Шпаргалка - Основы прогрессивных технологий - файл n1.docx

приобрести
Шпаргалка - Основы прогрессивных технологий
скачать (125.1 kb.)
Доступные файлы (1):
n1.docx126kb.01.06.2012 13:59скачать

n1.docx

  1   2   3
ОПТ

1. Существование цивилизации на современном этапе обусловлено постоянным развитием и совершенствованием материального производства,  фундаментом которого являются новые прогрессивные технологии. В основе этих технологий лежит комплекс естественных наук. С другой стороны, современная историческая эпоха требует целостного объективного представления людей об окружающем мире. Такое представление невозможно без должной теоретической базы, которую дает изучение дисциплин естественнонаучного цикла. Поэтому  при подготовке будущих специалистов как технического, так и гуманитарного профиля  знакомство с теоретическими основами прогрессивных технологий является существенным аспектом их общего образования. Согласно требованиям Государственных образовательных стандартов, основная цель преподавания курса Теоретические основы прогрессивных технологий в техническом вузе обусловлена  необходимостью обеспечить теоретическую подготовку в области физики и химии, составляющих фундамент новых наукоемких технологий, и ознакомить студентов с основными направлениями развития научно-технического прогресса в отрасли.

2. Биотехнология — это технология использования возможностей живых организмов для производства или улучшения продуктов или процессов различного назначения.

Биотехнология и растениеводство

Культурные растения страдают от сорняков, грызунов, насекомых-вредителей, нематод, фитопатогенных грибов, бактерий, вирусов, неблагоприятных погодных и климатических условий. Перечисленные факторы наряду с почвенной эрозией и градом значительно снижают урожайность сельскохозяйственных растений. Известно, какие разрушительные последствия в картофелеводстве вызывает колорадский жук.


В последние годы большое внимание уделяют вирусным заболеваниям растений. Наряду с болезнями, оставляющими видимые следы на культурных растениях (мозаичная болезнь табака и хлопчатника, зимняя болезнь томатов), вирусы вызывают скрытые инфекционные процессы, значительно снижающие урожайность сельскохозяйственных культур и ведущие к их вырождению.

Биотехнологические пути защиты растений от рассмотренных вредоносных агентов включают: 1) выведение сортов растений, устойчивых к неблагоприятным факторам; 2) химические средства борьбы (пестициды) с сорняками (гербициды), грызунами (ратициды), насекомыми (инсектициды), нематодами (нематоциды), фитопатогенными грибами (фунгициды), бактериями, вирусами; 3) биологические средства борьбы с вредителями, использование их естественных врагов и паразитов, а также токсических продуктов, образуемых живыми организмами.

Наряду с защитой растений ставится задача повышения продуктивности сельскохозяйственных культур, их пищевой (кормовой) ценности, задача создания сортов растений, растущих на засоленных почвах, в засушливых и заболоченных районах. Разработки нацелены на повышение энергетической эффективности различных процессов в растительных тканях, начиная от поглощения кванта света и кончая ассимиляцией СО2 и водно-солевым обменом.

Выведение новых сортов растений. Традиционные подходы к выведению новых сортов растений — это селекция на основе гибридизации, спонтанных и индуцированных мутаций. Методы селекции не столь отдаленного будущего включают генетическую и клеточную инженерию.

Генетическую инженерию предлагают использовать для выведения азотфиксирующих растений.

Гены устойчивости к некоторым гербицидам, выделенные из бактерий и дрожжей, были успешно перенесены в растения табака. Разведение устойчивых к гербицидам растений открывает возможность их применения для уничтожения сорняков непосредственно на угодьях, занятых сельскохозяйственными культурами. Проблема состоит, однако, в том, что массивные дозы гербицидов могут оказаться вредными для природных экосистем.

С клонированием клеток связывают надежды на устранение вирусных заболеваний растений. Разработаны методы, позволяющие получать регенеранты из тканей верхушечных почек растений. В дальнейшем среди регенерированных растений проводят отбор особей, выращенных из незараженных клеток, и выбраковку больных растений. Раннее выявление вирусного заболевания, необходимое для подобной выбраковки, может быть осуществлено методами иммунодиагностики, с использованием моноклональных антител или методом ДНК/РНК-проб. Предпосылкой для этого является получение очищенных препаратов соответствующих вирусов или их структурных компонентов.

Клонирование клеток — перспективный метод получения не только новых сортов, но и промышленно важных продуктов.

Таким образом,  биотехнология открывает широкие перспективы в области выведения новых сортов растений, устойчивых к неблагоприятным внешним воздействиям, вредителям, патогенам, не требующих азотных удобрений, отличающихся высокой продуктивностью.

Биодеградация пестицидов. Пестициды обладают мощным, но недостаточно избирательным действием. Так, гербициды, смываясь дождевыми потоками или почвенными водами на посевные площади, наносят ущерб сельскохозяйственным культурам. Помимо этого, некоторые пестициды длительно сохраняются в почве, что тоже приводит к потерям урожая. Возможны разные подходы к решению проблемы: 1) усовершенствование технологии применения пестицидов, что не входит в компетенцию биотехнологии; 2) выведение растений, устойчивых к пестицидам; биодеградация пестицидов в почве.

Микробная трансформация пестицидов имеет и оборотную сторону. Во-первых, быстрая деградация пестицидов сводит на нет их полезный эффект. Во-вторых, в результате микробного превращения могут образоваться продукты, сильно ядовитые для растений..

Биологическая защита растений от вредителей и патогенов. Из широкого спектра биологических средств защиты растений ограничимся рассмотрением средств борьбы с насекомыми-вредителями и патогенными микроорганизмами. Именно в этих областях имеются наибольшие перспективы.

К традиционным биологическим средствам, направленным против насекомых, принадлежат хищные насекомые.

Биотехнология и животноводство.

Большое значение в связи с интенсификацией животноводства отводится профилактике инфекционных заболеваний сельскохозяйственных животных с применением рекомбинантных живых.

Для повышения продуктивности животных нужен полноценный корм. Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов — бактерий, грибов, дрожжей, водорослей. Это имеет большое народнохозяйственное значение, поскольку 80% площадей сельскохозяйственных угодий в мире отводятся для производства корма скоту и птице.

Одноклеточные организмы характеризуются высоким содержанием белка — от 40 до 80% и более. Белок одноклеточных богат лизином, незаменимой аминокислотой, определяющей его кормовую ценность. Добавка биомассы одноклеточных к недостаточным по лизину растительным кормам позволяет приблизить их аминокислотный состав к оптимальному..

Производство кормового белка на основе одноклеточных — процесс, не требующий посевных площадей, не зависящий от климатических и погодных условий. Он может быть осуществлен в непрерывном и автоматизированном режиме.




3. Есть все основания полагать, что именно предстоящее десятилетие станет переломным этапом в развитии техники производств, историческим рубежом между эпохами господства неавтоматизированного и автоматизированного производства. Потому что именно сейчас для этого созрели, с одной стороны, острейшая социальная необходимость, с другой — необходимые научно-технические предпосылки, связанные с появлением и развитием многих новейших средств автоматизации.
К ним относятся в первую очередь автоматические системы управления на основе средств вычислительной техники и промышленные роботы, которые призваны революционизировать производство, поднять его на качественно более высокий уровень.
Появление и развитие промышленных роботов, безусловно, явились одним из крупнейших достижений науки и техники последних лет. Они позволили расширить фронт работ по автоматизации технологических и вспомогательных процессов, открыли широкие перспективы создания автоматических систем машин для гибкого, переналаживаемого производства. В разнообразии функций и возможностей, подвластных человеку, в том числе в сфере производства, роботы в состоянии взять на себя лишь считанное число функций, которые во многих случаях не превышают возможности таких традиционных средств механизации и автоматизации, как ленточные транспортеры, вибрационные загрузочные устройства, обычные манипуляторы с цикловым управлением, которые известны уже десятки лет. Более того, все те отличительные свойства по сравнению с человеком, которые мы восторженно приписываем промышленным роботам, на самом деле Обычные свойства любых технических средств производства. Ленточный транспортер тоже заменяет человека, высвобождая его от тяжелого ручного труда, вообразите себе армаду, грузчиков с мешками на плечах, бегущих рысью через весь цех. К основным задачам механизации и автоматизации производства в настоящее время относят:
- Переход к массовому применению высокоэффективных систем машин и технологических процессов, обеспечивающих комплексную механизацию и автоматизацию производственного процесса, техническое перевооружение основных его отраслей.
- Поднять техническую перевооружённость труда, неуклонно сокращать во всех отраслях численность работников, занятых ручным трудом.
- Обеспечить рост выпуска законченных систем машин для комплексной механизации и автоматизации погрузочно-разгрузочных, складских и ремонтных работ.
- Улучшить использование подвижного состава, добиться ритмичности погрузки и выгрузки грузов.
Сейчас реализуются мероприятия, направленные на развитие магистрального и промышленного железнодорожного транспорта: внедрение новейших универсальных и специализированных транспортных средств; увеличение грузоподъёмности и мощности подвижного состава. Кроме того, улучшается взаимодействие различных видов транспорта, совершенствуется технология организации перевозок, ускоряется внедрение высокоэффективных машин и высокосовершенных систем автоматического управления. Находит широкое применение кибернетика, электронные счётно-решающие устройства и ЭВМ в производстве, плановых расчётах, сфере учёта и управления.

4. Минеральные удобрения - источник питательных различных элементов для растений и свойств почвы, в первую очередь азота, фосфора и калия, а затем кальция, магния, серы, железа. Все эти элементы относятся к группе макроэлементов, так как они поглощаются растениями в значительных количествах. Кроме того, растениям необходимы другие элементы, хотя и в очень небольших количествах. Их называют микроэлементами.

а) фосфорные (главным образом простой и двойной суперфосфаты и преципитат);

б) азотные (сульфат аммония, аммиачная селитра, кальциевая и натриевая селитры);

в) калийные (хлористый калий и смешанные калийные соли); г) борные, магниевые и марганцевые (соединения и соли, содержащие эти элементы).

Азот почвы почти целиком входит в недоступные растениям органические соединения. Основная масса фосфора входит в состав нерастворимых в воде неорганических соединений (фосфаты алюминия, железа и другие) и органических соединений. В почвах содержится много соединений серы, калия, магния, микроэлементов. Но лишь малая часть их находится в доступных усвоению растениями формах. Под влиянием разнообразных химических реакций и при участии микроорганизмов происходит постепенный переход питательных элементов из неусвояемого состояния в ионное. Самым крупным потребителем солей и минеральных удобрений является сельское хозяйство. Связано это с тем, что современное интенсивное сельскохозяйственное производство невозможно без внесения в почву научно обоснованного количества различных минеральных удобрений, содержащих элементы, которых недостаточно в почве для нормального роста растений в частности зерна.

5. Значение нефти в народном хозяйстве велико: это сырье для нефтехимии

в производстве синтетического каучука, спиртов, полиэтилена, широкой гаммы

различных пластмасс и готовых изделий из них, искусственных тканей;

источник для выработки моторных топлив (бензина, керосина, дизельного и

реактивных топлив), масел и смазок, а также котельного печного топлива

(мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых

препаратов, используемых в качестве добавок в корм скоту для стимуляции

его роста. Россия — единственная среди крупных промышленно развитых стран

мира, которая не только полностью обеспечена нефтью, но и в значительной

мере экспортирует топливо.
6. Коррозией металлов называется их разрушение вследствие химического или электрохимического взаимодействия с окружающей средой. По механизму протекания процесса различают два типа коррозии металлов: химическую и электрохимическую. Химическая коррозия- это коррозийный процесс, протекающий в средах, не проводящий электрический ток. Химическая коррозия имеет место, например при высокотемпературном нагреве стали для горячей обработки давлением или термической обработки. При этом на поверхности металла образуются различные химические соединения- оксиды, сульфиды и другие- в виде пленки.

В отдельных случаях образовавшиеся при химической коррозии пленки, особенно сплошные, предохраняют металл от дальнейшей коррозии. Например, алюминий, олово, свинец, никель и хром способны к образованию на поверхности металлов плотных защитных пленок. пленки же на поверхности стальных и чугунных изделий непрочны, способны к растрескиванию и проникновению коррозии в глубь металла.

Электрохимическая коррозия обычно сопровождается протеканием электрического тока. Примерами могут служить ржавление металлических конструкций и изделий в атмосфере, корпусов судов и стальной арматуры гидросооружений в речной и морской воде и т. п.

Коррозия по условиям протекания бывает следующая. Газовая- коррозия металла в газах при высоких температурах. Коррозия в неэлектролитах (например, коррозия стали в бензине). Атмосферная коррозия различных металлических конструкций на воздухе. Коррозия в электролитах- в проводящих электрический ток жидких средах. Почвенная (например, коррозия подземных трубопроводов). Коррозия внешним током или электрокоррозия (например, коррозия подземной трубы блуждающими токами). Контактная- электрохимическое разрушение металлов, происходящее в результате контакта различных металлов в электролите (например, коррозия деталей из алюминиевых сплавов, соприкасающихся с деталями из меди). Структурная- связанная со структурной неоднородностью металлов; например, ускорение коррозионного процесса чугуна в растворе серной кислоты в результате имеющихся в нем включений графита. Коррозия под напряжением, изменяющимся по значению и знаку, что часто вызывает коррозионную усталость- понижение предела выносливости металла. Коррозия при трении; например, разрушение шейки вала при вращении в морской воде. Щелевая, протекающая в узких щелях и зазорах между отдельными деталями. Биокоррозия- коррозия металлов под воздействием продуктов, выделяемых микроорганизмами, и пота рук человека. По характеру коррозионных процессов и месту их распределения различают сплошную, местную и межкристаллитную коррозию. Сплошная коррозия характеризуется тем, что металлическое изделие разрушается почти равномерно и коррозия охватывает всю его поверхность. Этот вид коррозии сравнительно легко поддается контролю и оценке.

Местная коррозия обычно бывает сосредоточенна на отдельных участках поверхности изделия. Это более опасный вид коррозии, так как распространяется на значительную глубину, а следовательно, приводит к потере работоспособности изделий. Чаще всего этот вид коррозии наблюдается в местах механических повреждений поверхности изделий. При межкристаллитной коррозии процесс разрушения начинается с поверхности изделия и распространяется в глубь его, в основном по границам зерен. Межкристаллитная коррозия вызывает хрупкость металла и значительное снижение его несущей способности. Этот часто встречающийся на практике вид коррозии является весьма опасным и обычно имеет место при термической обработке металлов или сварке. Степень коррозийной стойкости сталей существенно зависит от содержания углерода. Так, с уменьшением содержания углерода в легированной хромоникелевой стали марки Х18Н9 до 0.015% практически устраняется склонность ее к межкристаллитной коррозии.

етоды защиты металлов от коррозии, их эффективность.

Существуют многочисленные способы защиты металлов от коррозии. Выбор того или иного способа определяется конкретными условиями работы и хранения металлических изделий. Применяются следующие способы защиты: легирование сталей, нанесение металлических покрытий, электрохимическая защита.

Легирование наиболее надежно защищает металл от коррозии, причем наиболее эффективно в условиях воздействия механических напряжений и коррозийной среды. Легирование позволяет предотвратить и коррозийное растрескивание изделий.

Так, например, к группе сталей с особыми химическими свойствами относят коррозионно-стойкие стали. Их получают путем введения в углеродистые и низколегированные стали значительных добавок хрома или хрома и никеля. При содержании хрома 13, 17 и 25% хромистые стали являются не только коррозионно-, но и жаростойкими. Хромоникелевые стали обладают большей коррозионной стойкостью, чем хромистые, и находят широкое применение в химической промышленности.

Механизм защиты сталей от коррозии их легированием различен и связан либо с повышением коррозионной стойкости всего объема металла, либо с образованием на поверхности изделия защитных пленок.

Металлические покрытия наносят на поверхность изделия тонким слоем металла, обладающего достаточной стойкостью в данной среде. Металлические покрытия придают также поверхностным слоям металлоизделий требуемую твердость, износостойкость. Различают два типа металлических покрытий- анодное и катодное. Для железоуглеродистых сплавов таким анодным покрытием может служить покрытие из цинка и кадмия. В воде и во влажном воздухе цинк покрывается слоем основной углекислой соли белого цвета, защищающим его от дальнейшего разрушения. Широкое применение получили цинковые покрытия для защиты арматуры, труб и резервуаров от действия воды и горячих жидкостей.

Металлические покрытия наносят различными способами. Наиболее часто применяется горячий метод, гальванизация и металлизация.

При горячем методе изделие погружают в расплавленный металл, который смачивает его поверхность и покрывает тонким слоем. Затем изделие вынимают из ванны и охлаждают. Таким методом изделие покрывают слоем олова или цинка. Лужение применяют при изготовлении белой жести, при устройстве покрытий на внутренних поверхностях пищевых котлов и других изделий. Цинкованием предохраняют от коррозии, например, кровельное железо, водопроводные трубы.

При гальваническом способе металлические изделия помещают в гальваническую ванну. Под действием электрического тока на поверхности изделия происходит катодное осаждение пленки защитного металла. Толщину гальванического покрытия можно регулировать в широких пределах. Покрытия получают также распылением расплавленного металла с помощью специальных металлизационных пистолетов и напылением на его поверхность защищаемого металла. Этот вид защиты используют для крупногабаритных конструкций: ж./д мостов и т. д. В качестве защитного металла используют алюминий, цинк, хром, коррозионно-стойкие стали.

Неметаллические покрытия выполняются из лаков, красок, эмалей и др. веществ и изолируют изделие от воздействия внешней среды. Эти покрытия имеют преимущество перед металлическими. Они легко наносятся на изделие, хорошо закрывают поры, не изменяют свойств металла и являются относительно дешевыми. При хранении и перевозке изделий металлические изделия покрывают специальными смазочными материалами, минеральными маслами и жирами. Для защиты изделий, работающих в высокоагрессивных средах, применяют пластмассовые покрытия из винипласта, поливинилхлорида.

Химические покрытия- защитные оксидные иные пленки- создаются при воздействии на металл сильных химических реагентов. Широко применяются также оксидирование и фосфатирование металлоизделий.

Оксидирование заключается в создании на поверхности изделия оксидной пленки, обладающей большой коррозийной стойкостью. Наиболее широко применяют оксидирование для защиты от коррозии изделий из алюминия и его сплавов.

Фосфатирование стальных изделий заключается в создании поверхностного слоя из фосфатов марганца и железа. Фосфатные покрытия используются в дальнейшем в качестве подслоя. Фосфатные покрытия часто применяются в сочетании со смазочными материалами для уменьшения трения при обработке металлов давлением, волочением, для хорошей приработке трущихся деталей машин.

В отдельных случаях прибегают к защите металлов от коррозии при помощи протекторов. Сущность протекторной защиты заключается в том, что к поверхности защищаемого изделия прикрепляют протекторы- куски металла. Образуется гальваническая пара , в которой анод- протектор, катод- изделие. В результате протектор разрушается, защищая изделие. Таким образом защищают, например, подводные металлические части кораблей, прикрепляя к ним пластины цинка.

Народнохозяйственное значение борьбы с коррозией.

Одним из основных факторов, определяющих долговечность машин и оборудования, является коррозия металлов. Потери от коррозии можно разделить на прямые и косвенные. Прямые потери- это стоимость заменяемых изделий, затраты на защитные мероприятия и безвозвратные потери металла вследствие коррозии. По подсчетам специалистов, безвозвратные потери металла в мировом масштабе составляют в настоящее время около 10…15% от объема производства стали. Косвенные потери продукта в результате утечек, снижение производительности агрегата, загрязнение продуктами коррозии целевого продукта и т. п.

Значительная часть мощности предприятий черной металлургии затрачивается на восполнение потерь металла вследствие коррозии. Однако это далеко не полностью отражает действительный ущерб, связанный с выходом из строя изделий из металла. Значительные потери обусловлены авариями оборудования, простоями его, потерями и отходами в металлообработке, нарушениями качества продукции и в конечном счете повышением ее себестоимости и снижением производительности труда. Поэтому экономия металла, повышение качества металлов и металлоизделий, уменьшение коррозионных потерь- непременное условие повышения эффективности производства и качества продукции, которое должно обеспечиваться в государственном масштабе.

7. Сельское хозяйство - самая обширная жизненно важная отрасль народного хозяйства, определяющая уровень жизни людей.

Особенностью сельскохозяйственного воспроизводства является сезонный характер производственных процессов. Это обуславливает отличный от большинства промышленных отраслей порядок формирования оборотного капитала и воспроизводства рабочей силы. Так как технологический процесс производства и реализации сельскохозяйственной продукции занимает несколько месяцев, то обеспечить норматив оборотных средств за счет собственных источников не только не возможно, но и экономически не оправданно - излишек оборотных средств, образуемый в межсезонье, омертвляет капитал и создает предпосылки для не целевого или неэффективного использования временно свободных средств. Следовательно, резко повышается роль банковского кредита.

Государство взявшее на себя часть финансовых проблем по регулированию процесса формирования оборотного капитала, вправе рассчитывать и на право такого же регулирования цен на продукцию и на право распределения товарно-денежных потоков. Что же касается воспроизводства рабочей силы, то сезонный характер производства обуславливает, как минимум , две основных особенности. Во-первых, в течение всего производственного цикла, вплоть до определения результатов деятельности организации, заработная плата не может соответствовать количеству и качеству вложенного труда.

Во-вторых, с особой остротой встает проблема занятости работников в период между двумя сезонами.

Что касается воспроизводства рабочей силы, то есть необходимость поддержания социально-бытовой сферы на высоком уровне. Условия производства в сельском хозяйстве существенно отличаются от условий производства в промышленности. Это обуславливает необходимость дополнительного стимулирования работников и, следовательно, дополнительных расходов на социальную сферу.

Сельскохозяйственное производство по целому ряду элементов существенно отличается от других видов производства. Эти отличия следует учитывать при организации воспроизводственного цикла и при выборе форм и направлений использования капитала.

1.1. Овощеводство

Комплексная механизация возделывания овощных куль-тур предусматривает, подбор специаль-ных сортов для механизированной уборки, кратное соответствие ширины захвата посевных машин ширине за-хвата убо-рочных, тщательную предпо-севную обработку полей, под-готовку поворотных полос при уборке, четкую организа-цию труда при механизиро-ванной поточной уборке ово-щей. Взаимосвязь всех рас-смотренных элемен-тов при-обретает еще большее значе-ние при возделыва-нии овощей по индустриальным техноло-гиям, которые позволяют по-лучить высокое качество го-товой продук-ции, значительно улучшить условия труда ра-бочих, сни-зить затраты труда в 3...4 раза, а себестоимость ово-щей -- в 1,5...2 раза - это и есть основные задачи сель-скохозяйственного производ-ства .

Из всех технологических процессов уборка и послеубороч-ная об-работка -- наиболее трудоем-кая. На их долю при-ходится 60...80 % всех трудовых за-трат при выращива-нии ово-щей.

Подготовка почвы под овощные культуры -- одно из важ-нейших мероприятий аг-ротехнического комплекса, направлен-ного на создание благоприятного водно-воз-душного, пищевого и тепло-вого режимов почвы. Обра-ботка почвы предусматривает также борьбу с сорной расти-тельностью, с вредителями и бо-лезнями сельскохозяйст-венных культур. При обра-ботке почвы вносят и заделы-вают органические и мине-ральные удобрения.

Система обработки почвы зависит от почвенно-климати-ческих условий, заделки раз-личных удобрений, предшест-вующей куль-туры, залегания грунтовых вод, местораспо-ложения поля, куль-туры, под которую готовится поле, и других условий.

8. Сельское хозяйство занимает исключительное место в жизни любого общества, ибо именно здесь производится подавляющая масса продуктов питания, наличие которых является самым первым условием жизни человека.

Современное сельскохозяйственное производство невозможно представить обособленным, изолированным, развивающимся и функционирующим вне национальной экономики. В реальной жизни оно базируется на межотраслевой производственной кооперации, связывающей сельское хозяйство и сопряженные с ним отрасли экономики, которые:

- с одной стороны, представляют сельскому хозяйству средства производства, все необходимые технические условия производства;

- с другой стороны, перерабатывают сельскохозяйственное сырье и доводят     продукты питания, готовые к потреблению, до потребителя.

На основе такого взаимодействия различных отраслей возникает агропромышленный комплекс (АПК). Что же такое АПК?

АПК — это функциональная многоотраслевая подсистема, выражающая взаимосвязь, взаимодействие сельского хозяйства и сопряженных с ним отраслей экономики по производству сельскохозяйственной техники, сельскохозяйственной продукции, ее переработке и реализации.

Формирование АПК связано с переходом сельского хозяйства к машинной стадии производства, которая значительно углубила и расширила технологические и функциональные связи сельского хозяйства с другими отраслями национальной экономики.

Практически все отрасли национальной экономики прямо или косвенно участвуют в функционировании АПК, который включает три сферы.

I. Производство средств производства для сельского хозяйства АПК.

П. Собственно сельское хозяйство.

III. Переработка и реализация готовой продукции.

Важнейшей составной частью АПК является продовольственный комплекс (ПК), в который не входят отрасли переработки сельскохозяйственного сырья не пищевого назначения.

Понятие ПК широко распространено применительно к экономике стран Западной Европы, где по существу отсутствует производство собственно технологического (технического) сырья: хлопка, льна и других. В США на долю ПК приходится большая часть всей продукции, производимой АПК.

Материальной основой формирования АПК (ПК) является:

1) углубление общественного разделения труда;

2) непрерывно расширяющийся процесс производственно технологического кооперирования сельского хозяйства с другими отраслями национальной экономики.

В настоящее время непосредственный производитель сельскохозяйственной продукции (например, фермер), как правило, не доводит до полной степени готовности к потреблению свою продукцию.

Сельское хозяйство в условиях машинной стадии производства не может обходиться только собственными средствами производства. Положение собственно сельского хозяйства в АПК (ПК) характеризуется отношениями зависимости от корпораций как в области промышленного производства, так и в области торговли.

Чем больше развита межотраслевая кооперация, тем меньше доля сельского хозяйства в стоимости конечного продукта АПК (ПК).

Наиболее мощный АПК сформирован в США, конечная продукция которого составляет 12% от ВНП; в то же время доля продукции собственно сельского хозяйства США в ВНП составляет лишь 1,5%.

Высокая степень развития американского АПК обусловлена уровнем развития всей экономики, в том числе и самого сельского хозяйства:

1) углублением разделения труда;

2) перераспределением функций между сферами АПК;

3) индустриальным развитием сельского хозяйства.

Индустриализация сельского хозяйства играет ключевую роль в качественных процессах в АПК и экономике в целом. Она ведет к сокращению численности занятых в сельском хозяйстве; уменьшению нетоварной части потребляемого сельским населением продовольствия; увеличению доли городского и несельскохозяйственного населения; переходу функций по приготовлению пищи из домашнего хозяйства в сферу общественного питания на промышленной основе.

Доля занятых в ПК США в общей численности работающих составляет 12%, а в сельском хозяйстве — всего 3%.

В странах Западной Европы, в отличие от США, формирование ПК происходило не только в рамках национальной экономики, но и на основе мирохозяйственных связей. Это обусловлено тем, что страны Западной Европы не обеспечивают себя полностью не только сельскохозяйственным сырьем, но и необходимыми средствами производства. В то же время крупнейшие западноевропейские пищевые корпорации осуществляют свою деятельность и за пределами национальных границ (пример — швейцарский концерн «Нестле»). В основном же ПК здесь функционирует в рамках ЕС.

Что касается АПК Российской Федерации, ему присуща, прежде всего, деформированная, несбалансированная отраслевая структура, а также гипертрофия экстенсивного развития сельского хозяйства, доля продукции которого в стоимости продукции АПК составляет 70-80% (для сравнения в США — 10%) или в 2 раза выше аналогичного показателя США на начало века!

9. ?

10. В понятие растениеводства как отрасли сельскохозяйственного производства в широком смысле включается возделывание полевых, овощных, плодово-ягодных, луговых и других культур. Отсюда растениеводство подразделяется на ряд самостоятельных отраслей: полеводство, овощеводство, плодоводство, цветоводство, луговодство, лесоводство.

Важнейшая задача растениеводства — повышение урожайности сельскохозяйственных культур, всемерное увеличение производства зерна, кормов и другой продукции.

Новым научным и производственным направлением в растениеводстве стало программирование урожаев сельскохозяйственных культур. Разработка теоретических основ и методов программирования урожаев принадлежит академику ВАСХНИЛ И. С. Шатилову и другим ученым нашей страны. Учитывая это, растениеводству можно дать следующее определение: растениеводство — это наука, изучающая культурные растения, разнообразие их форм и сортов, особенности их биологии и наиболее совершенные приемы выращивания высоких урожаев наилучшего качества при наименьших затратах труда и низкой себестоимости продукции.

Важнейшей особенностью растениеводства является его сезонность, которая связана с тем, что в обычных условиях культурные растения способны давать урожай только в безморозный период. Занимаясь растениеводством, человек сталкивается со многими, постоянно изменяющимися условиями. Чтобы обеспечить растение необходимыми факторами жизни, требуется создание благоприятных условий для роста и развития за счет своевременного и высоко качественного выполнения всех полевых работ (обработка почвы, внесение удобрений, посев, уход, уборка урожая).

11. ПОЧВООБРАЗОВАТЕЛЬНЫЙ ПРОЦЕСС, почвообразование, зарождение и эволюция почвы под влиянием факторов почвообразования, изменчивость которых во времени и пространстве обусловила формирование разнообразных типов почв. К факторам почвообразования относятся: почвообразующие породы, растительные и животные организмы, климат, рельеф, возраст, вода (почвенная и грунтовая), хозяйственная деятельность человека.

Почвообразующие породы

Почвообразующие породы — субстрат, на котором образуются почвы; они состоят из различных минеральных компонентов, в той или иной степени участвующих в почвообразовании. Минеральное вещество составляет 60-90% всего веса почвы. От характера материнских пород зависят физические свойства почвы — водный и тепловой ее режимы, скорость передвижения веществ в почве, минералогический и химический состав, первоначальное содержание элементов питания для растений.

От характера материнских пород в большой мере зависит и тип почв. Например, в условиях лесной зоны, как правило, формируются почвы подзолистого типа. Если в пределах этой зоны почвообразующие породы содержат повышенное количество карбонатов калия, формируются почвы подзолистого типа. Если в пределах этой зоны почвообразующие породы содержат повышенное количество карбонатов кальция, формируются почвы, значительно отличающиеся от подзолистых.

Растительность

Органические соединения почвы формируются в результате жизнедеятельности растений, животных и микроорганизмов. Основная роль при этом принадлежит растительности. Зеленые растения являются практически единственными создателями первичных органических веществ. Поглощая из атмосферы углекислый газ, из почвы — воду и минеральные вещества, используя энергию солнечного света, они создают сложные органические соединения, богатые энергией. Наибольшее количество органических веществ дают лесные сообщества, особенно в условиях влажных тропиков. Меньше органического вещества создается в условиях тундры, пустынь, болотистой местности и т.п.

В процессе отмирания как целых растений, так и отдельных их частей органические вещества поступают в почву (корневой и наземный спад). Количество годового спада колеблется в значительных пределах: во влажных тропических лесах он достигает 250 ц/га, в арктических тундрах — менее 10 ц/га, а в пустынях — 5—6 ц/га. На поверхности почвы органическое вещество под воздействием животных, бактерий, грибов, а также физических и химических агентов разлагается с образованием почвенного гумуса. Зольные вещества пополняют минеральную часть почвы. Неразложившийся растительный материал образует так называемую лесную подстилку (в лесах) или войлок (в степях и лугах). Эти образования оказывают влияние на газообмен почвы, проницаемость осадков, на тепловой режим верхнего слоя почвы, почвенную фауну и жизнедеятельность микроорганизмов.

Растительность оказывает влияние на структуру и характер органических веществ почвы, ее влажность. Степень и характер влияния растительности как почвообразующего фактора зависит от видового состава растений, густоты их стояния, химизма и многих других факторов.

Животные организмы

Основная функция животных организмов в почве — преобразование органических веществ. В почвообразовании принимают участие как почвенные, так и наземные животные. В почвенной среде животные представлены главным образом беспозвоночными и простейшими. Некоторое значение имеют также позвоночные (например, кроты и др.), постоянно живущие в почве. Почвенные животные делятся на две группы: биофагов, питающихся живыми организмами или тканями животных организмов, и сапрофагов, использующих в пищу органическое вещество. Главную массу почвенных животных составляют сапрофаги (нематоды, дождевые черви и др.). На 1 га почвы приходится более 1 млн. простейших, на 1 м — десятки червей, нематод и других сапрофагов. Огромная масса сапрофагов, поедая мертвые растительные остатки, выбрасывает в почву экскременты. Согласно подсчетам Ч. Дарвина, почвенная масса в течение нескольких лет полностью проходит через пищеварительный тракт червей. Сапрофаги влияют на формирование почвенного профиля, содержание гумуса, структуру почвы.

Самыми многочисленными представителями наземного животного мира, участвующими в почвообразовании, являются мелкие грызуны (мыши-полевки и др.).

Растительные и животные остатки, попадая в почву, подвергаются сложным изменениям. Определенная их часть распадается до углекислоты, воды и простых солей (процесс минерализации), другие переходят в новые сложные органические вещества самой почвы.

Микроорганизмы

Огромное значение в осуществлении этих процессов в почве имеют микроорганизмы (бактерии, актиномицеты, низшие грибы, одноклеточные водоросли, вирусы и др.), весьма разнообразные как по своему составу, так и по биологической деятельности. Микроорганизмы в почве исчисляются миллиардами на 1 га. Они принимают участие в биотическом круговороте веществ, разлагают сложные органические и минеральные вещества на более простые. Последние утилизируются как самими микроорганизмами, так и высшими растениями. Органическое вещество почвы, образовавшееся в ней при разной степени разложения растительных и животных остатков, получило название гумус или перегной.

Климат

К числу важнейших факторов почвообразования относится климат. С ним связаны тепловой и водяной режимы почвы, от которых зависят биологические и физико-химические почвенные процессы. Под тепловым режимом понимают совокупность процессов теплообмена в системе «приземный слой воздуха — почва — почвообразующая порода». Тепловой режим обуславливает процессы переноса и аккумуляции тепла в почве. Характер теплового режима определяется главным образом соотношением поглощения радиационной (лучистой) энергии Солнца и теплового излучения почвы. Он зависит от окраски почвы, характера поверхности, теплоемкости, влажности и других факторов. Заметное влияние на тепловой режим почвы оказывает растительность.

Водный режим

Водный режим почвы в основном определяется количеством атмосферных осадков и испаряемостью, распределением осадков в течение года, их формой (при ливневых дождях вода не успевает проникнуть в почву, стекает в виде поверхностного стока).

Климатические условия

Климатические условия оказывают косвенное влияние и на такие факторы почвообразования, как почвообразующие породы, растительный и животный мир и др. С климатом связано распространение основных типов почв.

Рельеф

Рельеф — один из факторов перераспределения по земной поверхности тепла и воды. С изменением высоты местности меняются водный и тепловой режимы почвы. Рельефом обусловлена поясность почвенного покрова в горах. С особенностями рельефа связан характер влияния на почву грунтовых, талых и дождевых вод, миграция водорастворимых веществ.

Время

К числу факторов почвообразования относится время — необходимое условие для любого процесса в природе. Абсолютный возраст почв Восточно-европейской равнины, Западной Сибири, Северной Америки и Западной Европы, определенный радиоуглеродным методом, — от нескольких сотен до нескольких тысяч лет. Наконец, существенным фактором почвообразования, особенно в последнее время, является хозяйственная деятельность человека.

12. Агрохимические факторы плодородия

Растения усваивают азот и зольные элементы из почвы в форме минеральных солей, растворенных в почвенном растворе. При этом используются как восстановленные (соли аммония), так и окисленные (соли азотной кислоты) соединения азота.

Растения могут усваивать некоторые относительно простые органические азот- и фосфорсодержащие вещества (некоторые аминокислоты, фитин), однако практическое их значение в питании ничтожно. Источником энергии в растении для поглощения элементов питания является дыхание. Более молодые, интенсивно дышащие корни больше усваивают из почвенного раствора минеральных солей.

Процессы корневого питания растений тесно связаны с такими свойствами почвы, как рН почвенного раствора, водно-воздушный режим почвы, содержание в ней усвояемых элементов питания, и другими условиями внешней среды. Кислотность почвы снижает поглощение питательных веществ растениями. Отмечают как прямое, так и косвенное действие повышенного содержания в почве ионов Н+. Прежде всего изменяется физико-химическое состояние цитоплазмы клеток корня, нарушается ее проницаемость, наружные клетки ослизняются, корни плохо растут.

Большинство возделываемых культур и почвенных микроорганизмов лучше развивается при слабокислой или нейтральной реакции почвы. Однако отдельные виды культурных растений значительно различаются по требовательности как к наиболее оптимальному для их роста интервалу рН, так и к смещению его в ту или другую сторону.

Недостаток в почве обменных кальция и магния вызывает резкое ухудшение физических и физико-химических свойств почвы (структура почвы, емкость поглощения, буферность). В почвенном растворе появляются свободные ионы алюминия и марганца, токсичные для растений. Подвижность же ряда микроэлементов (например, молибдена) уменьшается, растения испытывают в них недостаток. Повышенная кислотность угнетает почвенные организмы, прежде всего нитрификаторы и азотфиксирующие бактерии (клубеньковые и свободно живущие), почвенную фауну (дождевые черви, клещи, ногохвостки). В целом биологическая активность кислой почвы несравненно ниже, чем нейтральной.

Чтобы привести реакцию почвы к интервалу слабокислая — слабощелочная, применяют химическую мелиорацию почв. Кислые почвы периодически известкуют, а щелочные, прежде всего солонцы, гипсуют. Для повышения содержания в почве, таких жизненно важных элементов как калий, азот и фосфор, вносят минеральные удобрения. Эффективность удобрений зависит от почвенно-климатических условий. Уровень плодородия почвы, состояние питательного режима, трансформационные ее возможности в отношении доступности вносимых удобрений для возделываемых растений — все это оказывает влияние на выбор видов удобрений.

К агрофизическим показателям плодородия почвы относятся:- структура почвы;

- строение пахотного слоя;

- мощность пахотного слоя;

- гранулометрический состав.

Почва может находиться в отдельно частичном или бесструктурном состоянии. Под действием различных факторов почвенные частички могут склеиваться между собой, образуя агрегаты первого порядка, которые могут при склеивании образовывать агрегаты второго порядка и т.д.

13. Гу́мус — совокупность органических соединений, находящихся в почве, но не входящих в состав живых организмов или их остатков, сохраняющих анатомическое строение. Гумус составляет 85—90 % органического вещества почвы и является важным критерием при оценке её плодородности. Гумус состоит из гуминовых кислот, фульвокислот, гумина и др. Содержит элементы питания растений. Является основным показателем плодородия почвы. Велика и многогранна экологическая роль почвенного гумуса. Она заключается, прежде всего, в том, что гумус содержит многие питательные элементы, является источником углекислоты и, следовательно, определяет в значительной мере уровень почвенного плодородия. Все это влияет на условия произрастания естественной и культурной растительности, на интенсивность прироста биомассы, определяя условия жизни животных и человека. Кроме того, значительное содержание в гуминовых кислотах функциональных групп определяет их высокую поглотительнуо способность; гуминовые кислоты образуют с тяжелыми металлами комплексные соединения, исключая их на длительный период из биологического круговорота веществ и значительно снижая в почве концентрацию подвижных форм тяжелых металлов. В этом также заключается важная экологическая роль почвенного гумуса.

14. Система земледелия — комплекс взаимосвязанных технологических (агротехнических), мелиоративных и организационных мероприятий по использованию земли, восстановлению и повышению плодородия почвы. Система земледелия включает ряд взаимосвязанных элементов: организацию земельной территории и севооборотов, систему обработки почвы, систему удобрений, мероприятия по борьбе с сорняками, болезнями и вредителями с.-х. культур, семеноводство, мероприятия по защите почвы от водной и ветровой эрозии; в отдельных районах — орошение, осушение, химическую мелиорацию (известкование, гипсование и др.), создание полезащитных лесонасаждений.

Примитивные системы земледелия

Экстенсивные системы земледелия


Наступает эпоха феодализма, земли всё меньше, поэтому вводятся методы с чередованием культур.

Переходные системы земледелия

Интенсивные системы земледелия

  1   2   3


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации