Отчет по практике - Сварка, фрезерный, токарный, слесарный участки - файл n1.docx

приобрести
Отчет по практике - Сварка, фрезерный, токарный, слесарный участки
скачать (1481.5 kb.)
Доступные файлы (1):
n1.docx1482kb.08.07.2012 19:43скачать

n1.docx

Министерство высшего образования Республики Беларусьописание: bntu-logo2




«Учебная практика»




Выполнил:

Преподаватель


Cосновский Евгений гр: 104821

Жизняков С. Н.



Минск 2011


Фрезерный участок

Техника безопасности на фрезерном участке

Требования безопасности перед началом работы

Требования безопасности во время работы

Требования безопасности по окончании работы


Фрезерные станки— группа металлорежущих станков в классификации по виду обработки. Фрезерные станки предназначены для обработки с помощью фрезы плоских и фасонных поверхностей, тел вращения, зубчатых колёс и т. п. металлических и других заготовок. При этом фреза, закрепленная в шпинделе фрезерного станка, совершает вращательное (главное) движение, а заготовка, закреплённая на столе, совершает движение подачи прямолинейное или криволинейное.


  1. горизонтально-фрезерные консольные станки (с горизонтальным шпинделем и консолью)

  2. универсальные — с поворотным столом

  3. широкоуниверсальные — с дополнительными фрезерными головками

  4. вертикально-фрезерные станки (с вертикальным шпинделем) в том числе консольные




Горизонтально-фрезерный станок

1 — фундаментная плита

2 — станина

3 — консоль

4 — салазки

5 — стол

6 — хобот

7 — оправка с фрезой


Виды фрез




Цилиндрические



Конические



Т-образные пазовые фрезы



Угловые фрезы



Насадные крупнозубые, среднезубые и мелкозубые фрезы



Дисковые фрезы крупнозубые, мелкозубые, среднезубые

Смазочно-охлаждающие жидкости(СОЖ): смешиваемые и не смешиваемые с водой продукты; синтетические, полусинтетические, трехфазные для всех типов металлов и видов обработки; с коррозионно-защитными свойствами. Применяются на фрезерных станках, поливается на фрезу или деталь, уменьшает процент надлома фрезы и брака детали.

Фрезерование плоскостей

Фрезерование цилиндрическими фрезами. Цилиндрические фрезы применяют для обработки плоскостей. Цилиндрические фрезы изготавливают цельными из быстрорежущей стали с мелкими и крупными зубьями. По направлению вращения фрезы делят на право- и леворежущие.

Выбор типа и размера фрезы зависит от конкретных условий обработки.

Фрезы с крупным зубом применяют для черновой и получистовой обработки плоскостей, фрезы с мелким зубом – для получистовой и чистовой обработки.

Если требуется обработать плоскую поверхность, расположенную под углом к горизонтальной плоскости, то заготовку устанавливают на универсальной поворотной плите. Поворотные плиты позволяют обрабатывать плоскости с любым углом наклона в пределах от 0 до 90°.

Фрезерование торцевыми фрезами. Торцевые фрезы предназначены для обработки плоскостей на вертикально- и горизонтально-фрезерных станках, в отличие от цилиндрических имеют зубья, распложенные на цилиндрической поверхности и на торце.

Для черновой обработки выбирают торцовые насадные фрезы со вставленными ножами. При чистовой обработке следует применять торцовые насадные фрезы с мелкими зубьями. При чистовом фрезеровании стали и чугуна твердосплавными фрезами для получения поверхности с меньшей шероховатостью подачу на зуб уменьшают, а скорость резания соответственно повышают.

Наклонные плоскости и скосы можно фрезеровать торцовыми фрезами с помощью накладной вертикальной головки, которая является специальной принадлежностью горизонтальной плоскостях.

Фрезерование пазов

Паз – выемка в детали, ограниченная плоскостями или фасонными поверхностями.

Фрезерование пазов дисковыми фрезами. Различают дисковые фрезы цельные и со вставными зубьями. Основным типом дисковых фрез являются трехсторонние. Их применяют для обработки более глубоких пазов. Они обеспечивают более высокий параметр шероховатости боковых стенок паза.

Тип и размер дисковой фрезы выбирают в зависимости от обрабатываемых поверхностей и материала заготовки. Для заданных условий обработки выбирают тип фрезы, материал режущей части, и число зубьев. Для фрезерования легкообрабатываемых материалов и материалов средней трудности обработки с большой глубиной фрезерования применяют фрезы с нормальным и крупным зубом. При обработке труднообрабатываемых материалов и фрезеровании с небольшой глубиной резания рекомендуется применять фрезы с нормальным и мелким зубом.При фрезеровании прямоугольных пазов ширина дисковой фрезы должна быть равна ширине фрезеруемого паза в том случае, когда биение торцовых зубьев равно нулю.

Установка на глубину резания может осуществляться по разметке.Установку на глубину резания по линии разметки осуществляют пробными рабочими ходами. При этом следят затем, чтобы фреза срезала припуск только на половину углублений от кернера.

Фрезерование пазов также может осуществляться концевыми фрезами.
Задание: Необходимо изготовить 8-мигранник под ключ на 28мм, и от торца заготовки на 10 мм.

Ход работы: Работу произвожу на вертикально-фрезерном станке, с установленной скоростью фрезы 200 об/мин, салазок – 25 мм/мин.

Производим боковое касание заготовки о фрезу. После касания стол опускаем с помощью консоли для прохода заготовки под фрезой. По лимбу продольной подачи, с помощью шкива, отодвигаем стол на 10мм. (по лимбу 20 мм.т.к. цена деления лимба 0,05мм). С помощью лимба консоли производим вертикальное касание заготовки о фрезу, т.к. диаметр заготовки 32мм, а мне нужно 28мм, значит по лимбу беру по 1 мм. Диск разделен на 24 части, устанавливаем на 0 и фрезеруем 1-ю грань. Отвожу заготовку от фрезы и набираю 3 деления (т.к 24/8=3). Фрезерую вторую грань. И так далее все остальные грани.



Токарный участок

Токарный станок — станок для обработки резанием (точением) заготовок из металлов и др. материалов в виде тел вращения. На токарных станках выполняют обточку и расточку цилиндрических, конических и фасонных поверхностей, нарезание резьбы, подрезку и обработку торцов, сверление, зенкерование и развертывание отверстий.

Основные операции на токарном участке. Инструменты, применяемые на участке

В зависимости от требований, предъявляемых к точности обработки и шероховатости обработанной поверхности детали, различают следующие виды обработки - черновое обтачивание, получистовое и чистовое точение и тонкое (алмазное) точение.

Черновое обтачивание применяют для предварительной обработки (точность обработки при этом не превышает 12—13-го квалитета).

При получистовом обтачивании припуск на обработку составляет 3—б мм на диаметр, точность обработки не превышает 11 -го квалитета.

Чистовое обтачивание обеспечивает точность размеров до 6-го квалитета.

Тонкое (алмазное) обтачивание производится после чистовой обработки с незначительной глубиной резания (I — 0,05... 0,01 мм), малыми подачами, но большими скоростями резания. После обработки точность до 5-го квалитета.

В зависимости от размеров, конфигурации и материала заготовки применяют следующие способы обтачивания: в патроне; в патроне с поджатым центром; в центрах; в центрах с неподвижным и подвижным люнетом.

Обтачивание в патроне производят, как правило, из прутковой заготовки при соотношении длины заготовки к ее диаметру < 1,5. При большем соотношении обтачивание производится с поджатым центром.

Обтачивание в патроне с неподвижным люнетом производится для нежестких ступенчатых заготовок.

При наружном обтачивании выполняются: отрезание заготовки; подрезание торцов;

обтачивание; прорезание канавок и снятие фасок. Отрезание заготовки и подрезание торцов производится только при креплении заготовки в патроне. Остальные виды обработки могут производиться как при креплении заготовки в патроне, так и при ее креплении в центрах.

Для расчета диаметра заготовки и ее длины необходимо знать припуск на обработку. При расчете диаметра заготовки необходимо к номинальному диаметру детали прибавить припуск на черновое и чистовое обтачивание. Полученный диаметр заготовки округляют до размера проката, указанного в ГОСТе. Длину заготовки определяют, исходя из суммы номинальной длины детали по чертежу, ширины резца и припуска на подрезку торцов.
Торцевая обточка и отрезка.

К плоским торцевым поверхностям предъявляются следующие требования: плоскостность, т. е. отсутствие выпуклости или вогнутости; перпендикулярность к оси; параллельность плоскостей торцов между собой.

Перед обработкой торцовых плоскостей заготовку закрепляют в патроне, при этом вылет заготовки должен быть по возможности минимальным.

Для подрезания торцов и уступов применяют резцы: проходной прямой, проходной отогнутый, проходной упорный, а также специальный подрезной (торцовый).

Торец подрезают упорным резцом при поперечной подаче с установкой режущей кромки под небольшим углом (5-10) к торцевой поверхности. Если при подрезании торца проходным упорным резцом приходится срезать большой припуск, то подача в направлении к центру вызывает отжимающую силу, углубляющую резец в торец, в результате чего торец может получиться вогнутым. Чтобы этого не произошло, срезают большую часть припуска несколькими проходами с продольной подачей, а чистовой проход выполняют поперечной подачей от центра.

Плоскость торца после подрезания проверяют прикладыванием к нему ребра линейки или угольника. Перпендикулярность торца к наружной поверхности определяют угольником.

Режимы резания при отрезании. Подача при отрезании принимается меньшей, чем при наружном обтачивании или подрезании торца. Так, при отрезании заготовок диаметром до 60 мм рекомендуется подача 0,1–0,15 мм/об, при больших диаметрах – до 0,3мм/об. Скорость резания при отрезании на 15–20% меньше чем при наружном точении.

Отрезание происходит в более тяжелых условиях, чем обтачивание, так как резец как бы заклинивается в прорезаемой канавке, что вызывает значительное трение между поверхностями резца и детали. Поэтому при отрезании стальных деталей в качестве смазочно-охлаждающей жидкости применяют минеральное масло или сульфофрезол.

Обработка цилиндрических отверстий

Цилиндрические отверстия служат рабочими полостями двигателей, насосов, компрессоров, применяют их для подвода смазки или охлаждающей жидкости.

По форме цилиндрические отверстия бывают гладкие, ступенчатые и с канавкой; отверстия также могут быть сквозными и глухими.

Предварительно просверленные отверстия или отверстия в заготовках, полученные литьем или ковкой, часто подвергают растачиванию с целью увеличения диаметра, обеспечения высокой точности размера и малой шероховатости.

Растачивание менее производительно, чем сверление, но позволяет получить точные отверстия диаметральный допуск размера до 0,02 мм, и исправить положение оси отверстия. Этот способ является наиболее универсальным способом обработки отверстий на токарном станке.

Расточные резцы. Они бывают: проходные для сквозных отверстий и упорные для глухих отверстий. Применяют также расточные резцы, оснащенные твердосплавной коронкой «улиткой». Расточной резец закрепляют в резцедержателе параллельно оси заготовки. У стандартных резцов режущая кромка расположена на уровне верхней образующей цилиндрической державки и поэтому резец устанавливают ниже центра заготовки.

Расточные оправки (борштанги). Отверстия 80-100 мм и более обычно растачивают расточными резцами, которые закрепляют в оправках. Резец в оправке зажимается винтом с торца или с наружной поверхности оправки. В оправке можно крепить как резцы, так и пластины. На оправке выфрезерована канавка (служит и для стопорения болтами), по которой охлаждающая жидкость падает непосредственно на резец.

Мерные расточные пластины («ножи»). Расточная пластина (нож) имеет размер, соответствующий размеру растачиваемого отверстия. Растачивание пластиной обеспечивает получение отверстия правильной формы за один проход, так как действующие с двух сторон на пластину усилия взаимно уравновешиваются.

Приемы растачивания. Заданную глубину отверстия обеспечивают в процессе растачивания измерением линейкой, штангенглубинометром, шаблоном или настройкой при помощи лимба продольной подачи. Для облегчения обработки на резце наносят риску, соответствующую заданной глубине отверстия. Точность диаметра растачиваемого отверстия обеспечивается так же, как и при наружном точении: пробными проходами с замером штангенциркулем, настройки по лимбу поперечной подачи, по линейке поперечных салазок суппорта, при помощи индикатора, по поперечному упору.

Внутренние торцы и уступы подрезают расточным упорным резцом подачей к центру, для этого расточной резец должен иметь главный угол в плане ( более 90°).

Широкие внутренние канавки обрабатывают последовательным врезанием на глубину канавки поперечной подачей и расширением канавки продольной подачей. Ширину канавки в отверстии контролируют штангенциркулем и шаблоном. Диаметр выточек измеряют штангенциркулем со специальными губками. К прочитанному на штангенциркуле размеру прибавляют двойную ширину ножек (2h).

Обработка конических отверстий

Конические отверстия растачивают при подаче резца повернутыми верхними салазками суппорта, а также при помощи конусной линейки.

Предварительно сверлят отверстие, диаметр которого меньше малого диаметра конуса. Для облегчения растачивания отверстие подготавливают ступенчатым рассверливанием.

Стандартные конические отверстия с небольшим углом (например, конус Морзе) могут быть обработаны набором конических зенкеров и разверток.

После сверления отверстия обрабатывают двумя ступенчатыми зенкерами, затем окончательно – конической разверткой с гладкими зубьями. Для обработки стандартных инструментальных внутренних конусов применяют специальный инструмент – двухперый конический зенкер. Короткие внутренние конусы обрабатывают резцом или зенковкой. Конические отверстия под стандартные штифты сверлят специальными коническими сверлами.

В серийном и массовом производстве конические отверстия контролируют предельными конусными калибрами: пробками и втулками, расстояние между рисками или размер уступа на торце калибра соответствует допуску на конусность. Если одна риска на пробке зашла в контролируемое отверстие, а вторая не вошла, то конус правильный. Аналогично для калибра- втулки с уступом: если торец контролируемого конуса окажется в пределах рисок на уступе, то конус правильный. Более точный контроль конусов при помощи специальных приборов выполняют в измерительных лабораториях.

Нарезание резьбы

Нарезание резьбы – операция, выполняемая со снятием стружки или методом накатывания, в результате которой образуются винтовые канавки на цилиндрических и конических поверхностях.

Нарезание резьбы плашками. Для нарезания наружной поверхности крепежной резьбы треугольного профиля с шагом до 2 мм применяют плашки.

Иногда плашки применяют для калибрования резьбы крупного шага, предварительно нарезанной резцом. Плашка похожа на гайку, изготовленную из инструментальной стали и имеющую такую же резьбу, для нарезания которой она предназначена. Резьбонарезная плашка крепится в ручном плашкодержателе или в самоустанавливающемся плашкодержателе, который вставляют в пиноль задней бабки.

При нарезании резьбы плашкой, закрепленной в ручном плашкодержателе, ее подводят к заготовке, подпирая плашкодержатель торцом пиноли задней бабки; рукоятка плашкодержателя упирается в суппорт. После нарезания двух- трех витков с поджимом дальнейшая подача плашки происходит самонавинчивание.

Стержень под нарезание резьбы плашкой обтачивают на диаметр меньший, чем диаметр нарезаемой резьбы, для компенсирования некоторого выдавливания металла.

Перед началом нарезания резьбы на конце заготовки протачивают фаску для облегчения захода плашки. Нарезание резьбы плашками выполняют со скоростью резания 2 м/мин по стали и чугуну и до 10 м/мин по цветным металлам. В качестве смазки для стали используют эмульсию, минеральное масло, для чугуна – керосин.

По такому же принципу, как и плашки, работают самораскрывающиеся резьбонарезные головки. Скорость резания при нарезании резьбы резьбонарезными головками 15-20 м/мин. Резьбонарезные головки обладают высокой стойкостью.

Нарезание резьбы резцами

Подготовка заготовки к нарезанию. При обтачивании заготовки под последующее нарезание резьбы учитывают, что при нарезании происходит некоторое выдавливание металла из впадин. Поэтому диаметр вала под резьбу должен быть несколько меньше наружного диаметра резьбы, а диаметр отверстия – больше внутреннего.

Диаметры вала и отверстия при подготовке поверхности под нарезание резьбы определяют по справочникам. В конце резьбового участка протачивают канавку (проточку) для входа резца. Ширина канавки быть не менее шага резьбы. Глубина канавки должна быть больше глубины резьбы на 0,1-0,2 мм.

Установка резца. Резьбовой резец устанавливают точно по центру заготовки: установка ниже центра приводит к искажению профиля, а установка выше центра – к «затиранию» резца. Для получения правильного профиля резьбы резец устанавливают по шаблону.

Шаблон прикладывают к заготовке на уровне ее оси, и резец вводят в профильный врез. Правильное положение режущих кромок резца проверяют на «просвет», а затем резец закрепляют и убирают шаблон.

Нарезание резьбы. Резьбу нарезают за несколько рабочих ходов; после каждого рабочего хода резец выводят из канавки, суппорт возвращают в исходное положение и вновь начинают рабочий ход. Число рабочих ходов и глубина врезания для каждого рабочего хода зависят от шага нарезаемой резьбы и материала резьбового резца.

При нарезании длинных резьб целесообразно возвращать суппорт в исходное положение вручную или автоматической подачей при разомкнутой разъемной гайке. Однако при этом возникает необходимость обеспечить попадание резьбового резца в нитку резьбы после каждого рабочего хода.

Боковое врезание. Резьбу большого шага (2 мм и более) нарезают не с поперечным, а с боковым врезанием резца, при котором работает только одна режущая кромка. При боковом врезании облегчается процесс резания, повышается качество.

Для осуществления бокового врезания верхние салазки суппорта разворачивают под углом [pic] (для метрической резьбы [pic]=30°) относительно своего нормального положения. Врезание осуществляют рукояткой верхних салазок суппорта. Последние один - два чистовые рабочие ходы выполняют с поперечной подачей. В момент врезания резьбовой резец под действием осевой силы несколько отжимается, и первый виток резьбы получается более полным, чем остальные.

Нарезание левой резьбы осуществляют при вращении ходового винта в сторону, противоположную вращению шпинделя. Для этого переключают механизм реверсирования вращения ходового винта - транзель. При нарезании левых резьб врезание производят в зарезьбовную канавку, а суппорт с резцом перемещается слева направо.

Режимы резания при нарезании резьбы резцом. Глубина резания определяется числом проходов. Подача при нарезании резьбы равняется шагу резьбы, а при резании многозаходной резьбы – ходу (H = KS, где K – число заходов).

Скорость резания зависит от обрабатываемого материала резьбового резца: при обработке стали быстрорежущими резцами она составляет 20–35 м/мин, при обработке чугуна 10–15 м/мин, при обработке твердосплавными резцами – соответственно 100–150 и 40–60 м/мин. Для чистовых проходов скорость резания увеличивают в 1,5–2 раза. Для нарезания внутренних резьб скорость резания снижают на 20-30%.


Сборочные единицы (узлы) и механизмы токарно-винторезного станка:

1 - передняя бабка, 2 - суппорт, 3 - задняя бабка, 4 - станина, 5 и 9 - тумбы, 6 - фартук, 7 - ходовой винт, 8 - ходовой валик, 10 - коробка подач, 11 - гитары сменных шестерен, 12 — электро-пусковая аппаратура, 13 - коробка скоростей, 14 — шпиндель.

Основные типы резцов

а) - продольное сечение проходным резцом;

б) - продольное точение отогнутым резцом;

в) - продольное точение упорным резцом;

г) - продольное и поперечное точение отогнутым резцом;

д) - чистовое продольное точение широким резцом;

е) - чистовое точение закругленным резцом;

ж) - подрезание (поперечное точение) подрезным резцом;

з) - вытачивание канавок и отрезание отрезным (подрезным) резцом;

и) - растачивание отверстия расточным резцом;

к) - фасонное точение призматическим фасонным резцом;

л) - нарезание резьбы резьбовым резцом.

Смазочно-охлаждающие жидкости(СОЖ):также применяется на токарном участке.

Задача: сделать винт( все размеры указаны ниже)

Ход работы: Закрепляем заготовку в патроне с вылетом 40мм. устанавливаем резцы из быстрорежущей стали (Р18) в резцедержатель станка, ориентируя режущую кромку резца по центру вращения заготовки, путем подкладывания нужной толщины пластинки под резец и подрезаем торец. При помощи проходного резца, снимая по 3 мм, протачиваем заготовку до14ммна L30мм. поворачиваем резцедержатель, и устанавливает упорно-проходной резец, протачиваем до 5,8-1*45°. Устанавливаем проходной резец и его помощью снимаем фаску на 5.8 -1*45°. Устанавливаем скорость вращения 40 об/мин. Смазав заготовку маслом, нарезаем плашкой резьбу М6. Устанавливаем прежнюю скорость 400 об/мин. При помощи отрезного резца прорезаем канавку на 14, на расстоянии 4 мм до 10мм, с помощью проходного резца снимем диски 0,5 *45° и 2*45°. Устанавливаем отрезной резец и отрезаем винт.

Слесарный участок

Техника безопасности на слесарном участке

Общие требования безопасности

К работе со слесарным инструментом допускаются лица, имеющие элементарные знания по слесарному делу, обученные безопасным методам работы, прошедшие проверку знаний инструкций по охране труда.

Требования безопасности перед началом работы

Работать инструментом, отвечающим следующим требованиям:

Требования безопасности во время работы

Требования безопасности по окончании работы

Оборудование слесарной мастерской

Производительность труда слесаря в значительной степени зависит от правильной организации и обслуживания рабочего места. Часть производственной площади цеха с верстаком, инвентарем, комплектен приспособлений и инструментов, переданных в непосредственное распоряжение слесаря, образует его рабочее место.

Основным оборудованием слесарной мастерской являются верстак и тиски. Верстак представляет собой специальный стол, на котором выполняются слесарные работы. Каркасы верстаков обычно выполняют сварными из труб или стального профильного проката. Столешницу верстаков изготовляют из досок твердых пород дерева и в зависимости от характера выполняемых на верстаке работ покрывают листовым железом, линолеумом или фанерой.

Верстаки бывают одноместные, двухместные и многоместные. Наиболее удобны и широко применяются одноместные верстаки. При работе на многоместных верстаках точность работ, выполняемых одним рабочим, может снизиться в результате вибраций верстака, возникающих, например, от рубки и клепки, производимых другим рабочим.

Размеры верстака должны быть достаточными, чтобы вместить все необходимое для работы. Высота верстака зависит от роста слесаря. Она должна быть такой, чтобы нижняя линия правого локтя работающего находилась на уровне губок тисков. При такой высоте верстака создаются нормальные условия для производительной работы.

Нижняя часть верстака разделена на три отделения. Слева в двух отделениях смонтированы шесть поворотных секторных полок, на которых в ложементах из оргстекла и пластика размещается слесарный инструмент. К каждой полке прикреплена дверка с самозакрывающейся защелкой. В правом отделении находятся две полки для специального инструмента и оснастки. На задней стенке верстака установлен экран высотой 500 мм, оборудованный низковольтным светильником местного освещения; здесь же расположены два ящика для хранения технической документации. На левой стойке каркаса верстака укреплен на шарнире регулируемый по высоте поворотный стул.

Инструменты, применяемые на слесарном участке




Зенкер



зубило



керн



Клупп— инструмент для ручного нарезания резьбы, представляет собой оправку, в которую вставляют резьбонарезные плашки



клещи



Куса́чки



Метчики́ применяют для нарезания внутреннихрезьб. Метчик хвостовой частью крепится в вороток, рабочей частью вставляется в отверстие, в котором при проворачивании воротка возвратно-поступательными движениями нарезается резьба.



Напи́льник



Пассати́жи



пила



Развёртка – режущий инструмент, который нужен для окончательной обработки отверстий после сверления, зенкерования или растачивания









Плоская разметка. Для нанесения рисок и чернения при разметке применяют чертилки, рейсмусы и кернеры.

Чертилка. Чертилкой с закаленным и остро заточенным концом наносят на поверхности детали разметочные риски. При проведении рисок чертилка должна иметь двойной наклон: один – в сторону от линейки и другой – по направлению перемещения чертилки. Риску следует проводить только один раз; она должна быть как можно тоньше.

Реймус. Рейсмус, или чертилка на штативе, служит для нанесения горизонтальных и вертикальных рисок, а также для проверки заготовок, устанавливаемых на разметочной плите на кубиках или других приспособлениях.

Кернер. Кернер служит для нанесения вдоль рисок небольших конических углублений (керн), обозначающих разметочные риски, их пересечения и центры окружностей размечаемых заготовок и деталей. Кернерование производят для того, чтобы разметочные риски были хорошо видны.

Кернер берут тремя пальцами левой руки и с наклоном от себя острым концом прижимают к намеченной на риске точке так, чтобы острие кернера совпало с серединой риски. Перед ударом молотком кернер ставят в отвесное положение, а затем фиксируют упором пальца в деталь и наносят по кернеру легкий удар молотком весом 50 – 100 г.

Разметочные циркули. Разметочные циркули используют для разметки окружностей и дуг, деления окружностей и отрезков на части и других геометрических построений при разметке заготовки. Их применяют также для переноса размеров с измерительной линейки на заготовку.

Измерительные инструменты. Для измерения при разметке длин применяют стальные измерительные линейки с миллиметровыми делениями.

Для прочерчивания прямых рисок рекомендуется пользоваться стальной линейкой со скошенной стороной; такую линейку прикладывают скошенной стороной непосредственно к размечаемой детали и переносят с нее размеры.При измерениях больших длин рекомендуется пользоваться стальной рулеткой.

При откладывании размеров по вертикали удобно пользоваться масштабной линейкой с подставкой. Точность измерения с помощью этой линейки – 0,5 – 1,0 мм.

Угловой штангенциркуль позволяет по заданным катетам без вычислений определять гипотенузу прямоугольного треугольника. Этим штангенциркулем удобно пользоваться в тех случаях, когда нужно откладывать размер между двумя точками, не лежащими в одной плоскости, но связанными между собой размерами.

Подготовка деталей к разметке. Прежде чем приступить к разметке, тщательно проверяют, нет ли у заготовки пороков: трещин, раковин, газовых пузырей, перекосов и других дефектов, а также сверяют с чертежом размеры и припуски на обработку. Заготовки из листового, полосового и круглого материала обязательно должны быть отрихтованы на специальной плите ударами молотка или под прессом.

До установки заготовки или детали на разметочную плиту те поверхности, на которых должны быть нанесены разметочные риски, покрывают мелом, разведенным вводе до густоты молока; в этот раствор добавляют столярный клей (для связи) и сиккатив (для быстрого высыхания).Поверхности чисто обработанных заготовок окрашивают раствором медного купороса. После высыхания раствора на поверхности детали остается тонкий и очень прочный слой меди, на котором хорошо видны разметочные риски.

Разметочные детали приходится окрашивать, потому что чертилка, рейсмус или циркуль оставляют на неокрашенных поверхностях очень тусклый след. Если размечаемые места покрыть одним из вышеуказанных растворов, то риски на фоне краски отчетливо видны и сохраняются продолжительное время.

Риски обычно наносят в следующем порядке: сначала все горизонтальные риски, затем вертикальные, после этого наклонные риски и в последнюю очередь – окружности, дуги и закругления.

Пространственная разметка применяется для графических построений, осуществляемых на поверхностях заготовок и деталей, расположенных в разных плоскостях под разными углами друг к другу. По своим приемам пространственная разметка существенно отличается от плоскостной. Трудность пространственной разметки заключается в том, что слесарю приходится не просто размечать отдельные поверхности детали, расположенные в различных плоскостях и под различными углами друг к другу, но и увязывать разметку этих поверхностей между собой.

Основные операции слесарной обработки и применяемые инструменты

Правка

Правка - операция,посредством которой устраняются неровности, кривизна или другие недостатки формы заготовок.

Основным оборудованием для ручной правки металлов являются стальные или чугунные правильные плиты. В качестве инструмента для ручной правки используют стальные молотки с круглым бойком; молотки из мягких материалов применяют для правки окончательно обработанных поверхностей, а также для правки заготовок и деталей из цветных металлов и сплавов.

Рубка

Рубка представляет собой операцию холодной обработки металлов резанием. Ударным инструментом при рубке служат слесарные и пневматические молотки, а режущим – зубила, крейцмейсели и канавочники.

Зубило. Слесарное зубило изготавливается из инструментальной углеродистой стали. Оно состоит из трех частей: ударной, средней и рабочей.

Ударная часть выполняется суживающейся кверху, а вершина ее (боек) –закругленной; за среднюю часть зубило держат во время рубки; рабочая часть имеет клиновидную форму. Угол заострения выбирается в зависимости от твердости обрабатываемого материала.

Для наиболее распространенных материалов рекомендуется следующие углы заострения: для твердых материалов (твердая сталь, чугун) – 70°;

для материалов средней твердости (сталь) – 60°;

для мягких материалов (медь ,латунь) – 45°;

для алюминиевых сплавов – 35°.

Крейцмейселем. Для вырубания узких пазов и канавок пользуются зубилом с узкой режущей кромкой – крейцмейселем. Такое зубило может применяться и для снятия широких слоев металла: сначала прорубают канавки узким зубилом, а оставшиеся выступы срубают широким зубилом.

Слесарные молотки. Слесарные молотки, используемые при рубке металлов и бывают двух типов: с круглым и с квадратным бойком. Основной характеристикой молотка является его масса. Для рубки металлов применяют молотки массой 400…600г.

Для облегчения труда и повышения его производительности используют механизированные инструменты. Среди них наибольшее распространение имеет пневматический рубильный молоток.
Резка металла
Для резки металла применяют ножовки, режущей частью которой является полотно. Выбор полотна зависит от материала заготовки, ее формы и размера. Для резки труб вручную применяют труборезы. Для резания листового металла толщиной до 1,5 мм используют пряморежущие или для фигурной резки ножницы. Проволоку режут острогубцами или силовыми ножницами.



Опиливание

Опиливание - операция, при выполнении которой с поверхности заготовки снимается слой металла при помощи режущего инструмента – напильника.

Цель опиливания – придание деталям требуемой формы, размеров и заданной шероховатости поверхности.

Напильники различаются по числу насечек, профилю сечения и длине.

По количеству зубьев, насеченных на 10 мм длины, напильники делятся на 6 классов (0, 1, 2, 3, 4,5).

В зависимости от выполняемой работы напильники подразделяются на следующие виды: слесарные – общего назначения и для специальных работ,машинные, надфили и рашпили.

1)Слесарные напильники общего назначения по ГОСТу 1465-69 изготавливают восьми типов: плоские, квадратные, трехгранные,полукруглые, ромбические и ножовочные длиной от 100 до 400 мм с насечкой №0-5.

Слесарные напильники для специальных работ предназначаются для удаления весьма больших припусков при опиливании пазов, фасонных и криволинейных поверхностей; для обработки цветных металлов,неметаллических материалов и т. п. В зависимости от выполняемых работ напильники этого вида делятся на пазовые, плоские с овальными ребрами, брусовки, двухконцевые и др.

2)Машинные напильники по своей конструкции подразделяются на стержневые, дисковые, фасонные головки и пластинчатые. В процессе работы стержневым напильника сообщается возвратно поступательное движение,дисковым напильникам и фасонным головкам - вращательные, а пластинчатым– непрерывное движение вместе с непрерывно движущейся металлической лентой.

3)Надфили согласно ГОСТу 1513-67 изготавливаются десяти типов:плоские, трехгранные, квадратные, полукруглые овальные, ножовочные и др. длиной 40, 60 и 80 мм с насечкой 5 номеров. Длина надфиля определяется длиной рабочей части. Ребра плоских надфилей имеют одинарную или двойную насечку. Боковые стороны и верхнее ребро ножовочных надфилей имеют двойную насечку.

Надфили применяются для опиливания небольших поверхностей и узких мест, недоступных для обработки слесарными напильниками.

4)Рашпили соответственно ГОСТу 6876-54 изготавливают несколько типов:общего назначения, сапожные и копытные.

В зависимости от профиля рашпили общего назначения подразделяются на плоские, круглые и полукруглые с насечкой № 1-2 и длиной от 259 до 350 мм.

Обработка отверстий

Сверление осуществляется на сверлильных станках или с помощью ручных устройств. Главной режущей частью является сверло, которое имеет две режущие кромки. При сверлении отверстий диаметром более 20 мм применяют предварительное сверление отверстий сверлом меньшего диаметра, затем рассверливают его под размер сверлом большего диаметра.

После сверления, штамповки, литые для получения более точного отверстия проводят их зенкерование. В зависимости от точности и назначения отверстий для их обработки изготовляют зенкеры двух номеров: № 1 - для предварительной обработки отверстий и № 2- для окончательной обработки. Конструктивно зенкеры бывают двух типов: цельные обработка отверстий от 10 до 40 мм и насадные -от 32 до 80 мм.

Развертывание применяют для получения отверстий более точной формы и малой шероховатости. Операция осуществляется с помощью многолезвийного инструмента - развертки. В зависимости от формы различают цилиндрические и конические развертки. По способу применения - ручные и машинные, по конструкции - цельные, насадные, раздвижные (регулируемые) и комбинированные, правые и левые.


Изготовленная деталь:

Барашек

Эскиз детали:

c:\docume~1\admin\locals~1\temp\finereader10\media\image1.jpeg
Ход работы:

  1. Обработка драчёвым напильником острых углов заготовки.

  2. Нанесение разметки при помощи штангенциркуля и штангенрейсмуса.

  3. Кернение по контуру разметки под сверление.

  4. Сверление.

  5. Отбивание зубилом лишнего материала.

  6. Обработка напильниками до получения необходимых размеров.

  7. Рассверливание центрального отверстия л од резьбу. Нарезание резьбы,

  8. Полировка наждачной бумагой.



Сварочный участок

Техника безопасности на сварочном участке

Требования безопасности перед началом работы

Требования безопасности во время работы

Требования безопасности по окончании работы



1881г – Николай Банардос создал электрическо-дуговую сварку.

1888г – Славянов предложил использовать металический стержень.
Сварка- процесс получения неразъёмного соединения, путем расплавления основного и присадочного материала и установления межатомных связей между деталями, при их нагревании и пластическом деформировании.
Смертельная сила тока 0,1 А при напряжении 220В, или 380В




Щиток сварщика состоит из пластиковой маски, светофильтра, сменной защитной пластины светофильтра.


Опасные Факторы:

1) ультрафиолет

2) инфракрасное излучение

3) опасные газы

4) пыль

5) брызги жидкого металла
В состав электродов входят:

  1. Шлакообразующие элементы

  2. Газообразующие

  3. Стабилизирующие

  4. Легирующие

  5. Связующие


Источник тока:

  1. ВДМ1001( Выпрямитель дуговой многопостовой, МахI =1000A )

От него отходят 3 балластных реостата (Мах I = 300А)

  1. MasterTig MLS2500 (инверторного типа)


Полярность

Прямая полярность – на электроде «-» , на изделии «+».

Обратная- наоборот.

При сварке на электроде образуется катодное пятно, а на изделии анодное. Температура при прямой полярности такова: на кончике электрода 2600°С , на металле 3000°С , между ними 6000°С. При обратной полярности наоборот. Расстояние между электродом и изделием 2-3 мм. Угол наклона электрода –70-80°от изделия.



Электрическая сварочная дуга – стационарный мощный электрический заряд при значительной плотности тока от 0,5 до 100А на мм.кв. в сильно ионизированной газовой среде между 2-мя электродами, один из которых свариваемое изделие.

Основные марки электродов:

МР-З (монтажные с рутиловым покрытием)

УОНИ 13-45 (универсальная обмазка научно-исследовательского института)
В вертикальном положении нужно уменьшить силу тока на 10-15%,

А в потолочном на 15-20% от нижнего положения.
Виды сварки

Классификация

Современные способы сварки металлов можно разделить на две большие группы: сварка плавлением, или сварка в жидкой фазе, и сварка давлением, или сварка в твёрдой фазе. При сварке плавлением расплавленный металл соединяемых частей самопроизвольно, без приложения внешних сил соединяется в одно целое в результате расплавления и смачивания в зоне сварки и взаимного растворения материала. При сварке давлением для соединения частей без расплавления необходимо значительное давление. Граница между этими группами не всегда достаточно чёткая, например возможна сварка с частичным оплавлением деталей и последующим сдавливанием их (контактная электросварка). В предлагаемой классификации в каждую группу входит несколько способов. К сварке плавлением относятся: дуговая, плазменная, электрошлаковая, газовая, лучевая и др. К сварке давлением - горновая, холодная, ультразвуковая, трением, взрывом и др. В основу классификации может быть положен и какой-либо др. признак. Например, по роду энергии могут быть выделены следующие виды сварки электрическая (дуговая, контактная, электрошлаковая, плазменная, индукционная и т. д.), механическая (трением, холодная, ультразвуковая и т. п.), химическая (газовая, термитная), лучевая (фотонная, электронная, лазерная).

Сварка плавлением

Простейший способ сварки - ручная дуговая сварки - основан на использовании электрической дуги. К одному полюсу источника тока гибким проводом присоединяется держатель, к другому - свариваемое изделие. В держатель вставляется угольный или металлический электрод. При коротком прикосновении электрода к изделию зажигается дуга, которая плавит основной металл и стержень электрода (при металлическом электроде), образуя сварочную ванну, дающую при затвердевании сварной шов. Температура сварочной дуги 6000-10000 С (при стальном электроде). Для питания дуги используют ток силой 100-350 а, напряжением 25-40 в от специальных источников.

При дуговой сварке кислород и азот атмосферного воздуха активно взаимодействуют с расплавленным металлом, образуют окислы и нитриды, снижающие прочность и пластичность сварного соединения. Существуют внутренние и внешние способы защиты места сварки введение различных веществ в материал электрода и электродного покрытия (внутренняя защита), введение в зону сварки инертных газов и окиси углерода, покрытие места сварки сварочными флюсами (внешняя защита). При отсутствии внешних средств защиты сварочная дуга называется открытой, при наличии их - защищенной или погруженной. Наибольшее практическое значение имеет электросварка открытой дугой покрытым плавящимся электродом. Высокое качество сварного соединения позволяет использовать этот способ при изготовлении ответственных изделий. Одной из важнейших проблем сварочной техники является механизация и автоматизация дуговой сварки. При изготовлении изделий сложной формы часто более рациональной оказывается полуавтоматическая дуговая сварки, при которой механизирована подача электродной проволоки в держатель сварочного полуавтомата. Защиту дуги осуществляют также сварочным флюсом. Идея этого способа, получившего название сварки под флюсом, принадлежит Н. Г. Славянову (конец 19 в.), применившему в качестве флюса дроблёное стекло. Промышленный способ разработан и внедрён в производство под руководством академика Е. О. Патона (40-е гг. 20 в.). сварка под флюсом получила значительное промышленное применение, т. к. позволяет автоматизировать процесс, является достаточно производительной, пригодна для осуществления различного рода сварных соединений, обеспечивает хорошее качество шва. В процессе С. дуга находится под слоем флюса, который защищает глаза работающих от излучений, но затрудняет наблюдение за формированием шва.

При механизированных способах сварки применяют газовую защиту - сварка в защитных газах, или газоэлектрическая сварка. Идея этого способа принадлежит Н. Н. Бенардосу (конец 19 в.). Сварка осуществляется сварочной горелкой или в камерах, заполненных газом. Газы непрерывно подаются в дугу и обеспечивают высокое качество соединения. Используют инертные и активные газы. Наилучшие результаты даёт применение гелия и аргона. Гелий из-за высокой стоимости его получения используют только при выполнении специальных ответственных работ. Более широко распространена автоматическая и полуавтоматическая сварка в аргоне или в смеси его с другими газами неплавящимся вольфрамовым и плавящимся стальным электродами. Этот способ применим для соединения деталей обычно небольших толщин из алюминия, магния и их сплавов, всевозможных сталей, жаропрочных сплавов, титана и его сплавов, никелевых и медных сплавов, ниобия, циркония, тантала и др. Самый дешёвый способ, обеспечивающий высокое качество, - сварка в углекислом газе, промышленное применение которой разработано в 50-е гг. 20 в. в Центральном научно-исследовательском институте технологии и машиностроения (ЦНИИТМАШ) под руководством К. В. Любавского. Для сварки в углекислом газе используют электродную проволоку. Способ пригоден для соединения изделий из стали толщиной 1-30 мм.

К электрическим способам сварки плавлением относится электрошлаковая сварка, при которой процесс начинается, как при дуговой сварке плавящимся электродом - зажиганием дуги, а продолжается без дугового разряда. При этом значительное количество шлака закрывает сварочную ванну. Источником нагрева металла служит тепло, выделяющееся при прохождении электрического тока через шлак. Способ разработан в институте электросварки им. Е. О. Патона и получил промышленное применение (в конце 50-х гг.). Возможна электрошлаковая сварка металлов толщиной до 200 мм (одним электродом), до 2000 мм (одновременно работающими несколькими электродами). Она целесообразна и экономически выгодна при толщине основного металла более 30 мм. Электрошлаковым способом можно выполнять ремонтные работы, производить наплавку, когда требуется значительная толщина наплавляемого слоя. Способ нашёл применение в производстве паровых котлов, станин прессов, прокатных станов, строительных металлоконструкций и т. п.

Осуществление дуговой электросварки возможно также в воде (пресной и морской). Первый практически пригодный способ сварки под водой был создан в СССР в Московском электромеханическом институте инженеров ж.-д. транспорта в 1932 под руководством К. К. Хренова. Дуга в воде горит устойчиво, охлаждающее действие воды компенсируется небольшим повышением напряжения дуги, которая плавит металл в воде так же легко, как и на воздухе. Сварка производится вручную штучным плавящимся стальным электродом с толстым (до 30% толщины электрода) водонепроницаемым покрытием. Качество сварки несколько ниже, чем на воздухе, металл шва недостаточно пластичен. В 70-е гг. в СССР в институте электросварки им. Е. О. Патона осуществлена сварка под водой полуавтоматом, в котором в качестве электрода использована т. н. порошковая проволока (тонкая стальная трубка, набитая смесью порошков), непрерывно подаваемая в дугу. Порошок является флюсом. Подводная сварка ведётся на глубине до 100 м, получила распространение в судоремонтных и аварийно-спасательных работах.

Один из перспективных способов сварки - плазменная сварка - производится плазменной горелкой. Сущность этого способа сварки состоит в том, что дуга горит между вольфрамовым электродом и изделием и продувается потоком газа, в результате чего образуется плазма, используемая для высокотемпературного нагрева металла. Перспективная разновидность плазменной сварки - сварка сжатой дугой (газы столба дуги, проходя через калиброванный канал сопла горелки, вытягиваются в тонкую струю). При сжатии дуги меняются её свойства: значительно повышается напряжение дуги, резко возрастает температура (до 20000-30000 С). Плазменная сварка получила промышленное применение для соединения тугоплавких металлов, причём автоматы и полуавтоматы для дуговой сварки легко могут быть приспособлены для плазменной при соответствующей замене горелки. Плазменную сварку используют как для соединения металлов больших толщин (многослойная сварка с защитой аргоном), так и для соединения пластин и проволоки толщиной от десятков мкм до 1 мм (микросварка, сварка. игольчатой дугой). Плазменной струей можно осуществлять также др. виды плазменной обработки, в том числе плазменную резку металлов.

Газовая сварка

Газовая сварка относится к способам сварка плавлением с использованием энергии газового пламени, применяется для соединения различных металлов обычно небольшой толщины - до 10 мм. Газовое пламя с такой температурой получается при сжигании различных горючих в кислороде (водородно-кислородная, бензино-кислородная, ацетилено-кислородная сварка и др.).

Промышленное применение получила ацетилено-кислородная газовая сварка. Существенное отличие газовой сварки от дуговой сварки - более плавный и медленный нагрев металла, Это обстоятельство определяет применение газовой сварки для соединения металлов малых толщин, требующих подогрева в процессе сварки (например, чугун и некоторые специальные стали), замедленного охлаждения (например, инструментальные стали) и т. д. Благодаря универсальности, сравнительной простоте и портативности оборудования газовая сварка целесообразна при выполнении ремонтных работ. Промышленное применение имеет также газопрессовая сварка стальных труб и рельсов, заключающаяся в равномерном нагреве ацетилено-кислородным пламенем металла в месте стыка до пластического состояния и последующей осадке с прессованием или проковкой.

Перспективными являются появившиеся в 60-е гг. способы лучевой сварки , также осуществляемые без применения давления. Электроннолучевая (электронная) сварка производится сфокусированным потоком электронов. Изделие помещается в камеру, в которой поддерживается вакуум (10-2-10-4 н/м2), необходимый для свободного движения электронов и сохранения концентрированного пучка электронов. От мощного источника электронов (электронной пушки) на изделие направляется управляемый электронный луч, фокусируемый магнитным и электростатическими полями. Концентрация энергии в сфокусированном пятне до 109 вт/см2. Перемещая луч по линии сварки , можно сваривать швы любой конфигурации при высокой скорости. Вакуум способствует меньшему окислению металла шва. Электронный луч плавит и доводит до кипения практически все металлы и используется не только для сварки , но и для резки, сверления отверстий и т. п. Скорость сварки этим способом в 1,5- 2 раза превышает скорость дуговой при аналогичных операциях. Недостаток этого способа - большие затраты на создание вакуума и необходимость высокого напряжения для обеспечения достаточно мощного излучения. Этих недостатков лишён др. способ лучевой сварки - фотонная (световая) сварка. В отличие от электронного луча, световой луч может проходить значительные расстояния в воздухе, не теряя заметно энергии (т. е. отпадает необходимость в вакууме), может почти без ослабления просвечивать прозрачные материалы (стекло, кварц и т. п.), т. е. обеспечивается стерильность зоны сварки при пропускании луча через прозрачную оболочку. Луч фокусируется зеркалом и концентрируется оптической системой (например, кварцевой линзой). При потребляемой мощности 50 квт в луче удаётся сконцентрировать около 15 квт.

Для создания светового луча может служить не только искусственный источник света, но и естественный - Солнце. Этот способ сварки , называется гелиосваркой, применяется в условиях значительной солнечной радиации, Для сварки используется также излучение оптических квантовых генераторов - лазеров, Лазерная сварка занимает видное место в лазерной технологии.

Сварка давлением

Способы сварки в твёрдой фазе дают сварное соединение, прочность которого иногда превышает прочность основного металла. Кроме того, в большинстве случаев при сварке давлением не происходит значительных изменений в химическом составе металла, т. к. металл либо не нагревается, либо нагревается незначительно. Это делает способы сварки давлением незаменимыми в ряде отраслей промышленности (электротехнической, электронной, космической и др.).

Холодная сварка выполняется без применения нагрева, одним только приложением давления, создающим значительную пластическую деформацию (до состояния текучести), которая должна быть не ниже определённого значения, характерного для данного металла. Перед сваркой требуется тщательная обработка и очистка соединяемых поверхностей (осуществляется обычно механическим путём, например вращающимися проволочными щётками). Этот способ сварки достаточно универсален, пригоден для соединения многих металлических изделий (проводов, стержней, полос, тонкостенных труб и оболочек) и неметаллических материалов, обладающих достаточной пластичностью (смолы, пластмассы, стекло и т. п.). Перспективно применение холодной сварки в космосе.

Для сварки можно использовать механическую энергию трения. Сварка трением осуществляется на машине, внешне напоминающей токарный станок. Детали зажимаются в патронах и сдвигаются до соприкосновения торцами. Одна из деталей приводится во вращение от электродвигателя. В результате трения разогреваются и оплавляются поверхностные слои на торцах, вращение прекращается и производится осадка деталей, сварка высокопроизводительна, экономична, применяется, например, для присоединения режущей части металлорежущего инструмента к державке.

Ультразвуковая сварка основана на использовании механических колебаний частотой 20 кгц. Колебания создаются магнитострикционным преобразователем, превращающим электромагнитные колебания в механические. На сердечник, изготовленный из магнитострикционного материала, намотана обмотка. При питании обмотки токами ВЧ из электрической сети в сердечнике возникают продольные механические колебания. Металлический наконечник, соединённый с сердечником, служит сварочным инструментом. Если наконечник с некоторым усилием прижать к свариваемым деталям, то через несколько секунд они оказываются сваренными в месте давления инструмента. В результате колебаний сердечника поверхности очищаются и немного разогреваются, что способствует образованию прочного сварного соединения. Этот способ сварки металлов малых толщин (от нескольких мкм до1,5 мм) и некоторых пластмасс нашёл применение в электротехнической, электронной, радиотехнической промышленности. В начале 70-х гг. этот вид сварки использован в медицине (работы коллектива сотрудников Московского высшего технического училища им. Н. Э. Баумана под руководством Г. А. Николаева в содружестве с медиками) для соединения, наплавки, резки живых тканей. При сварке и наплавке костных тканей, например отломков берцовых костей, рёбер и пр., конгломерат из жидкого мономера циакрина и твёрдых добавок (костной стружки и разных наполнителей и упрочнителей) наносится на поврежденное место и уплотняется ультразвуковым инструментом, в результате чего ускоряется полимеризация. Эффективно применение ультразвуковой резки в хирургии. Сварочный инструмент ультразвукового аппарата заменяется пилой, скальпелем или ножом. Значительно сокращаются время операции, потеря крови и болевые ощущения.

Одним из способов электрической сварки является контактная сварка, или сварка сопротивлением (в этом случае электрический ток пропускают через место сварки , оказывающее омическое сопротивление прохождению тока). Разогретые и обычно оплавленные детали сдавливаются или осаживаются, т. о. контактная сварка по методу осадки относится к способам сварки давлением (см. Контактная электросварка). Этот способ отличается высокой степенью механизации и автоматизации и получает всё большее распространение в массовом и серийном производстве (например, соединение деталей автомобилей, самолётов, электронной и радиотехнической аппаратуры), а также применяется для стыковки труб больших диаметров, рельсов и т. п.
Сварные соединения

Сварными называют неразъемные соединения, выполненные при помощи сварки. Они могут быть стыковыми, угловыми, нахлесточными, тавровыми и торцевыми (рис.17).

c:\documents and settings\admin\рабочий стол\384964261_corllion\svarka17.gif

Рис.17 Соединения сварные: А-стыковые; Б-угловые; В-нахлесточные; Г-тавровые

Стыковым называют соединение двух деталей их торцами, расположенными в одной плоскости или на одной поверхности. Толщина свариваемых поверхностей может быть одинаковой или отличаться одна от другой. На практике стыковое соединение чаще всего применяют при сварке трубопроводов и различных резервуаров.

Угловое — сварное соединение двух элементов, расположенных под углом относительно друг друга и сваренных в месте примыкания их краев. Такие сварные соединения нашли широкое применение в строительной практике.

Нахлесточное - сварное соединение предусматривает наложение одного элемента на другой в одной плоскости с частичным перекрытием друг друга. Такие соединения чаще всего встречаются в строительно-монтажных работах, при сооружении ферм, резервуаров и т.д.

Тавровым называют соединение, в котором к плоскости одного элемента приложен торец другого соединения под определенным углом.

Сварочные швы

Участок сварного соединения, сформированный как результат кристаллизации расплавленного металла, называется сварочным швом. В отличие от соединений сварные швы бывают стыковыми и угловыми (рис. 18).

c:\documents and settings\admin\рабочий стол\384964261_corllion\svarka18.gif
Рис. 18 Основные положения сварных швов в пространстве: А-стыковые; Б-угловые; 1-нижнее; 2-горизонтальное; 3-вертикальное; 4-потолочное

Стыковой - это сварной шов стыкового соединения. Угловой - это сварной шов углового, нахлесточного и таврового соединений.

Сварочные швы различают по количеству слоев наложения, ориентации их в пространстве, по длине и т.д. Так, если шов полностью охватывает соединение, то его называют сплошным. Если в пределах одного соединения шов разрывается, то его называют прерывистым. Разновидностью прерывистого шва является прихваточный шов, который применяют для фиксации элементов относительно друг друга перед сваркой. Если сварочные швы накладывают один на другой, то такие швы называют многослойными.

По форме наружной поверхности сварочные швы могут быть плоскими, вогнутыми или выпуклыми.Форма сварочного шва оказывает влияние на его физико-механические свойства и на расход электродного металла, связанный с его формированием. Наиболее экономичны плоские и вогнутые швы, которые, к тому же, лучше работают при динамических нагрузках, так как отсутствует резкий переход от основного металла к сварному шву. Чрезмерный наплыв выпуклых, швов приводит к перерасходу электродного металла, а резкий переход от основного металла к сварному шву при концентрированных напряжениях может вызвать разрушения соединения. Поэтому при изготовлени ответственных конструкций выпуклость на швах снимают механическим способом (фрезы, абразивные круги и т.д.).

Различают сварочные швы по их положению в пространстве. Это нижние, горизонтальные, вертикальные и потолочные швы.
Механизированная сварка в СО2

При этом способе сварки в зону дуги подается защитный газ, струя которого, обтекая электрическую дугу и сварочную ванну, предохраняет расплавленный металл от воздействия кислорода и азота воздуха. В качестве защитного газа применяют аргон, гелий, азот, углекислый газ.
Сварку в защитных газах осуществляют вручную, полуавтоматически и автоматически плавящимся и неплавящимся электродами. При сварке неплавящимся электродом защитный газ (аргон или гелий) подается в зону сварки через газовое сопло, а электрическая дуга горит между вольфрамовым электродом и свариваемым металлом.
Дугу возбуждают кратковременным замыканием дугового промежутка. Для заполнения шва в зону сварки вводят присадочную проволоку; тонкий металл (с отбортовкой) сваривается без присадочной проволоки. Сварка производится на постоянном или переменном токе. Сварочный ток, диаметр присадочной проволоки, скорость сварки выбираются в зависимости от рода свариваемого металла и его толщины. Этот способ широко применяют при сварке различных конструкций из высоколегированных сталей, титана, алюминия и других цветных металлов и их сплавов.
При сварке плавящимся электродом подачу газа в зону дуги осуществляют так же, как и при дуговой сварке неплавящимся электродом. Дуга поддерживается между электродной проволокой и свариваемым металлом. В качестве защитных газов применяются инертные (аргон и гелий) и активный (углекислый газ) газы. Инертные газы используют при сварке высоколегированных сталей и цветных металлов, углекислый газ — при сварке углеродистых и легированных сталей. Сварка производится автоматическим и полуавтоматическим способами.
Задача: Сварить 2 пластины сначаларучной-дуговой, затем автоматизированной в СО2

Ход работы:

1)Первым делом нужно зачистить пластины от оксидов. Включив вытяжку и реостат балласта на определенную силу тока (зависит от положения шва и диаметра электрода) начинаем образовывать шов одним из способов, заварив кратер. В вертикальном –снизу вверх , но силу тока уменьшив на 10-15 % .

2) При сварке в СО2 аналогично, но вертикальный шов можно варить сверху вниз.



Министерство высшего образования Республики Беларусь
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации