с конца пятидесятых годов прошлого столетия. За пятьдесят лет пройдено несколько этапов, позволивших создать самостоятельно функционирующую сферу – сферу геоинформационных технологий. Основные достижения в геоинформационной картографии были, к сожалению, получены в США, Канаде и Европе, а не в России. Россия и бывший СССР не участвовали в мировом процессе создания и развития геоинформационных технологий вплоть до середины 1980-х годов. Тем не менее, наша страна имеет свой, пусть небольшой, опыт развития геоинформационных систем и технологий.

В истории развития геоинформационных систем выделяют четыре периода:


Новаторский период (поздние 1950е - ранние 1970е гг.)

• исследование принципиальных возможностей информационных систем, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

Период государственного влияния (ранние 1970е - ранние 1980е гг.)

• развитие крупных геоинформационных проектов, финансируемых государством, формирование государственных институтов в области геоинформатики, снижение роли и влияния отдельных исследователей и небольших групп.

Период коммерциализации (ранние 1980е - настоящее время)

• широкий рынок разнообразных программных средств, развитие настольных инструментальных ГИС, расширение области их применения за счет интеграции с базами атрибутивных данных, создание сетевых приложений, появление значительного числа непрофессиональных пользователей, организация систем, поддерживающие индивидуальные наборы данных на отдельных компьютерах и поддерживающим корпоративные и распределенные базы геоданных.

Период потребления (поздние 1980е - настоящее время)

• повышенная конкурентная борьба среди коммерческих производителей геоинформационных технологий и услуг дает преимущества пользователям ГИС, доступность и “открытость” программных средств позволяет пользователям самим настраивать, адаптировать, использовать и даже модифицировать программы, появление пользовательских “клубов”, телеконференций,

территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в географических данных, начало формирования геоинформационной инфраструктуры планетарного масштаба.

Хотелось бы несколько слов сказать об организациях, проектах и исследователях, сыгравших ключевую роль в развитии ГИС.

В конце 60-х Бюро переписи США разработало формат GBF-DIME (Geographic Base File, Dual Independent Map Encoding). В этом формате впервые была реализована схема определения пространственных отношений между объектами, называемая топологией, которая описывает, как линейные объекты на карте взаимосвязаны между собой, какие площадные объекты граничат друг с другом, а какие объекты состоят из соседствующих элементов. Впервые были пронумерованы узловые точки, впервые были присвоены идентификаторы площадям по разные стороны линий. Это было революционное нововведение. Формат GBF-DIME позже трансформировался в TIGER. Важными лицами этого

процесса явились математик Джеймс Корбетт (James Corbett), программисты Дональд Кук (Donald Cooke) и Максфилд (Maxfield). Карты в формате GBF-DIME в течение 70х годов были сформированы для всех городов Соединенных Штатов. Эту технологию по сегодняшний день использует множество современных ГИС. Многие важные идеи, касающиеся ГИС, возникли в стенах Лаборатории компьютерной графики и пространственного анализа Гарварда. Из этой лаборатории вышло несколько ключевых фигурГИС индустрии: это Говард Фишер (Howard Fisher) – основатель лаборатории и программист Дана Томлин (Dana Tomlin), заложившая основы картографической алгебры, создав наменитое семейство растровых программных средств Map Analysis Package - MAP, PMAP, aMAP. Наиболее известными и хорошо зарекомендовавшими себя программными продуктами Гарвардской лаборатории являются:

• SYMAP (система многоцелевого картографирования);

• CALFORM (программа вывода картографического изображения на плоттер);

• SYMVU (просмотр перспективных (трехмерных) изображений);

• ODYSSEY (предшественник знаменитого ARC/INFO).

Большое влияние на развитие ГИС-технологий оказали теоретические разработки в области географии и пространственных взаимоотношений, а также в развитие количественных методов в географии в США, Канаде, Франции, Англии, Швеции (работы У.Гаррисона (William Garrison), Т.Хагерстранда (Torsten Hagerstrand), Г.Маккарти (Harold McCarty), Я.Макхарга (Ian McHarg).

В завершении этого краткого экскурса в историю ГИС отметим старейшие компании, основанные в 1969 году, которые являются и по сей день крупнейшими разработчиками ГИС – это ESRI и Intergraph. Эти две компании являются производителями самых популярных в США и в мире геоинформационных систем – так, вдвоем они производят ровно половину ГИС, используемых в США. Начиная с 90-х гг. прошлого столетия, эти фирмы активно осваивают российский рынок ГИС.

1.4. Сферы и уровни использования ГИС


ГИС используются для решения разнообразных задач, основные их которых можно сгруппировать следующим образом:

  1. поиск и рациональное использование природных ресурсов;

  2. территориальное и отраслевое планирование и управление размещением промышленности, транспорта, сельского хозяйства, энергетики, финансов;

  3. обеспечение комплексного и отраслевого кадастра;

  4. мониторинг экологических ситуаций и опасных природных явлений, оценка техногенных воздействий на среду и их последствий, обеспечение экологической безопасности страны и регионов, экологическая экспертиза;

  5. контроль условий жизни населения, здравоохранение и рекреация, социальное обслуживание, обеспеченность работой и др.;

  6. обеспечение деятельности органов законодательной и исполнительной власти, политических партий, движений, средств массовой информации;

  7. обеспечение деятельности правоохранительных органов и силовых структур;

  8. научные исследования и образование;

  9. картографирование (комплексное и отраслевое): создание тематических карт и атласов, обновление карт, оперативное картографирование.

Разнообразие сфер использования ГИС порождает множественность их видов и типов, разнящихся по тематике, пространственному охвату, назначению. Принято различать следующие территориальные уровни ГИС и соответствующие им масштабы.




2. Классификация ГИС


ГИС системы разрабатываются с целью решения научных и прикладных задач по мониторингу экологических ситуаций, рациональному использованию природных ресурсов, а также для инфраструктурного проектирования, городского и регионального планирования, для принятия оперативных мер в условиях чрезвычайных ситуаций др.

Множество задач, возникающих в жизни, привело к созданию различных ГИС, которые могут классифицироваться по следующим признакам:

По функциональным возможностям:

- полнофункциональные ГИС общего назначения;

- специализированные ГИС ориентированы на решение конкретной задачи в какой либо предметной области;

- информационно-справочные системы для домашнего и информационно-справочного пользования.

Функциональные возможности ГИС определяются также архитектурным принципом их построения:

- закрытые системы - не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки.

- открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).

По пространственному (территориальному) охвату:

- глобальные (планетарные);

- общенациональные;

- региональные;

- локальные (в том числе муниципальные).

По проблемно-тематической ориентации:

- общегеографические;

- экологические и природопользовательские;

- отраслевые (водных ресурсов, лесопользования, геологические, туризма и т.д.);

По способу организации географических данных:

- векторные;

- растровые;

- векторно-растровые ГИС.

3. Составные части ГИС


Работающая ГИС включает в себя пять ключевых составляющих: аппаратные средства, программное обеспечение, данные, исполнители и методы.

Аппаратные средства. Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных или связанных сетью настольных компьютеров.

Программное обеспечение ГИС содержит функции и инструменты, необходимые для хранения, анализа и визуализации географической (пространственной) информации. Ключевыми компонентами программных продуктов являются: инструменты для ввода и оперирования географической информацией; система управления базой данных (DBMS или СУБД); инструменты поддержки пространственных запросов, анализа и визуализации (отображения); графический пользовательский интерфейс (GUI или ГИП) для легкого доступа к инструментам.

Данные. Это вероятно наиболее важный компонент ГИС. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД, применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных

Исполнители. Широкое применение технологии ГИС невозможно без людей, которые работают с программными продуктами и разрабатывают планы их использования при решении реальных задач.

Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники (конечные пользователи), которым ГИС помогает решать текущие каждодневные дела и проблемы.

Методы. Успешность и эффективность (в том числе экономическая) применения ГИС во многом зависит от правильно составленного плана и правил работы, которые составляются в соответствии со спецификой задач и работы каждой организации.

4. Особенности графической информации в ГИС

4.1. Графическое представление объектов и атрибутов.

Существуют два основных метода представления географического пространства. Первый метод использует квантование, или разбиение пространства на множество элементов, каждый из которых представляет малую, но вполне определенную часть земной поверхности. Этот растровый метод может использовать элементы любой подходящей геометрической формы при условии, что они могут быть соединены для образования сплошной поверхности, представляющей все пространство изучаемой области. Хотя возможны многие формы элементов растра, например, треугольная или шестиугольная, обычно проще использовать прямоугольники, а еще лучше - квадраты, которые называются ячейками. В растровых моделях ячейки одинаковы по размеру, но это не является обязательным требованием для разбиения пространства на элементы, которое не выполняется в не очень широко используемом подходе, называемом квадродеревом. Рассмотрим модели, в которых все ячейки - одинакового размера, и представляют такое же количество географического пространства, как любые другие.

Растровые структуры данных не обеспечивают точной информации о местоположении, поскольку географическое пространство поделено на дискретные ячейки конечного размера. Вместо точных координат точек мы имеем отдельные ячейки растра, в которых эти точки находятся. Это еще одна форма изменения пространственной мерности, которая состоит в том, что мы изображаем объект, не имеющий измерений (точку), с помощью объекта (ячейки), имеющего длину и ширину. Линии, то есть одномерные объекты, изображаются как цепочки соединенных ячеек. Каждая точка линии представляется ячейкой растра, и каждая точка линии должна находиться где-то внутри одной из ячеек растра.

В растровых системах есть два способа включения атрибутивной информации об объектах. Простейшим является присваивание значения атрибута каждой ячейке растра. Распределяя эти значения, мы в конечном итоге позволяем позициям значений атрибутов играть роль местоположений объектов. Например, если числом 10 мы представляем водную поверхность, и записываем его в левую верхнюю ячейку растра, то по умолчанию эта ячейка является участком земной поверхности, представляющим воду. Таким образом мы можем каждой ячейке на данной карте присвоить только одно значение атрибута. Альтернативный подход, а на самом деле, - расширение только что описанного, состоит в связывании каждой ячейки растра с базой данных. Этот подход становится все более преобладающим, так как он уменьшает объем хранимых данных и может обеспечивать связь с другими структурами данных, которые также используют СУБД для хранения и поиска данных.

Растровые структуры данных могут показаться плохими из-за отсутствия точной информации о местоположении. На самом деле верно обратное. Растровые структуры имеют много преимуществ перед другими. В частности, они относительно легко понимаются как метод представления пространства. Например, телевидение использует то же растровое представление изображений в виде набора точек (пикселей). Еще одной замечательной характеристикой растровых систем является то, что, многие функции, особенно связанные с операциями с поверхностями и наложением, легко пополняются на этом типе структур данных. Среди главных недостатков растровой структуры данных - уже упоминавшаяся проблема низкой пространственной точности, которая уменьшает достоверность измерения площадей и расстояний, и необходимость большого объема памяти, обусловленная тем, что каждая ячейка растра хранится как отдельная числовая величина.

Второй метод представления географического пространства, называемый векторным, позволяет задавать точные пространственные координаты явным образом. Здесь подразумевается, что географическое пространство является непрерывным, а не разделенным на дискретные ячейки. Это достигается приписыванием точкам пары координат (X и Y) координатного пространства, линиям — связной последовательности пар координат их вершин, областям — замкнутой последовательности соединенных линий, начальная и конечная точки которой совпадают. Векторная структура данных показывает только геометрию картографических объектов. Чтобы придать ей полезность карты, мы связываем геометрические данные с соответствующими атрибутивными данными, хранящимися в отдельном файле или в базе данных. В растровой структуре мы записывали значение атрибута в каждую ячейку, в векторном же представлении мы используем совсем другой подход, храня в явном виде собственно графические примитивы без атрибутов и полагаясь на связь с отдельной атрибутивной базой данных. В векторных структурах данных линия состоит из двух или более пар координат, для одного отрезка достаточно двух пар координат, дающих положение и ориентацию в пространстве. Более сложные линии состоят из некоторого числа отрезков, каждый из которых начинается и заканчивается парой координат. Таким образом видно, что хотя векторные структуры данных лучше представляют положения объектов в пространстве, они не абсолютно точны. Они все же являются приближенным изображением географического пространства.

Хотя некоторые линии существуют самостоятельно и имеют определенную атрибутивную информацию, другие, более сложные наборы линий, называемые сетями, содержат также дополнительную информацию о пространственных отношениях этих линий. Например, дорожная сеть содержит не только информацию о типе дороги и ей подобную, она показывает также возможное направление движения. Другие коды, связывающие эти отрезки, могут включать информацию об узлах, которые их соединяют. Все эти дополнительные атрибуты должны быть определены по всей сети, чтобы компьютер знал присущие реальности отношения, которые этой сетью моделируются. Такая явная информация о связности и пространственных отношениях называется топологией.

Площадные объекты могут быть представлены в векторной структуре данных аналогично линейным. Соединяя отрезки линии в замкнутую петлю, в которой первая пара координат первого отрезка является одновременно и последней парой координат последнего отрезка, мы создаем область, или полигон. Как с точками и линиями, так и с полигонами связывается файл, содержащий атрибуты этих объектов.

В то время, как растровые и векторные структуры данных дают средства отображения отдельных пространственных феноменов на отдельных картах, все же существует необходимость разработки более сложных подходов, называемых моделями данных, для включения в базу данных взаимоотношений объектов, связывания объектов и их атрибутов, обеспечения совместного анализа нескольких слоев карты. Вначале рассмотрим растровые модели, затем - векторные.

4.2. Растровые модели.

Как говорилось выше, в растровых структурах данных каждая ячейка связана с одним значением атрибута. Для создания растровой тематической карты собираются данные об определенной теме в форме двухмерного массива ячеек, где каждая ячейка представляет атрибут отдельной темы. Такой двухмерный массив называется покрытием (coverage). Покрытия используют для представления различных типов тематических данных (землепользование, растительность, тип почвы, поверхностная геология, гидрология и т.д.). Кроме того, этот подход позволяет фокусировать внимание на объектах, распределениях и взаимосвязях тем без ненужной путаницы. Чаще всего создается отдельное покрытие для каждой дополнительной темы. Можно сложить эти покрытия наподобие слоеного пирога, в котором сочетание всех тем может адекватно моделировать все необходимые характеристики области изучения.

Существует несколько способов хранения и адресации значений отдельных ячеек растра, их атрибутов, названий покрытий и легенд. Среди первых попыток можно упомянуть подход под названием GRID/LUNR/ MAGI, все ранние растровые ГИС использовали именно его. В этой модели каждая ячейка содержит все атрибуты вроде вертикального столбика значений, где каждое значение относится к отдельной теме. Преимуществом, конечно, является то, что относительно легко выполняется вычислительное сравнение многих тем или покрытий для каждой ячейки растра. Но в то же время, неудобно сравнивать группы ячеек одного покрытия с группами ячеек другого покрытия, поскольку каждая ячейка должна адресоваться индивидуально.

4.3. Ввод данных, цифрование исходной информации.

Есть много способов ввода данных. Одни выглядят примитивными, вроде помещения прозрачной сетки на карту. Другие - более современны, так, например, используют устройства цифрового ввода - дигитайзеры и сканеры.

Перед тем, как использовать структуры данных, модели и системы, необходимо преобразовать нашу реальность в форму, понимаемую компьютером. Методы, при помощи которых это будет сделано, зависят в некоторой степени от имеющегося оборудования и от конкретной системы. Во-первых, подсистема ввода спроектирована для переноса графических и атрибутивных данных в компьютер. Во-вторых, она должна отвечать хотя бы одному из двух фундаментальных методов представления графических объектов - растровому или векторному. В-третьих, она должна иметь связь с системой хранения и редактирования, чтобы гарантировать сохранение и возможность выборки того, что мы введем, и давать возможность устранять ошибки и вносить изменения по мере необходимости.

Вначале необходимо определить, какой тип ГИС, векторный или растровый, будет использоваться, а также будет ли ваша ГИС способна преобразовывать эти типы данных один в другой. Некоторые программы работают главным образом на растровых структурах данных, в то время как другие оперируют в основном векторной информацией.

Хотя преобразование между векторной и растровой формами — дело достаточно обычное, есть несколько вещей, о которых следует помнить. Чаще всего при преобразовании векторов в растр результаты получаются визуально удовлетворительными, но методы растеризации могут давать результаты, которые не удовлетворительны для атрибутов, представляющие каждую ячейку. Это особенно верно вдоль границ областей, где имеется неопределенность с присвоением ячейкам растра атрибутов с одной или другой стороны границы. С другой стороны, преобразуя растр в вектора, вы можете сохранить подавляющее большинство атрибутивных данных, но визуальные результаты будут часто отражать блочный, лестничный вид ячеек растра, из которых преобразование было произведено. Существуют алгоритмы сглаживания этого лестничного эффекта, использующие математические методы сплайн-интерполяции. Не вдаваясь в подробности, укажем, что это просто графический прием, сглаживающий зубчатые линии и острые углы.

4.4. Методы ввода векторных данных.

Как ранее указывалось, существуют многие инструменты для ввода в ГИС векторных данных. Ограничим обсуждение дигитайзерной оцифровкой как распространенным "классическим" методом. Некоторые программы требуют ввода точек в определенной последовательности, в то время как другие этого не требуют. Документация и/или сама программа сообщит вам об этом. Кроме того, программа укажет, какие пронумерованные кнопки используются для ввода конкретных типов объектов. Одни кнопки используются для указания положения точечных объектов, другие — для обозначения концов прямых отрезков, третьи — для смыкания многоугольников. Многие ошибки оцифровки, особенно у новичков, происходят вследствие нажимания не тех кнопок, что требуется. Конкретная процедура оцифровки зависит также от структуры данных, которая используется программой. Одни требуют указания положений узлов, другие — нет. Одни требуют явного кодирования топологии во время оцифровки, другие используют программные методы построения топологии после того, как база данных заполнена. Правила различны для разных программ, и нужно заблаговременно просмотреть соответствующую документацию для выяснения этих стратегий. Эта работа может рассматриваться как часть процесса подготовки карты, а не самой оцифровки.

Атрибутивные данные в векторных ГИС вводятся чаще всего с использованием клавиатуры компьютера. Хотя этот способ ввода данных предельно прост, он требует такого же внимания, как и ввод графических объектов. Причины две. Первая: опечатки совершаются очень легко. Вторая, и возможно, наиболее проблематичная: атрибуты должны быть связаны с графическими объектами. Ошибки в таком согласовании — одни из наиболее трудных для обнаружения ошибок, поскольку их не всегда можно заметить на взгляд, и они не проявляются до начала выполнения какого-нибудь анализа. Хорошей практикой является проверка атрибутов в процессе ввода, возможно, во время частых коротких перерывов для их просмотра. Время, потраченное на это, окупится затем с лихвой при редактировании.

4.5. Методы ввода растровых данных.

Ввод растровых данных следует иной стратегии, нежели ввод векторных данных. Растровый ввод иногда все еще делается с использованием накладной сетки, когда атрибуты вводятся последовательно, друг за другом. Широкая доступность сканеров быстро вытесняет этот трудный метод ввода, однако его применение хорошо иллюстрирует разные методы, используемые программами оцифровки для ввода ячеек растра. В прошлом часто использовался также метод оцифровки растра с помощью дигитайзера, когда полученный с дигитайзера контур объекта в виде векторов затем заполняется пикселями уже самой программой оцифровки.

Прежде всего необходимо решить, какую площадь должна занимать каждая ячейка растра. Это решение должно быть принято до начала оцифровки или наложения сетки, чтобы сообщить программе оцифровки размер ячейки или дать оператору сведения о размерах квадратов сетки. Кроме того, нам следует решить, пригодится ли какой-нибудь метод кодирования (типа группового или блочного кодирования), который мог бы сократить процесс. При том, что методы сжатия данных хороши для уменьшения их объема, использование этих методов при вводе может оказаться не менее важным благодаря сокращению времени ввода. Некоторые растровые ГИС, не поддерживающие ввод с дигитайзера или поддерживающие ввод и с клавиатуры, и с дигитайзера, имеют команды, позволяющие вводить данные в виде цепочек или блоков атрибутов. Выбрав метод ввода, вы должны решить, как каждая ячейка растра будет представлять различные имеющиеся темы. Помимо разрешения растра, это может быть наиболее важным мнением, которое вы должны принять. Рассмотрим этот вопрос более подробно.

Для ввода растровых данных наиболее широко применяются сканеры. Однако, следует учитывать, что введенные со сканера тематические данные не становятся автоматически тематическими данными в растровой ГИС. Дело в том, что однородно закрашенные на карте области после считывания сканером неизбежно получают некоторый разброс значений, вследствие многих причин: неоднородность нанесения краски на карту, незаметная для глаз, неоднородность подсветки в сканере, износ карты и т.д. Кроме того, тематические карты обычно печатаются офсетным способом, который предполагает образование всего богатства полутонов и цветовых оттенков смешением мельчайших точек красок небольшого числа цветов. При сканировании эти незаметные на глаз точки, превращаются во вполне самостоятельные пиксели, образующие "винегрет" на месте внешне однородной по цвету области. Естественно, такие карты не пригодны для анализа. Результат сканерного ввода в сильной степени зависит от соотношения разрешений сканера и полиграфического растра. Именно сложность решения этой проблемы приводит иногда к решению использовать упомянутый выше способ ввода растровых данных посредством векторной оцифровки контуров объектов с последующим преобразованием в растр.

4.6. Устройства ввода.

Самые разные типы устройств использовались и используются для ввода информации в компьютер. Большинство из них, если не все, в большей или меньшей степени используются сегодня для ввода в ГИС. Возможно, первым подходом к картографическому вводу было утомительное и подверженное ошибкам использование прозрачного материала с нанесенной сеткой, с помощью которого данные, ячейка за ячейкой, вводились вручную в компьютер. В большинстве случаев ячейкам растра присваивались числовые значения, которые, опять же вручную, друг за другом вносились в компьютер. Это требовало применения некоторого правила, определяющего, где внутри ячейки растра помещался вводимый объект. В качестве такой точки может использоваться центр ячейки или любой из четырех ее углов. В то время как знание точного положения точки пространственной привязки каждого элемента принципиально необходимо для векторных систем, также важно определить это и для растровых данных, которые будут представляться внутри компьютера ячейками растра. Представьте себе, например, измерение расстояния на основе количества ячеек растра: вам нужно будет знать, от чего вы отсчитываете, - от сторон ячеек или от их центров. В конце концов, помните, что всякая ячейка растра занимает некоторую площадь. И чем больше эта площадь (т.е. чем ниже разрешение), тем более значимым становится этот вопрос.

Обычно приходиться работать с более современным и сложным оборудованием. Для ручного ввода пространственных данных стандартом является дигитайзер. Он является более совершенным и гораздо более точным родственником наиболее широко используемого графического манипулятора — мыши, которую пользователь может свободно перемещать по практически любой поверхности. Внутри мыши находятся датчики, которые реагируют на вращение резинового шара, помещенного внутрь корпуса мыши. Для увеличения точности подобного устройства в дигитайзере используется электронная сетка на его столике. К столику присоединено подобное мыши устройство, называемое курсором, которое перемещается по столу в различные положения на карте, которая к этому столу прикреплена. Курсор обычно имеет перекрестие, нанесенное на прозрачную пластинку, которое позволяет оператору позиционировать его точно на отдельных элементах карты. Кроме того, на курсоре размещены кнопки, которые (число их зависит от уровня сложности устройства) позволяют указывать начало и конец линии или границы области, явно определять левые и правые области и т.д. Использование кнопок определяется в основном спецификой программы ввода. Рабочая поверхность дигитайзера может быть гибкой или жесткой, размерами от книжной страницы до очень больших форматов для размещения больших карт, даже с запасом. Некоторые из крупноформатных дигитайзеров имеют подъемно-поворотное основание, позволяющее оператору устанавливать оптимальное для работы положение. Размер стола определяется частично размером вводимых документов. С расширением использования компьютеров растет и автоматизация ввода в них информации. Для автоматизации ввода карт используются такие устройства, как автоматизированные дигитайзеры и растровые сканеры с программами векторизации или без них.

Автоматизированные дигитайзеры, или дигитайзеры с отслеживанием линий, имеют устройство, подобное головке оптического считывания проигрывателя компакт-дисков. Оно фиксируется на выбранной пользователем линии (как проигрыватель фиксируется на дорожке записи) и, самостоятельно следуя вдоль нее, передает координаты точек линии в компьютер. Эти устройства требуют постоянного участия оператора, так как их нужно вручную устанавливать на каждую новую линию для продолжения процесса сканирования. Кроме того, они легко могут ошибаться на сложных картах и картах с низкой контрастностью изображения. Например, когда линия расщепляется на две, вполне обычна ситуация, когда сканер не знает, куда идти дальше. Эта проблема может оказаться еще тяжелее, линии изображаются пунктиром, который дигитайзер не может проследить из-за разрывов или из-за того, что цвет светлее и имеет меньший контраст, чем исходная линия.

Большее распространение получили растровые сканеры. Они позволяют вводить растровое изображение карты в компьютер без вмешательства человека. Для ввода цветных карт и снимков следует использовать цветные сканеры, для панхроматических снимков и топографических карт достаточно черно-белых сканеров, которые несколько дешевле. Если карта должна храниться в векторной модели данных, то после сканирования растровое изображение должно быть векторизовано. Векторизация в компьютере выполняется подобно тому, как работает сканер с отслеживанием линий, но здесь уже возможно более "разумное" поведение алгоритма, самостоятельно находящего и оцифровывающего линии. Здесь также наиболее удачно оцифровываются контрастные карты невысокой сложности. Сами растровые сканеры делятся на ручные, роликовые (с протяжкой листа), планшетные и барабанные. Планшетные сканеры представляют из себя прозрачное стекло, на которое кладется оригинал, и под которым перемещается лампа и устройство оптического считывания. Ручной сканер является, по сути, оптической головкой планшетного сканера, и пользователю приходится самому двигать ее по поверхности оригинала. Очевидно, что точность сканирования ручных сканеров - самая низкая, поэтому устройства этого вида практически не пригодны для ввода карт. Сканеры с протяжкой листа действуют подобно факсовому аппарату, т.е. в них двигается не головка считывания, а сам оригинал, как в пишущей машинке. Эти устройства обладают точностью, меньшей, чем планшетные сканеры, но зато позволяют сканировать очень длинные оригиналы. В барабанных сканерах оригинал закрепляется на круглом барабане, вдоль которого перемещается головка считывания. Эти устройства могут обеспечить высокую точность сканирования очень больших оригиналов.

Основные характеристики сканеров - оптическое разрешение, скорость сканирования и стабильность. Для офисных работ обычно используются достаточно быстрые сканеры с невысоким разрешением (300 точек на дюйм). Возможности калибровки обычно отсутствуют. Эти устройства могут использоваться для ввода карт и снимков дистанционного зондирования, когда требования точности позволяют это.

Наиболее продвинутые (и, конечно, наиболее дорогие) сканеры образуют категорию так называемых фотограмметрических сканеров. Другой вид сканеров, барабанный, использует более подробный растровый подход, который на самом деле ближе к векторному режиму. Карта прикрепляется к барабану, который вращается, в то время как чувствительный датчик прибора перемещается под прямым углом к направлению вращения. Таким образом, сканируется вся карта, линия за линией. Записывается каждое положение на карте, даже если там нет графических объектов. В результате создается подробное растровое изображение всей карты. Барабанные сканеры могут давать как монохромное, так и цветное изображение. В последнем случае каждый из основных цветов должен сканироваться по отдельности. Как монохромное, так и цветное изображение должны преобразовываться в векторную форму, если таковая требуется вашей ГИС. Обе формы создают очень большие файлы данных. Специализированные картографические сканеры большого формата очень дороги по сравнению с дигитайзерами того же формата. Кроме того, векторизация введенного растра может занять почти столько же времени, сколько и ручная оцифровка, особенно если карта оказалась очень сложной. Несомненно, по мере совершенствования технологии объем необходимого редактирования будет уменьшаться. Но нельзя верить заявлениям, что сканеры освободят человека от процесса ввода. Короче говоря, по меньшей мере в ближайшем будущем устройства автоматизированного ввода и программы векторизации будут экономить время только при условии четких карт с высоким контрастом. Чаще всего дорогие сканеры используются фирмами, специализирующимися на услугах оцифровки. Вы же можете ориентироваться на оцифровку карт с помощью дигитайзера, или с помощью менее дорогих сканеров, если их характеристики приемлемы для ваших целей.

5. Базы данных в ГИС.

5.1. Классификация современных СУБД.


Классификация СУБД в соответствии с используемой моделью данных:

  1. - иерархическая;

  2. - сетевая;

  3. - реляционная;

  4. - объектная;

  5. - гибридная (элементы объектной с реляционной).

В настоящее время самыми распространенными СУБД являются продукты использующие реляционную модель данных. Это связано с простотой понимания и лучшими характеристиками по сравнению с другими. В связи с этим остановимся на рассмотрение только реляционных СУБД (РСУБД).

Классификация РСУБД в зависимости от объема поддерживаемых БД и количества пользователей.

5.2. Оценка современных СУБД на соответствие требованиям, предъявляемым к автоматизированным информационным системам кадастра.


Рассмотрим стандартные современные реляционные СУБД по каждому классу продуктов, основные возможности, которые они предоставляют. Произведем оценку их, в соответствии с требованиями предъявляемым системам автоматизации кадастрового учета.


Продукт этого класса обладает широким диапазоном функциональных возможностей, включая поддержку двухфазной фиксации, тиражирования данных, хранимых процедур, триггеров, оперативно резервного копирования. Он предназначен для организации оптимального использования системных ресурсов, что гарантирует максимальную расширяемость. Поддерживает БД, занимающие несколько физических дисков, хранение новых типов данных. Поддерживает почти все аппаратные и программные платформы существующие на сегодняшний день, а также протоколы передачи данных. Широко применяется во многих отраслях промышленности . Зарекомендовал себя с самой лучшей стороны. Хорошая поддержка со стороны производителя, corp. Oracle.

SQL Server 10, comp. Sybase

Мощный продукт, поддерживающий обработку в реальном времени и процессы решений. Одного уровня с Oracle7, но обладает некоторыми ограничениями в плане масштабируемости, поддерживает ограниченное число аппаратных и программных платформ.

Данный продукт поддерживает такие современные технологии, как тиражирование данных, синхронизирующее распределенные БД, и большие двоичные объекты. Он может применятся для запуска OLTP-приложений (высокоскоростной обработки транзакций), но скорость обработки оказывается меньше, чем у продуктов верхней части рынка. Установка возможна на ограниченных количеств платформ. Имеет большие возможности для расширения.

Microsoft SQL Server 6.0, corp. Microsoft


Очень хорошая СУБД. Корпорация Microsoft разработала хороший продукт, который вписывается в общую концепцию компании, выпуская только интегрированные продукты. Эта СУБД интегрирована с Windows NT, дополняя ее. Недостатки: недостаточная масштабируемость, малое количество поддерживаемых программных платформ.

Так как каждая из них предоставляет похожий набор инструментов, то рассматривать каждое в отдельности не будем. В эту группу входят Cupta SQL-Base Server, Watcom SQL Network Server и другие. Они обладают ограниченными возможностями по сравнению с СУБД более высокого класса, но в небольших компаниях, где БД небольшие и количество пользователей ограничено несколько десятками людей, они прекрасно выполняют свои обязанности по управлению БД.

FoxPro 2.6, corp. Microsoft


Очень ограниченные возможности по обработке данных. Отсутствие возможности установки в сети. Предназначена личных дел. Не рекомендуется для использования в крупных системах. Отсутствует возможность защиты данных, управление доступом и многое другое.

Paradox 5.0, comp. Borland


В своем классе одна из лучших, однако ей присущи все недостатки настольных СУБД. Ограниченные возможности по применению. Удобный интерфейс.


При использовании конкретной СУБД необходимо учитывать три ключевых фактора: в какой архитектуре клиент/сервер он будет работать, каким образом реализуются основные функции и каков уровень поддержки распределенных БД. В зависимости от этого надо делать свой выбор.

Среди представленных продуктов только Oracle7 наиболее полно поддерживает нужные требования. Ниже будут даны основные понятия о сервере Oracle7.

6. Использование ГИС в лесном хозяйстве и лесной промышленности

Разумное использование, сохранение и восстановление лесов в современном урбанизированном мире становится все более сложной и, в то же время, не терпящей отлагательства, задачей. Планы, решения по сбережению и рациональному использованию лесных ресурсов и связанному с ними бизнесу часто противоречивы и принимаются в обстановке столкновения интересов и с высокой степенью неопределенности. Программное обеспечение в географических информационных системах (ГИС), дает возможность людям, занимающимся лесным хозяйством, легко интегрировать и использовать имеющиеся источники табличной и картографической информации для повышения качества принимаемых решений.

Большинство сложностей по управлению лесными ресурсами на базовом уровне в действительности являются информационной проблемой. Используя интегрированную ГИС, Вы получите гарантию того, что потребности всех лиц, связанных с лесным хозяйством, будут удовлетворены за счет общего и разделяемого доступа к объективной информации. ГИС дает лесникам мощное средство для того, чтобы показать применение принципов стабильного развития и интегрированного управления лесами. Лесоводство было одной из первых отраслей, применивших ГИС, но отнюдь не сразу управляющие действительно осознали ту интегрирующую роль, которую играют ГИС в создании планов, согласовании графиков, принятии важных решений по использованию ресурсов. Результатом явилось массовое применение технологии ГИС в целом в решении многих текущих и стратегических задач отрасли.

Сколько раз Вы хотели, чтобы у Вас была система, которая надежно следит за лесоводческими обязательствами и позволяет легко обновлять лесные кадастры? Сколько раз за последний год пересматривались и перерабатывались Ваши планы освоения? Можете ли Вы себе представить, что Вы задаете лесную делянку и быстро получаете сводку о объемах древесины, распределении видов, сопутствующих продуктах, возможных последствиях для природной среды и естественных местообитаний? Неправда ли было бы удобно иметь возможность распространять плановую информацию по всей организации регулярно и с минимальными усилиями?

С помощью интегрированной ГИС перечисленное выше - уже не проблемы, которые надо преодолевать, а новые возможности управляющего лесным хозяйством, владеющего нужными средствами и данными. Например, ARC/INFO освободит больше времени профессионалам для анализа альтернативных сценариев и концентрации на решении наиболее сложных проблем, которые действительно требуют их профессионального мастерства.

ГИС ARC/INFO идеально подходит для управления лесным хозяйством

Программное обеспечение ARC/INFO является мощным набором программных средств для создания и редактирования географических баз данных, для целей пространственного анализа, поиска, представления и управления данными. Эти средства могут использоваться для поддержки разнообразных функций управления лесными ресурсами, таких как: разработка долговременной стратегии поставок древесины, пятилетние прогнозы запасов, выбор системы лесозаготовки, расчет строительства дорог с минимальными затратами, проведение визуального ландшафтного анализа с наложением делянок, решение споров относительно границ собственности, установление границ естественных местообитаний, моделирование сценариев распространения лесных пожаров, осуществление тактического планирования по подавлению пожаров и многое другое.

Некоторые из особых свойств ARC/INFO, которые делают это программное обеспечение лидером ГИС в решении задач лесоводческой отрасли, состоят в следующем:

* Мощная и гибкая модель данных

- Интегрированное управление табличными и географическими данными

- Векторная топология (точка, линия и полигон) и растровые модели данных

* Интеграция данных

- Интеграция многих сред (например, растровых и векторных изображений)

- Поддержка стандартных форматов изображений и цифровое отображение

- Взаимосвязь с системами спутниковой привязки (GPS)

- Возможности обмена данными более чем в 30 стандартных форматах

* Автоматическое картирование, составление отчетов и анализ

- Отображение стандартных карт и составление таблиц

- Тематические карты, запросы и виды анализа

* Интеграция баз данных и снабжение стандартами во всей организации

- Прямой доступ к базам данных в среде ГИС

- Поддержка многих стандартных промышленных реляционных баз данных и сетевых функций

- Функции надежной безопасности баз данных

- Возможности управления библиотекой карт

* Комплексный пространственный анализ и возможности запроса

- Перекрытия точка-, линия-, полигон-полигон, связи соседства и близости

- Моделирование по регулярной сетке с применением расширений ARC/INFO

- Анализ линейных сетей. Анализ линейных сетей.

Где ГИС используется в лесоводстве ?

Многие лесоводческие организации открыли для себя настоящую ценность программного обеспечения ARC/INFO в области совершенствования принятия решений и повседневной деятельности. По мере роста потребностей в природных ресурсах, становится настоятельно необходимым, чтобы планы управления природными ресурсами были более понятными, более динамичными, доступными для общественности, и учитывали многие ценности, связанные с лесом, землей и обществом. Программное обеспечение ARC/INFO управляет очень большими географическими базами данных в сплошном безразрывном режиме. Мощная среда данных позволяет интегрировать широкое многообразие прикладных задач, что отвечает современным требованиям планирования лесного хозяйства. С появлением программного обеспечения ArcView, родственного программному продукту ARC/INFO, которое создано для отображения данных и запроса баз данных ARC/INFO, объединенные географические данные стали легкодоступны для всех внутри компании, округа, района, штата, провинции или даже государства.

Планирование стратегического управления

Планирование управления лесами включает составление прогнозов того, как будет будет выглядеть лес в результате тех или иных способов управления. Возможность данного анализа является решающей практически для всех сторон прогноза управления, особенно в области долгосрочных оценок продукции древесины и естественных местообитаний. Прогнозирование включает применение стратегии управления - обычно в виде модели - к лесным ГИС-кадастрам и проектирование результата действия стратегии на лес и другие связанные земельные объекты в будущем. Это означает, что информационные системы лесного хозяйства должны не только описывать текущее состояние леса, но и уметь работать с динамикой освоения лесов и изменениями обширных ландшафтных областей, как на коротком, так и на длинном отрезке времени.

Программное обеспечение ARC/INFO может играть ключевую роль в решении этой прикладной задачи. ARC/INFO запоминает как географическую, так и численную структуру лесов и, с помощью Макроязыка ARC AML, связывает пространственную базу данных с моделями планирования, предоставляя полный контроль пользователю через графический интерфейс. Поэтому конечный пользователь может без труда просматривать базы данных, устанавливать параметры модели, наблюдать за результатами. ARC/INFO дает эффективную возможность добавлять важные параметры, как временные, так и пространственные, в процессе планирования управления. В рамках кадастра и модели Вы можете наблюдать, как может выглядеть лес в будущем через 5, 10, 25 или 100 лет.

Планирование управления - делянки для лесозаготовок

Топологически структурированная база данных программного обеспечения ARC/INFO дает важную информацию для пространственного моделирования лесов. Пространственные модели лесов используют как абсолютные, так и относительные географические привязки лесных массивов в проектировании и проверке стратегий лесозаготовок как части процесса планирования лесного хозяйства. Так как учитывается размещение отдельных лесонасаждений, можно создавать графики лесозаготовок и будущие участки, которые легко преобразовать в карты. Одновременно с этим относительная географическая привязка дает возможность учесть экономические и естественно-природные особенности.

Планирование подходов к лесу и дорог

Планирование дорожной сети в лесу существенно сказывается на надежности оценок возможных годовых объемов лесозаготовки. Главными элементами успешного создания плана подходов служат: учет местоположения, время строительства, строительные стандарты дорожной сети. Однако, проектирование и оценка альтернативных вариантов дорожной сети без применения ГИС становятся трудным делом из-за ограниченности непространственных баз данных.

Прикладные средства ARC/INFO дают возможность планировщикам лесозаготовок в динамическом режиме задавать сроки доступа и расходы на транспортировку древесины в имеющейся кадастровой базе данных для разных вариантов прокладки дорог. В соединении с другими характеристиками лесонасаждений, такими как видовой состав и объемы деловой древесины, становится возможным анализ выгодности проекта сети дорог с точки зрения стоимости заготовленной древесины.

Другие прикладные задачи, решаемые пользователями ARC/INFO при планировании подходов к лесу и дорог, включают:

* Анализ устойчивости поверхности и склонов с применением ARC/INFO TIN

* Расчеты выемок и насыпей

* Анализ видимости

* Расчеты уравнивания и нивелирования

* Исследования коридоров движения

* Оценки воздействия на природную среду

* Интеграция данных съемок с применением ARC/INFO COGO

* Анализ стоимостей и потоков с применением ARC/INFO NETWORK

* Графическое отображение затрат на создание дорог на основе характеристик рельефа, склонов и поверхностей. Графическое отображение затрат на создание дорог на основе характеристик рельефа, склонов и поверхностей.

Дистанционное зондирование и оценка первичных ресурсов лесов

Лесники уже давно оценили потенциальную значимость цифровой информации дистанционного зондирования для обновления лесных кадастров. Тем не менее, чтобы практически использовать этот ценный источник информации, данные спутниковых изображений должны получить географическую привязку, должны быть откорректированы с учетом рельефа и связаны с такой технологической инфраструктурой как ГИС.

Эти требования теперь выполняются, что способствует развитию новых направлений картирования и управления в лесоводстве. Например, организации по лесному хозяйству на северо-западе тихоокеанского побережья США использовали базу данных ARC/INFO совместно с системой по обработке изображений ERDAS, чтобы помочь решению проблем, связанных с первичными лесами - для выяснения где и сколько их есть ,и как учесть их при планировании ресурсов. Управления по ресурсам теперь могут включать данные дистанционного зондирования, используя средство ERDAS-ARC/INFO Live Link, анализировать их совершенными средствами обработки изображений и статистическими программами, а затем интегрировать их с другими ресурсными картами в ГИС.

Интегрированное управление ресурсами

Интегрированное управление ресурсами использует разнообразные источники данных и процедуры комплексного анализа, обычно в больших временных рамках и для крупных лесных территорий. Основная цель состоит в том, чтобы создать план освоения, приемлемый со всех точек зрения. Основой плана служит исчерпывающий рабочий кадастр лесов и система обновления, включающая организацию записей о росте, урожае и т. п. Другие ресурсные показатели, интегрированные с базой данных, включают параметры воздействия на дикую природу, зоны рекреации, воду, качество местности, биоразнообразие, живописность ландшафта. Программное обеспечение ARC/INFO может интегрировать все эти характеристики для более объективной разработки и проверки альтернативных вариантов освоения.

Заключение

Сегодня геоинформатика предстает в виде системы, охватывающей науку, технику и производство. Учитывая особенности геоинформатики с точки зрения этих трех систем трактовка геоинформатики и самих геоинформационных систем сводится к следующим дефинициям.

Научно-познавательный подход. Геоинформатика – научная дисциплина, изучающая природные и социально-экономические системы (их структуру, связи, динамику, функционирование в пространстве и во времени) посредством компьютерного моделирования на основе баз данных и географических знаний. Основная цель геоинформатики как науки — это управление подоьными системами в широком понимании, включая их инвентаризацию, оценку, прогнозирование, оптимизацию и т.п. ГИС – средство моделирования и познания таких систем.

Технологический подход. Геоинформатика – это технология сбора, хранения, преобразования, отображения и распространения пространственно-координированной информации, имеющая целью обеспечить решение задач инвентаризации, оптимизации, управления геосистемами. ГИС - техническое средство накопления и анализа информации в процессе принятия решений.

Производственный подход. Геоинформатика – производство (геоинформационная индустрия) имеющее целью изготовление аппаратных средств и программных продуктов, включая создание баз и банков данных, систем управления, стандартных (коммерческих) ГИС разного целевого назначения и проблемной ориентации, формирование ГИС-инфраструктуры и организация маркетинга. ГИС – программная оболочка, реализующая геоинформационные технологии.

Основным назначением ГИС следует считать формирование знаний о процессах и явлениях на земной поверхности и применение этих знаний для решения практических задач во всех сферах человеческой деятельности.

Подводя итог, следует констатировать, что ГИС в настоящее время представляют собой современный тип интегрированной информационной системы, применяемой в разных направлениях. Она отвечает требованиям глобальной информатизацией общества. ГИС является системой способствующей решению управленческих и экономических задач на основе средств и методов информатизации, т.е. способствующей процессу информатизации общества в интересах прогресса.

ГИС как система и ее методология совершенствуются и развиваются, ее развитие осуществляется в следующих направлениях:

- развитие теории и практики информационных систем;

- изучение и обобщение опыта работы с пространственными данными;

- исследование и разработка концепций создания системы пространственно-временных моделей;

- совершенствование технологии автоматизированного изготовления электронных и цифровых карт;

- разработки технологий визуальной обработки данных;

- разработки методов поддержки принятия решений на основе интегрированной пространственной информации;

- интеллектуализации ГИС.



Список литературы


1. Кольцов А.С. Геоинформационные системы: учеб. пособие /А.С. Кольцов, Е.Д. Федорков. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2006. 203 с.

2. Цветков В.Я. Геоинформационные системы и технологии / В.Я. Цветков ФиС. М.: Эко-Тренд 1998.

3. Материалы сайта Дата плюс, адрес: http://www.dataplus.ru/

4. Географические информационные системы: Учебное пособие В. В. Фомин, З. Я. Нагимов, С. А. Шавнин, Д. Ю. Голиков: Уральский государственный лесотехнический университет. Екатеринбург, 2003. 90с.

5. Геоинформатика в лесном хозяйстве: Учебник \ И.А. Вуколова. М.:ВНИИЛМ, 2002 – 216с., с ил.




Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации