Корольченко А.Я. Процессы горения и взрыва - файл n1.doc

приобрести
Корольченко А.Я. Процессы горения и взрыва
скачать (1925 kb.)
Доступные файлы (1):
n1.doc1925kb.08.07.2012 22:05скачать

n1.doc

1   2   3   4   5   6   7

44

Глава 2. Химические процессы при горении

Приведенная последовательность реакций приводит к постепенному увеличению в реагирующей системе концентрации перекисных соедине­ний.

Одновременно с накоплением перекисей, радикаловиначи-

нают идти параллельные реакции:



и



Эти реакции экзотермичны; при их протекании выделяется большое количество тепла.

При повышении температуры реагирующей смеси роль активных центров переходит от одних промежуточных продуктов к другим в сле­дующем порядке: гидроперекиси алкилов, ацильные гидроперекиси, фор­мальдегиды.

Экспериментальные исследования изменения состава реагирующей смеси во времени в высокотемпературной области (600-800°С) показыва­ют, что процесс превращения исходных углеводородов в конечные про­дукты горенияиразделен на две стадии: на первой, протекаю­щей с очень высокой скоростью, происходит окисление углеводородов до СО. На второй, медленной, стадии СО окисляется до. Отсюда следует очень важный вывод: многие закономерности горения углеводородов мо­гут быть объяснены особенностями горения оксида углерода.

2.5. Горение углерода

Горение углерода протекает по механизму гетерогенного процесса, специфика которого заключается в том, что химическую стадию нельзя рассматривать изолированно от процесса переноса газообразного окисли­теля (кислорода воздуха) из окружающего пространства к поверхности горящего твердого тела. Скорость горения оказывается зависящей как от химических свойств углерода, так и от характеристик, определяющих процесс подвода кислорода к поверхности топлива. Поступление кисло-рода в зону горения осуществляется посредством диффузии и поэтому

45

Корольченко А.Я. Процессы горения и взрыва

зависит от многих факторов: формы и размеров горящего тела, движения газовой среды, коэффициентов диффузии кислорода и продуктов реакции как в пространстве над поверхностью топлива, так и в трещинах и порах, содержащихся в угле и коксе в значительных количествах.

Для иллюстрации особенностей гетерогенного горения углерода рассмотрим поведение отдельного кусочка угля, помещенного в нагретую до температуры 900°С печь. В начальный момент горение угля будет про­исходить за счет кислорода, находящегося вблизи его поверхности. После его израсходования вокруг накаленной поверхности образуется слой про­дуктов горения -. Скорость горения снизится, и процесс мог бы пре­кратиться, если бы не было поступления кислорода из более удаленных областей газового пространства.

Это поступление происходит посредством диффузии, и скорость го­рения будет определяться величиной диффузионного потока. Интенсив­ность диффузии в значительной степени зависит от интенсивности и ха­рактера движения газовой среды вблизи горящей поверхности. Скорость химической реакции определяется главным образом температурой. Гете­рогенные реакции, так же, как и гомогенные, подчиняются закону Арре-ниуса.

При высокой температуре реакция окисления углерода протекает очень быстро, и суммарная скорость процесса будет лимитироваться диффузией кислорода к поверхности.

Таким образом, процесс горения углерода состоит из двух разных по природе процессов: процесса переноса кислорода воздуха из газового пространства к месту его потребления и процесса его химического взаи­модействия с поверхностью твердого углерода. Оба эти процесса взаимо­связаны, но для каждого характерны свои закономерности. Наиболее важ­ным из этих процессов является процесс потребления кислорода, для ко­торого характерно многообразие химических реакций.

Механизм сложной реакции соединения кислорода с углеродом за­ключается в образовании одновременно двух окислов СО и С02 через промежуточный физико-химический комплекс вида СХ0У, который затем расщепляется на СО и. Соотношение между этими окислами зависит от условий горения. Соответственно этому уравнение реакции горения углерода может быть записано следующим образом:



46

Глава 2. Химические процессы при горении

Затем протекает гомогенная реакция горения оксида углерода:



механизм которой рассмотрен в разделе 2.3.

Эта реакция может протекать как вблизи углеродной поверхности, так и внутри угольной массы, в ее порах и трещинах.

Другая реакция является гетерогенной реакцией между накаленным углеродом и диоксидом углерода:



Она протекает с заметной скоростью в местах, где наблюдается не-хватка кислорода, но где достаточно высока температура углерода.

Совокупность протекания описанных реакций определяет состав продуктов горения углерода.

47

Глава 3.

ВОЗНИКНОВЕНИЕ ПРОЦЕССОВ ГОРЕНИЯ

Горение в горючих смесях может возникнуть в результате их само­воспламенения, зажигания внешним источником или самовозгора­ния. Если процессы самовоспламенения и зажигания характерны для ве­ществ, находящихся в газообразном, жидком или твердом состоянии, то самовозгорание характерно для твердых материалов (особенно находя­щихся в мелкораздробленном состоянии) или высококипящих жидкостей, распределенных на материалах с развитой поверхностью.

3.1. Самовоспламенение. Стационарная теория

Стационарная теория самовоспламенения (теория теплового взрыва) объясняет наличие критических условий самовоспламенения. В этой тео­рии рассматривается стационарное в тепловом отношении состоящие реа­гирующей системы «горючее вещество - окислитель», при котором теп-лоотвод от системы равен тепловыделению. Теория позволяет определить условия достижения критического состояния. При этом для решения за­дачи используется модель реакции нулевого порядка, характеризующаяся отсутствием расходования в процессе реагирования исходных продуктов.

Тепловая теория самовоспламенения разработана академиком Н. Н. Семеновым. Она заключается в следующем. Предположим, в сосуде объ­емом V находится горючая смесь. Температура стенок сосуда поддержи­вается постоянной и равна Т0. При температуре смеси Т в ней будет про­текать химическая реакция со скоростью, подчиняющаяся закону Арре-ниуса:

(3.1)

где С - концентрация кислорода, п - порядок реакции, R - универсальная газовая постоянная, Е- энергия активации.

При величине теплового эффекта реакции равным q скорость выде­ления тепла qi реагирующей со смесью составит:

48

Глава 3. Возникновение процессов горения

(3.2)

Часть выделившегося тепла пойдет на нагревание смеси, а остальное тепло будет отводиться в окружающую среду. Количество отводимого тепла q2 равно:

(3.3)

где - коэффициент теплоотвода, S - поверхность стенок сосуда, в ко­тором заключена смесь.

Для выяснения условий самовоспламенения рассмотрим рис 3.1. На этом графике по горизонтальной оси отложена температура смеси, а по вертикальной - количество тепла, выделяющегося и отводимого в едини-цу времени. Три наклонных прямыхсоответствуют трем значениям

начальной температуры.



Рис. 3.1. Тепловыделение qi и теплоотвод q 2 при химической реакции смеси в сосуде объемом V

При установившемся состоянии реагирующей смеси тепловыделе-ние от реакции q1 будет равно теплоотводу q2. Соответствующая этому встоянию температура будет равна абсциссе точек пересечения кривых q1(T) и q2(T). Из рис. 3.1 видно, что кривые тепловыделения и теплоотвода иногда пересекаются в двух точках, а иногда - в одной.

Рассмотрим первый случай - пересечение в двух точках. Смесь с начальной температурой Т0 за счет теплоты реакции будет нагреваться до

49

Корольченко А.Я. Процессы горения и взрыва

равновесного состояния, отображаемого точкой С (при этом температура реагирующей смеси равна Та). Это состояние системы будет устойчивым, поскольку дальнейшее повышение температуры сопровождается превы­шением теплоотвода над тепловыделением. Вторая точка пересечения кривых В лежит в области более высоких температур и тепловой режим системы в этом случае будет неустойчивым. При отклонении от состоя­ния, отвечающего точке В, система в прежнее состояние уже не возвра­тится, а будет все более отклоняться от него.

При увеличении начальной температуры стенок сосуда Т0 прямая, характеризующая теплоотвод, будет смещаться вправо, а температура реагирующей смеси Та будет непрерывно и плавно возрастать. При неко­торой температуре Тсв кривые qi(T) и q2(T) соприкасаются (точка С), что физически означает равенство при этой температуре величин тепловыде­ления и теплоотвода. Точка С характеризует граничные условия сущест­вования стационарного режима. При незначительном повышении темпе­ратуры стенки сосуда по сравнению с Тсв тепловыделение будет превы­шать теплоотвод и произойдет резкое увеличение температуры реаги­рующей смеси.

Явление, заключающееся в переходе от медленно протекающей ре­акции, сопровождающейся незначительным разогревом, к бурному про­грессивно ускоряющемуся выгоранию смеси, называется самовоспламе­нением. В научной литературе его часто называют явлением «теплового взрыва».

Рассмотрим количественные соотношения, характеризующие про­
цесс самовоспламенения газовых смесей. <

В точке касания кривых тепловыделения и теплоотвода величины q
и q2, а также их производные по температуре равны. Таким образом, для
критического условия существования смеси можно записать: |





= a-(Ta-TeyS (3.4:.











a-S. (3.5;




Глава 3. Возникновение процессов горения

Разделив левые и правые части уравнений, получим:




или

(3.6)





Отсюда

(3.7)



(3.8)

Температуре самовоспламенения в формуле (3.8) соответствует знак минус перед значением квадратного корня.

Установлено, что . Поэтому подкоренное выражение в

формуле (3.8) можно заменить разложением в ряд и с достаточной точно­стью ограничиться тремя первыми членами разложения. Тогда получаем:




(3.9)

И окончательно:



(3.10)



Многочисленными экспериментами установлено, что величина • не превышает нескольких процентов от значения То. Поэтому, не делая заметной ошибки, можно принять:



С учетом этого, формула (3.5) может быть представлена в виде:

(3.11)

Соотношение (3.11) устанавливает связь, между составом горючей смеси и величиной температуры самовоспламенения. Если принять поря-

51

Корольченко А.Я. Процессы горения и взрыва

док реакции п = 2, то зависимость между С и Тсе отражается кривой, по­казанной на рис. 3.2 и ограничивающей область самовоспламеняющихся смесей.



Рис. 3.2. Зависимость температуры самовоспламенения от состава смеси при постоянном давлении

Теория, в полном согласии с экспериментом, показывает, что не лю­бая смесь горючего с окислителем может самовоспламениться. Самовос­пламеняются лишь смеси, состав которых находится в пределах соответ­ствующих концентраций.

В настоящее время установлено, что при самовоспламенении могут преобладать тепловые, либо цепные процессы. При дальнейшем изложе­нии мы ограничимся рассмотрением вопросов, относящихся к тепловой теории.

Величина температуры самовоспламенения зависит от химического строения веществ и находится в области достаточно высоких температур:

Вещество Температура

самовоспламенения, °С

Метан 535

Этан 515

Пропан 465

52

Глава 3. Возникновение процессов горения

Бутан

405

Пентан

285

Гексан

235

Этилен

540

Аммиак

650

Бензол

535

Сероуглерод

105

3.2. Зажигание

Зажигание, как и самовоспламенение, характеризует условия воз­никновения горения. Эти явления имеют одинаковую природу, описыва­ются одними и теми же дифференциальными уравнениями.

В случае самовоспламенения подводимое к реагирующей системе тепло распределяется по всему объему этой системы. Реакция горения при самовоспламенении протекает практически одновременно во всем объеме системы, а начальный очаг горения возникает в ее центре, где потери теп­ла минимальны. Одним из наиболее важных параметров при самовоспла­менении является объем реагирующей смеси, поскольку от этого пара­метра существенно зависит отвод тепла в окружающее пространство.

При зажигании* в отличие от самовоспламенения нагревается не­большой объем горючей смеси. Зажигание, т. е. инициирование горения может быть осуществлено накаленным телом, пламенем или электриче­ской искрой. Механизм процесса зажигания близок к механизму самовос­пламенения, но более сложен. Критические условия зажигания зависят от свойств горючей смеси, от свойств источника зажигания и от начальных условий распространения пламени.

Основной отличительной особенностью зажигания является проте­кание реакции окисления, инициируемое локальным источником тепла, а не путем накопления тепла в системе за счет реализации химической ре­акции. Для процесса зажигания определяющим является наличие большой разности температур между горючей системой и источником зажигания. Размеры системы играют второстепенную роль.

Для выяснения механизма зажигания рассмотрим схему, предло­женную Вант-Гоффом (рис. 3.3). Зависимости, представленные на этом

* В теории горения процесс зажигания горючей смеси часто обозначается терми­нами «вынужденное зажигание» и «вынужденное воспламенение».

53

Корольченко А.Я. Процессы горения и взрыва

рисунке, характеризуют изменение температуры среды при попадании в нее накаленного шарика. Линии а1, а2 и а3 отражают изменение темпера­туры инертной среды, линии b1, b2и bз - горючей.




Рис. 5J. Изменение температуры смеси

в зависимости от температуры

поверхности шарика

Вначале, темпе­ратура Т1 поверхности шарика, играющего роль источника зажи­гания, выше темпера­туры газовой смеси, но ниже той темпера­туры, при которой происходит воспламе­нение смеси. В этом случае распределение температуры T вблизи поверхности шарика изобразится кривой a1 (для инертной среды) и кривой b1- для го­рючей. Кривая b1 рас­полагается несколько выше a1 за счет тепло­выделения в горючей среде.

Если повысить температуру шарика Т2 > T1, то в инертной среде она будет пони­жаться быстрее, чем в предыдущем случае. Ее снижение характе­ризует кривая a2_. В реагирующей смеси, благодаря возраста­нию скорости реакции с повышением темпе-

54

Глава 3. Возникновение процессов горения

ратуры, кривая T(Z) вблизи поверхности шарика будет снижаться медлен­нее, чем в предыдущем случае. Но величина этой температуры еще не достаточна для возбуждения реакции горения. Температура Т2 является критической температурой, аналогичной температуре самовоспламене­ния. При повышении температуры поверхности шарика выше критиче­ской, например до температуры Т3, в горючей смеси инициируется горе­ние. При этом поверхность уже не участвует в процессе, а определяющи­ми становятся свойства горючей смеси.

Экспериментальные данные свидетельствуют о том, что критиче­ская температура при зажигании выше, чем при самовоспламенении. Это связано с быстрым падением температуры газовой смеси по мере удале­ния от поверхности нагретого тела. При этом концентрация горючего компонента вблизи поверхности вследствие протекания химической реак­ции оказывается ниже, чем в остальном объеме. В экспериментах наблю­даются ситуации, когда около нагретого тела реакция протекает, но далее пламя не распространяется.

Математическое описание процесса зажигания выполнено академи­ком Я. Б. Зельдовичем. Для этого использована следующая модель: горю­чая газовая смесь заключена между двумя бесконечными плоскими па­раллельными стенками. Одна стенка имеет температуру Ts, а вторая - Т0 (при этом TS>T0) Стационарное распределение температуры в газовой смеси устанавливается только в том случае, когда температура нагретой стенки не превышает критическую величину и около нее не происходит химическая реакция. При критических условиях, по аналогии с процессом самовоспламенения

(3.12)

где Z - расстояние от нагретой стенки; индекс «СТ» указывает на то, что градиент температуры относится к слою газа у поверхности стенки.

Распределение температуры в газе описывается уравнением тепло­проводности, которое для рассматриваемого случая имеет вид:

(3.13)

где- коэффициент теплопроводности газовой смеси, q - тепловой эф­фект,- скорость реакции.

55

Корольченко А.Я. Процессы горения и взрыва

Скорость реакции зависит от температуры по закону Аррениуса:




(3-14)

Введем новую переменную







и уравнение (3.13) запишем так:




(3.15)

Интегрируя (3.15), получим:




(3.16)

Отсюда следует, что поток тепла в газовой смеси отвечает соотно­шению:




(3-17)

Поскольку скорость реакции зависит от температуры, то реакция в газовой смеси между стенками будет в основном протекать в узком слое , прилегающем к нагретой стенке. Внутри этого слоя величина Ts- Г при условиях, близких к критическим, будет мала по сравнению с Т.

Поэтому, можно принять:







и что

(3.18)

(3.19)

56

Глава 3. Возникновение процессов горения

Подставляя (3.19) в (3.15), интегрируя и принимая во внимание, что

(dT\ -п при критических условиях зажигания выполняется условие ~rz т - и s

получим:




(3.20)

Эксперимент показывает, что величина







при изменении Ts— T на десятки градусов меняется в узких пределах: от 1 до 0,4. Следовательно, значение у вне зонынезначительно отличается от величины







Таким образом, тепловой поток из зоны реакции будет равен:




(3.21)

Величину этого теплового потока при установившемся состоянии можно представить в упрощенном виде:




(3.22)

Отсюда следует, что при стационарном режиме выполняется сле­дующее равенство:



(3.23)

57

Корольченко А.Я. Процессы горения и взрыва

Соотношение (3.23) устанавливает зависимость критических ве­личин и условий, при которых реализуется зажигание, от размеров со­суда.

Зажигание искрой горючей смеси представляет собой более слож­ное явление, чем зажигание нагретым телом. В искре происходит интен­сивное местное возбуждение молекул и их ионизация. Одновременно искра в зоне своего действия вызывает сильное повышение температуры газа. В упрощенном виде искру можно представить как накаленное газо­образное тело.

При зажигании искрой для каждой горючей смеси существует неко­торая минимальная мощность искры, при которой смесь воспламеняется. Эта мощность зависит от состава смеси, давления и температуры. Харак­тер этой зависимости от состава смеси показан на рис. 3.4. Он одинаков для всех горючих газов и паров. Наименьшая величина энергии требуется для зажигания смесей стехиометрического состава. Эта величина называ­ется минимальной энергией зажигания. Значения минимальной энергии зажигания для некоторых газов приведены в табл. 3.1.



Рис. 3.4. Зависимость энергии зажигания от состава смеси Cстех - стехиометрический состав; Емин - минимальная энергия зажигания

Глава 3. Возникновение процессов горения

Таблица 3.1 Минимальная энергия зажигания

Вещество

Емин, мДж

Метан

0,28

Этан

0,24

Пропан

0,25

Бутан

0,25

Гексан

0,25

Аммиак

680

Этилен

0,12

Водород

0,017

3.3. Самовозгорание

Процесс самовозгорания принципиально не отличается от процесса самовоспламенения. Оба этих процесса характеризуются одинаковыми закономерностями возникновения и развития.

Разделение этих процессов условно. Оно основано на величине тем­пературы начала их развития. Если процесс возникновения горения в от­сутствие внешнего источника начинается при температуре выше 100 °С, его обычно называют самовоспламенением, если при температуре ниже 100 °С - самовозгоранием.

Самовозгораться могут вещества в различном агрегатном состоя­нии: газы, жидкости и твердые. Самовозгорающиеся при нормальной температуре газы называются пирофорными.

Если температура реагирующей системы меньше температуры ок­ружающей среды, то для развития процесса самовозгорания необходимо наличие прогрева, протекающего в четыре стадии (рис. 3.5):

  1. Прогрев системы от внешнего источника тепла в результате теп­лообмена с окружающей средой. Выделением тепла за счет химической реакции на этой стадии пренебрегается.

  2. Прогрев вещества за счет внешнего и внутреннего источника. Внут­ренним источником является тепло от начавшейся химической реакции.

  3. Саморазогрев системы за счет химической реакции с теплопоте-рями в окружающую среду.

  4. Адиабатический саморазогрев системы.

59

Корольченко А.Я. Процессы горения и взрыва

Анализ этих стадий наиболее удобно выполнить по схеме, разрабо­танной профессором В. И. Горшковым, введя безразмерные переменные температуры




(3.24)




и времени

(3.25)

где Т* - температура в точке касания кривых тепловыделения и теплоот-вода по диаграмме Семенова (рис. 3.1, точка С) ; Т - текущая температу­ра; Q - тепловой эффект реакции, Дж/кт*К; р - плотность материала, кг/м3; К0 - предэкспоненциальный множитель, 1/с; С - теплоемкость ма­териала, дж/кг К; t - текущее время, с.



Рис. 5.5. Изменение температуры системы при наличии стадии прогрева (точками отмечены границы стадий)

60

Глава 3. Возникновение процессов горения

Схема профессора В. И. Горшкова предполагает оценку периода ин­дукции - промежутка времени от начала процесса до самовозгорания. Пе­риод индукции представляет собой сумму времен (рис. 3.5). Общее выражение для периода индукции имеет вид:

(3.26)

где- безразмерная температура окружающей среды



Для стадии прогрева 1 при отсутствии химической реакции в соот­ветствии с формулой (3.26) можно записать

. , (3.27)

интегрирование которого с учетом начальных условийицает:

(3.28)

где -ч неизвестная пока температура в точке на диаграмме -рис. 3.5.

Для расчета времени прогрева системы на стадии 2 экспоненту (уравнение 3.26) нужно разложить в ряд в окрестности точкии, ог-

раничившись линейной частью ряда, получить

(3.29)

При подстановке соотношения (3.29) в формулу (3.26) имеем

(3.30)

61

Корольченко А.Я. Процессы горения и взрыва

Для определения неизвестных значений температур на границах стадий учтем, что на границах этих участков равны не только температу­ры вещества, но и их производные по времени. Поэтому с учетом уравне­ний (3.27) и (3.30), для точки а справедливо соотношение

(3.31)

откуда

Для Ахь подставив формулу (3.31) в уравнение (3.28), получим:

(3.32)

Путем интегрирования уравнения (3.30) найдем время задержки воспламенения на втором участке:




(3.33)

Решение уравнения (3.30) с учетом, что(см. формулу

3.31), получаем:

(3.34)

Время задержки самовозгорания на участке 3 можно определить ме­тодом разложения экспоненты в ряд в окрестности точки

(3.35)

Уравнение (3.26) может быть представлено в виде:

(3.36)

Поскольку левые части уравнений (3.36) и (3.30). равны, то, прирав­нивая правые части, определим температуру в точке в:

(3.37)

62

Глава 3. Возникновение процессов горения

. Из формул (3.34) и (3.37) найдем время, затрачиваемое реакцией на преодоление участка 2:




(3.38)

На участке 4, в условиях адиабатического разогрева вещества, экс­поненту разложим в ряд Тейлора в окрестности точкии ограничимся тремя первыми членами разложения:

(3.39)

С учетом адиабатичности процесса теплоотдачей в окружающую среду при рассмотрении этого участка можно пренебречь и принять в формуле (3.26)

Тогда, в соответствии с формулами (3.26) и (3.39) получаем:



(3.40)

Поскольку в точкепроизводные по температуре равны, приравняв уравнения (3.36) и (3.40), имеем:

(3.41) и, соответственно, время на участке 3 равно:



(3.42)

посколькуопределяется соотношением (3.37).

Интегрирование уравнения (3.40) позволяет оценить время адиаба­тического разогрева:



(3.43);:

На участке 4 происходит неограниченное возрастание скорости ре­акции. Поэтому в качестве верхнего предела интегрирования можно при-

63

Корольченко А.Я. Процессы горения и взрыва

нять бесконечность. С учетом этого обстоятельства и приняв во внимание, что на рассматриваемом участкеполучаем:

(3-44) Период индукции теплового самовозгорания получим как сумму



(3.45)

Формула (3.45) применима для условий:



В качестве причин, приводящих к самовозгоранию, могут быть: внешний нагрев, теплота реакции окисления, тепловой эффект экзотерми­ческой реакции, микробиологический процесс. В соответствии с этим раз­личают:

Тепловое самовозгорание. Характерно для дисперсных мате­риалов. Известно, что многие дисперсные материалы реагируют с ки­слородом воздуха уже при обычной температуре. В условиях, благо­приятствующих накоплению тепла в массе материала, происходит по­вышение его температуры. Это, в свою очередь, повышает скорость реакции окисления и может привести к самовозгоранию дисперсного материала.

Тепловое самовозгорание - физико-химический процесс, скорость которого зависит от скорости химической реакции, поступления кислоро­да к реагирующей поверхности и от интенсивности теплообмена самона­гревающегося материала с внешней средой.

Дисперсные материалы имеют четкую границу соприкосновения с окружающей средой. По этой границе воздух проникает между частицами внутрь массы материала. Кислород, попадая в поры частиц или волокон дисперсного материала, адсорбируется в поверхностном слое.,

64

Глава 3. Возникновение процессов горения

Многие твердые вещества содержат в своем составе химически свя­занный кислород (например, нитросоединения, нитрозосоединения, выс­шие спирты, кислоты и т. д.), который при определенных условиях также может принимать участие в процессе окисления. Наличие развитой по­верхности твердого материала с адсорбированным на ней кислородом -необходимое условие для начала теплового самовозгорания.

Если в процессе самонагревания вещество плавится, тем самым, со­кращая свою удельную поверхность, самонагревание может прекратиться. В то же время, если сплав вещества попадает на развитую поверхность негорючего материала, развитие процесса самовозгорания может интен­сифицироваться.

Гетерогенный процесс взаимодействия вещества с кислородом про­исходит на поверхности частиц в диффузионном или кинетическом режи­ме. Если общее время процесса превышает время химического превраще­ния, то реализуется диффузионный режим, то есть скорость процесса оп­ределяется законами диффузионной кинетики.

В кинетическом режиме скорость окисления практически не зависит от притока кислорода извне. Процесс поддерживается вступающим в ре­акцию кислородом, который адсорбирован на поверхности частиц. В этом режиме может быть достигнута температура, при которой начинается тление материала. Известно, что тление многих органических материалов возможно при очень низких концентрациях кислорода в окружающем воздухе (3-5% об.).

Существенную роль в развитии процесса самовозгорания играет по­ристость материала. Воздух, заполняющий пространство между частица­ми материала и адсорбированный в порах, участвует в самонагревании. В результате диффузии он поступает к реагирующей поверхности. Поэтому наиболее склонны к тепловому самовозгоранию материалы, обладающие большой пористостью и структурой, обеспечивающей проникновение ки­слорода в зону реакции. Склонность к самовозгоранию увеличивается при повышении адсорбционной способности материала.

Самонагревающаяся масса твердого материала имеет неоднородное температурное поле вследствие различных условий теплоотвода: цен­тральные зоны объема нагреваются до более высоких температур, чем по­верхностные. В свою очередь высокая температура интенсифицирует эк­зотермические реакции окисления, протекающие в массе материала, по­вышая общую скорость процесса.

65

Корольченко А.Я. Процессы горения и взрыва __

На начальном этапе самовозгорания для многих материалов харак­терно сохранение внешнего вида, хотя во внутренней части происходит интенсивное обугливание. Затем на обугленной поверхности развивается процесс тления, который может перейти в пламенное горение. Поскольку промежуточным продуктом при самовозгорании большинства органиче­ских материалов является уголь, закономерности его самовозгорания ока­зывают существенное влияние на процесс в целом. Значительную роль в самовозгорании углей играет их способность адсорбировать на начальной стадии процесса пары влаги из окружающего воздуха. Установлено, что в результате адсорбции паров воды материал может нагреться до темпера­туры 65-70°С (при поглощении 0,01 г влаги выделяется 22,6 Дж тепла).

Химическое самовозгорание. Ускорению процесса самовозгорания способствуют такие факторы, как повышенная аккумуляция тепла, разви­тая поверхность материала и его легкая воспламеняемость. Особую роль эти факторы играют при химическом самовозгорании. Известно, что ско­рость химических реакций, как правило, резко возрастает с увеличением температуры. Это обстоятельство имеет большое значение при химиче­ском самовозгорании. Поскольку процессы окисления экзотермичны, в условиях затрудненного теплоотвода выделяющееся тепло идет на нагрев массы материала, ускоряя тем самым достижение критических условий самовозгорания.

Дисперсные материалы обладают всеми свойствами, которые благо­приятно влияют на развитие самовозгорания и поэтому самовозгорание, вызванное контактом дисперсных материалов с различными веществами, достаточно часто служит причиной возникновения пожаров.

Известно, что хлопок склонен к самовозгоранию. Присутствие в хлопке различных веществ, как показали исследования профессора А. Н. Баратова, способствуют ускорению процесса. Ниже приведена продолжи­тельность периода до самовозгорания хлопка, пропитанного хлопковым маслом с различными добавками:

ДОБАВКА

ВРЕМЯ ДО САМОВОЗГОРАНИЯ, ЧАС

Хлопковое масло без добавок

8-10

Добавки:




Крон желтый

2

Сурик

4

Редоксайд

3,5-4

66

Глава 3. Возникновение процессов горения

Ультрамарин

8

Сажа газовая

11,5

Литопон

5

Мел

5

Сажа ламповая

3,75

Самовозгорание развивается в результате присутствия в веществе примесей. Например, чистая аммиачная селитра не проявляет склонности к самовозгоранию. Температура ее разложения находится в пределах 468-478К. Однако, смеси аммиачной селитры с горючими органическими ма­териалами (древесиной, льном, торфом и др.) склонны к самовозгоранию, что определяется возможностью протекания экзотермических реакций нитрования. В присутствии органических веществ при' температуре по­рядка 370К за счет тепла реакции нитрования начинается автокаталитиче­ское разложение аммиачной селитры, в результате которого смесь само­возгорается. Катализаторами экзотермического разложения аммиачной селитры являются также примеси порошкообразных металлов.

Микробиологическое самовозгорание. Этот вид самовозгорания характерен для органических дисперсных и волокнистых материалов, внутри которых возможна жизнедеятельность микроорганизмов. Началь­ное самонагревание органического материала происходит за счет тепла, выделяемого микроорганизмами. Вызванное этим процессом повышение температуры обеспечивает ускорение экзотермической реакции, которая может закончиться возникновением тления (а затем и пламенного горе­ния) в самой нагретой части объема.

Причиной выделения тепла при хранении продуктов растительного происхождения (зерна, сена, семян масленичных культур) является по­глощение кислорода воздуха грибками и бактериями, которые присутст­вуют в этих материалах и интенсивно размножаются во влажной среде.

Повышение температуры, связанное с биологической активностью мик­роорганизмов, обусловлено разностью между скоростью вьщеления тепла и теплоотводом. Зафиксированы две стадии жизнедеятельности микроорганиз­мов, разделенные между собой некоторым промежутком времени. Первая ста­дия завершается при температуре 40-45°С. В процессе ее протекания выделе­ние тепла происходит за счет жизнедеятельности так называемых лизофиль-ных организмов (в основном грибков), которые погибают при температуре 45-50°С. Вторая стадия, завершающаяся при 75-85°С, характеризуется жизнедея-

67

Корольченко А.Я. Процессы горения и взрыва

тельностью термофильных организмов (в основном бактерий). Обычно эти два типа микроорганизмов развиваются одновременно и являются ответственны­ми за процессы самонагревания растительных материалов. На процессы само­нагревания решающее влияние оказывают два фактора: размер популяции микроорганизмов и влагосодержание органического материала.

При температуре 85-88°С жизнедеятельность микроорганизмов прекра­щается; они погибают, а накопленное в системе тепло при определенных ус­ловиях может привести к дальнейшему развитию процесса самовозгорания.

Математическая модель процесса самонагревания насыпи растительного материала. Насыпь растительного материала является дисперсной средой с низкими коэффициентами теплопроводности и температуропроводности. Поэтому при активизации микробиологиче­ских процессов в какой-либо части насыпи выделяемое тепло задержи­вается в ней и возникает очаг повышенной тепловой активности. Рас­пространение тепла в дисперсной насыпи осуществляется путем теп­лопередачи, в основном за счет теплопроводности. Для нахождения поля температур в растительном сырье требуется применение уравне­ний тепло- и влагопереноса, которые решаются совместно. Однако в рассматриваемом интервале температур (до 100 °С) перенос пара мал, и кажущаяся теплопроводность не зависит от влагосодержания. Мож­но принять также, что термические характеристики материала посто­янны и равны во всех направлениях в силу изотропности свойств дис­персной массы. Таким образом, нахождение поля температур в насыпи сводится к решению уравнения теплопроводности с постоянными ко­эффициентами с внутренним источником тепловыделения.

При всем многообразии форм очагов самонагревания можно выде­лить две основные: пластовый очаг в виде пласта толщины 2R и гнездовой очаг в виде шара радиуса R.

Пластовый очаг. Задача распространения тепла в насыпи путем те­плопроводности в случае пластового очага может быть сформулирована следующим образом: в неограниченной среде с начальной температурой Т0 в момент времени t=0 начинает действовать плоский источник тепло­выделения, удельная интенсивность которого является непрерывной фун­кцией координаты q=q(x). Рассмотрим задачу определения температур­ных полей в дисперсной насыпи комбикормового сырья, которая решает­ся численно и аналитически для разных значений переменных, характери­зующих объект исследования: плотности р, удельной теплоемкости с, ко-

68

Глава 3. Возникновение процессов горения

эффициента теплопроводностиначальной температуры Т0, размера оча­
га R, его удельной мощности в центре q0 и на периферииТеория подо­
бия позволяет получить решение задачи, носящее обобщенный характер.
Применяя теорию обобщенных переменных, осуществим переход к без­
размерным величинам: числу Фурье Т0, безразмерной температуре, от­
носительному расстоянию х* '

(3.46)

Тогда математическая формула задачи имеет вид:




(3..47)

(3.48)

(3.49)

Применяя косинус-преобразование Фурье, получим дифференци­альное уравнение

(3.50)

где (3.51)

Решением уравнения (3.50) при условии (3.48) является выражение

(3.52) оригинал которого имеет вид

(3.53)



В насыпи комбикормов распределение микрофлоры имеет случайный ха­рактер и удельную интенсивность тепловыделения можно представить в виде

(3.54)

(3.55) где (3.56)

69

Корольченко А.Я. Процессы горения и взрыва

Разлагая экспоненту в ряд получим:

(3.57)

где

(3.58)

Решение (3.56) совпадает с решением задачи на охлаждение грею­щейся пластины в неограниченной среде в случае одинаковости теплофи-зических характеристик и начальных температур пластины и среды. Под­ставляя (3.46) в (3.56), получим решение в случае отсутствия фонового тепловыделения

(3.59)

В стационарном случае наличия равномерного фонового разогрева с удельной мощностьюсправедливо соотношение



(3.60)

Применяя принцип суперпозиции тепловых полей, получаем при­ближенную формулу для расчета распределения температуры в дисперс­ной насыпи при наличии фонового тепловыделения

(3.61)

где согласно (3.60).

Расчет безразмерной относительной температуры ) вы-

полнен путем численного интегрирования уравнения (3.47) с начальным ус­ловием (3.48) и граничными условиями (3.49) для значений числа Фурье [0,05; 8] и относительного расстояния[0; 15]. т.е. в области значе-

ний параметров, имеющей практический интерес. Значениявычис-

лялись согласно (3.56) для случая, что не меняет общности полч-ченных

результатов. В результате расчета построена номограмма представленная на рис. 3.6, позволяющая определить температурное поле в дисперсной насыпи комбикормового сырья путем использования соотноше­ния (3.61). На рис.3.7 представлены расчетные кривые распределения темпе­ратур в насыпи травяной муки, полученные по формуле (3.61) при различ­ных параметрах очага. На рис.3.8 приведена номограмма изменения темпе-

70

Глава 3. Возникновение процессов горения

ратуры в центре очага до пожароопасного значения (-100 °С) в зависимости от времени для разной интенсивности тепловыделения.







Рис. 3.6. Номограмма безразмерной относительной температуры для пластового очага (Fo ~ число Фурье).





(3.62) (3.63) (3.64)


Гнездовый очаг. Задача нахождения температурных полей в случае гнездового очага сводится к решению симметричной задачи, которая в обобщенных переменных имеет вид:



где относительная координата

71

Корольченко А.Я. Процессы горения и взрыва







Рис. 3.7. Температурные кривые при различных параметрах очаги для травяной муки (характеристики материала:





Рис. 3.8. Рост температуры в центре пластового очага (R~0,3m.) прирахшчной интенсивности тепловыдаения (шроты, жмыхи).

Глава 3. Возникновение процессов горения

Задача решается численно совместно с уравнением



(3.65)

в результате чего построена номограмма ) для практически

важных значений параметров, позволяющая по формуле (3.61) определять распределение температур (рис. 3.9).

Предложенная математическая модель процесса самонагревания удов­летворительно согласуется с экспериментом. Так, на рис. 3.10 представлены расчетные кривые и экспериментальные значения температур, полученные в




Рис. 3.9. Номограмма безразмерной относительной температуры для гнездового очага (Fo - число Фурье).

73

Корольченко А.Я. Процессы горения и взрыва

крупномасштабном эксперименте на фрагменте силоса размером 3x3x4,8 м. Некоторая ассиметрия температурных полей относительно плоскости х=0, соответствующей центру очага, связана с конвекцией нагретых паров воды и воздуха в верхнюю часть насыпи.

Адекватность модели эксперименту позволяет использовать ее для решения целого ряда прикладных задач: расчета радиуса чувствитель­ности термодатчика, оценки эффективности система термоконтроля, рас­чета пожароопасности темпа роста температуры и пожаробезопасных сроков хранения сырья.



Рис. 3.10. Температурные поля при пластовом самонагревании травяной муки (крупномасштабный эксперемент): р*=470кг* м-3; R = 0,25 м; q0 = 75 Вт

74

Глава 3. Возникновение процессов горения

Приближенное решение задачи самовозгорания дисперсных ма­териалов для реакции порядка Самовозгорание мелкодисперсных органических материалов относится к одному из распространенных явле­ний, наблюдаемых в практике хранения, переработки и транспортировки веществ и материалов. Особенностью самовозгорания является то, что оно для своего появления и развития не требует внешнего импульса, ини­циирующего горение, или высоких температур. Это явление возникает за счет реакции гетерогенного окисления в больших объемах продукта при относительно низких температурах окружающей среды и сопровождается образованием газообразных продуктов реакции. Из-за плохой теплопро­водности массы мелкодисперсного продукта происходит накопление теп­ла в объеме, возрастание температуры, скорости химической реакции и, в конечном счете, воспламенение материала.

Практический интерес к процессам теплового взрыва обусловлен принципиальной возможностью заранее вычислить безопасные условия проведения переработки и хранения дисперсных материалов, при которых исключается самопроизвольное возникновение горения.

Математическая постановка задачи о тепловом взрыве в классической теории заключается в следующем: задается область (объем), внутри кото­рой находится реагирующее вещество. Считаются известными физико-химические константы, характеризующие теплообмен и реакцию горения, механизм теплоотдачи внутри области, начальные и граничные условия.

Решение приближенной задачи определения условий самовозгора­ния дисперсных материалов при их окислении по реакции порядкаи из­менении в широком диапазоне параметров тепломассообмена сводится к известным уравнениям теплопроводности с распределенным источником тепла и скорости химической реакции




(3.66)




(3.67)

Граничными и начальными условиями будут




(3.68)

75

Корольченко А.Я. Процессы горения и взрыва

(3.69)

(3.70)

Уравнение (3.66) является уравнением теплопроводности с распре­деленными источниками тепла в насыпи материала, а уравнение (3.67) характеризует скорость химической реакции. Граничные условия форму­лируют отсутствие теплового потока на оси симметрии рассматриваемых объемов и теплообмен с окружающей средой по закону Ньютона. В задаче рассматриваются три симметричные области: плоскопараллельная (п = 0); цилиндрическая (п = 1); сферическая (п - 2), и приняты следующие обо­значения: Тн, Т0, Т - начальная температура, температура окружающей среды и текущая температура в зоне реакции, соответственно; х,r - теку­щая координата и характерный размер, соответственно; t - время; Q ~ те­пловой эффект реакции; Е - энергия активации; К0 - прсдэкспонент;

' - теплопроводность, теплоемкость и плотность вещества, соответ­ственно; а - коэффициент теплоотдачи; R - газовая постоянная; С0 - кон­центрация окислителя в окружающей среде; q - количество тепла, выде­ляющегося в ходе реакции на единицу массы твердой фазы: т,- поря­док реакции по окислителю и горючему; а - коэффициент теплоотдачи.

Определим среднюю по объему температуру

(3.71)

и приближенно учтем распределение температуры в виде параболы второ­го порядка где А и В - коэффициенты являющиеся функцией времени, которые определяются из граничных условий (3.68)-(3.70). Тогда средняя температура будет




(3.72)

Выразим уравнение (3.66) и (3.67) через среднюю температуру, для че­го все члены этих уравнений умножим на x"»dx и проинтегрируем от 0 до оо




(3.73)

76

1   2   3   4   5   6   7


Глава 2. Химические процессы при горении
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации