Дипломний проект - монолітний житловий багатоповерховий будинок в м.Київ - файл n32.doc

Дипломний проект - монолітний житловий багатоповерховий будинок в м.Київ
скачать (6413.6 kb.)
Доступные файлы (43):
n1.dwg
n2.dwg
n3.jpg364kb.03.06.2009 15:06скачать
n4.dwg
n5.jpg110kb.03.06.2009 15:06скачать
n6.dwg
n7.jpg174kb.03.06.2009 15:06скачать
n8.dwg
n9.dwg
n10.dwg
n11.dwg
n12.dwg
n13.dwg
n14.dwg
n15.dwg
n16.dwg
n17.db
n18.doc34kb.03.06.2009 15:06скачать
n19.doc40kb.03.06.2009 15:06скачать
n20.doc137kb.03.06.2009 15:06скачать
n21.doc39kb.03.06.2009 15:06скачать
n22.doc32kb.03.06.2009 15:06скачать
n23.doc39kb.03.06.2009 15:06скачать
n24.doc78kb.03.06.2009 15:06скачать
n25.doc39kb.03.06.2009 15:06скачать
n26.doc787kb.03.06.2009 15:06скачать
n27.doc39kb.03.06.2009 15:06скачать
n28.doc46kb.03.06.2009 15:06скачать
n29.doc39kb.03.06.2009 15:06скачать
n30.doc149kb.03.06.2009 15:06скачать
n31.doc39kb.03.06.2009 15:06скачать
n32.doc140kb.03.06.2009 15:06скачать
n33.doc39kb.03.06.2009 15:06скачать
n34.doc460kb.03.06.2009 15:06скачать
n35.doc39kb.03.06.2009 15:06скачать
n36.doc289kb.03.06.2009 15:06скачать
n37.doc39kb.03.06.2009 15:06скачать
n38.doc55kb.03.06.2009 15:06скачать
n39.doc36kb.03.06.2009 15:06скачать
n40.doc39kb.03.06.2009 15:06скачать
n41.doc498kb.03.06.2009 15:06скачать
n42.doc58kb.03.06.2009 15:06скачать
n43.doc38kb.03.06.2009 15:06скачать

n32.doc





6.1. Об'ємно-просторові покриття
Цей клас конструкцій залучив до себе пильну увагу фахівців з будівельних металевих конструкцій наприкінці 50-х - початку 60-х років минулого сторіччя, хоча ідея побудови просторових конструкцій кристалічної будівлі була відома давно, ще в 30-ті роки. М. Белл застосував тоді такі конструкції для каркасів літальних апаратів. Французьким вченим Р. Ле Ріколе встановлена подібність регулярних структур з міцними утвореннями органічної природи, тобто показана біонічна суть конструкторської ідеї. Їм же вперше досліджені ортогональні структури, складені з тетраедрів і октаедрів, і втілені в конструкції покриття з дерева. Потім з'явилися стержневі системи С. Дю Шато, И. Фридмана (Франція), Р. Б. Фуллера, К. Ваксмана (США).

Раціональніші такі объемно-просторові покриття, в яких суміщені несучы та огороджуючі функції, завдяки чому витрата матеріалів на їх влаштування виходить найменшою.

Просторові покриття виконують з плоских ферм і скляних панелей, зв'язаних між собою і працюючих як єдине ціле — у вигляді оболонок одинарної або двоякої кривизни. Більш поширені збірно-монолітні залізобетонні конструкції.
Оболонки являють собою просторові тонкостінні кон­струкції з криволінійними поверх­нями.

Просторова робота оболонки забезпечується жорсткими торцови­ми діафрагмами, які сприймають тангенціальні зусилля, які виникають по краях оболонки.

Оболонки навіть великих прольотів мають невелику товщину (від 30 до 100 мм).

Циліндричні оболонки (Рис. 1.) збірні і монолітні застосовують при прольотах 18-48 м. Оболонка складається з тонкої зігнутої по цилиндричній поверхні плити, посиленої бортовими елементами. Її спирають по торцях на ферми, які підтримуються колонами.

Покриття довгими цилиндричними оболонками проектують одно- і багатохвильовими, збірними і монолитни­ми.



Рис.1. Циліндричні оболонки.

6.2. Порівняльний аналіз залізобетонної ферми з металевою
6.2.1. Переваги і недоліки залізобетонних конструкцій

Основними перевагами, що забезпечують підйом виробництва збірного залізобетону, є:

Разом з перевагами залізобетонні конструкції володіють і недоліками - вони мають значну вагу. Це насамперед відноситься до великорозмірних елементів покриттів великих. Високою все ще залишається собівартість виробів на заводах збірного залізобетону, а також значні транспортні витрати. Все це знижує загальну техніко-економічну ефективність будівництва із збірних залізобетонних виробів.
6.2.2. Класифікація залізобетонних виробів

У основу класифікації збірних залізобетонних виробів покладені наступні ознаки: вид армування, об'ємна вага і вид бетону, внутрішня будова і призначення.

По вигляду армування залізобетонні вироби підрозділяються на попередньо напружені і із звичайним армуванням, тобто без попередньої напруги.

По внутрішній будові вироби можуть бути суцільними і порожнистими, виготовленими з бетону одного вигляду — одношарові або двошарові і багатошарові, виготовленими з бетону різних видів або із застосуванням різних матеріалів, наприклад теплоізоляційних.

Залізобетонні вироби повинні відповідати вимогам державних стандартів, а вироби, на яких відсутні стандарти, — вимогам робочих креслень і технічних умов на них. Вироби масового виробництва роблять типовими і уніфікованими, що забезпечує можливість застосування їх при будівництві будівель і споруд різного призначення.

Складені або комплексні вироби повинні поставлятися споживачеві, як правило, в закінченому, зібраному і повністю укомплектованому деталями вигляді. На лицьових поверхнях виробів не допускаються тріщини, раковини, розколи, плями, напливи або оголення арматури. Вироби повинні мати максимальний ступінь заводської готовності, а якість їх поверхні має бути таким, щоб на місці будівництва не вимагалося додаткової обробки (якщо така обробка не передбачена проектом).

Ферми і арки. В якості несучих елементів покриття прольотом понад 18 м застосовують попередньо напружені залізобетонні ферми і арки. Ферми можуть мати трапецеїдальну, трикутну або криволінійну сегментну форму. Виготовляють їх цілісними і склад ными, що складаються з окремих елементів. Проліт залізобетонних ферм може бути більше 30 м.
6.2.3. Переваги і недоліки сталевих конструкцій

Основними перевагами сталевих конструкцій в порівнянні з конструкціями з інших матеріалів є надійність, легкість, непроникність, індустриальність, а також простота технічного переозброєння, ремонту і реконструкції.

Надійність сталевих конструкцій забезпечується близькою відповідністю характеристик стали нашим уявленням про ідеальний пружний або пружнопластичності ізотропний матеріал, для якого строго сформульовані і обгрунтовані основні положення опору матеріалів, теорії пружності і будівельної механіки. Сталь має однорідну дрібнозернисту структуру з однаковими властивостями по всіх напрямах, напруга пов'язана з деформаціями лінійною залежністю у великому діапазоні, а при деякому значенні напруги може бути реалізована ідеальна пластичність у вигляді майданчика текучості. Все це відповідає гіпотезам і допущенням, узятим за основу при розробці теоретичних передумов розрахунку, тому розрахунок, побудований на таких передумовах, повною мірою відповідає дійсній роботі сталевих конструкцій.

Легкість. Зі всіх несуть конструкцій, що виготовляються в даний час, металеві є найлегшими. За показник легкості приймають відношення щільності матеріалу до його міцності.

Непроникність. Метали володіють не тільки великою міцністю, але і високою щільністю - непроникністю для газів і рідин. Щільність стали і її з'єднань, здійснюваних за допомогою зварки.

Індустріальність. Сталеві конструкції виготовляють на заводах, оснащених спеціальним устаткуванням, а монтаж проводять з використанням високопродуктивної техніки. Все це виключає або до мінімуму скорочує важку ручну працю.

Ремонтопридатність. Стосовно сталевих конструкцій найпростіше вирішуються питання посилення, технічного переозброєння і реконструкції. За допомогою зварки можна легко прикріпити до елементів існуючого каркаса нове технологічне устаткування, при необхідності підсиливши ці елементи, що також робиться досить просто.

Збереження металевого фонду. Сталеві конструкції в результаті фізичного і морального зносу вилучаються з експлуатації, переплавляються і знову використовуються.

Недоліками сталевих конструкцій є їх схильність корозії і порівняно мала вогнестійкість. Сталь, не захищена від контакту з вологою, у поєднанні з агресивними газами, солями, пилом піддається корозії. При високих температурах (для сталі - 600°С, для алюмінієвих сплавів - 300°С) металоконструкції втрачають свою здатність, що несе.

При грамотному проектуванні і відповідній експлуатації ці недоліки не представляють небезпеки для виконання конструкцією своїх функцій, але приводять до підвищення початкових і експлуатаційних витрат.

Підвищення корозійної стійкості сталевих конструкцій досягають включенням в сталь спеціальних легуючих добавок, періодичним покриттям конструкцій захисним шаром у вигляді лаків або фарб, а також вибором раціональної конструктивної форми (без щілин і пазух, де можуть скупчуватися волога і пил).

Підвищення вогнестійкості сталевих конструкцій будівель, небезпечних в пожежному відношенні здійснюють шляхом усунення безпосереднього контакту конструкцій з відкритим вогнем. Для цього передбачають підвісні стелі, вогнестійкі облицювання, обмазки спеціальними складами. Використовуючи спеціальні покриття у вигляді обмазок, можна істотно збільшити межу вогнестійкості.
6.2.4. Вимоги, що пред'являються до металевих конструкцій

При проектуванні металевих конструкцій повинні враховуватися наступні основні вимоги.

Умови експлуатації. Задоволення заданим при проектуванні умовам експлуатації є основною вимогою для проектувальника. Воно в основному визначає систему, конструктивну форму споруди і вибір матеріалу для нього.

Економія металу. Вимога економії металу визначається великою його потребою у всіх галузях промисловості (машинобудування, транспорт і т. д.) і щодо високою вартістю.

У будівельних конструкціях метал слід застосовувати лише в тих випадках, коли заміна його іншими видами матеріалів (насамперед залізобетоном) нераціональна.

Транспортабельність. У зв'язку з виготовленням металевих конструкцій, як правило, на заводах з подальшим перевезенням на місце будівництва в проекті має бути передбачена можливість перевезення їх цілими або по частинах (відправними елементами) із застосуванням відповідних транспортних засобів.

Технологічність. Конструкції повинні проектуватися з урахуванням вимог технології виготовлення я монтажу з орієнтацією на найбільш сучасні і продуктивні технологічні прийоми, що забезпечують максимальне зниження трудомісткості.

Швидкісний монтаж. Конструкція повинна відповідати можливостям збірки її в найменші терміни з урахуванням наявного монтажного устаткування.

Довговічність конструкції визначається термінами її фізичного і морального зносу. Фізичний знос металевих конструкцій пов'язаний головним чином з процесами корозії. Моральний знос пов'язаний із зміною умов експлуатації.

Естетичність. Конструкції незалежно від їх призначення повинні володіти гармонійними формами. Особливо істотно це вимога для громадських будівель і споруд.

6.3. Загальна характеристика ферм
Фермою називають систему стрижнів (зазвичай прямолінійних), сполучених між собою у вузлах і, які створюють геометрично незмінну конструкцію.

Якщо навантаження прикладене у вузлах, а осі елементів ферми перетинаються в одній крапці (центрі вузла), то жорсткість вузлів неістотно впливає на роботу конструкції і в більшості випадків їх можна розглядати як шарнірні. Тоді всі стрижні ферми випробовують тільки осьові зусилля (розтягування або стискування). Завдяки цьому метал у фермах використовується раціональніше, ніж в балках, і вони економічніші за балки по витраті матеріалу, але більш трудомісткі у виготовленні, оскільки мають велике число деталей. Із збільшенням прольотів, що перекриваються, і зменшенням навантаження ефективність ферм в порівнянні із балками росте.

Сталеві ферми набули широкого поширення в багатьох галузях будівництва: у покриттях і перекриттях промислових і цивільних будівель, мостах, опорах ліній електропередачі, об'єктах зв'язку, телебачення і радіомовлення (башти, щогли), транспортерних галереях, гідротехнічних затворах, вантажопідйомних кранах і так далі

Ферми бувають плоскими (всі стрижні лежать в одній плоскості) і просторовими.

Плоскі ферми можуть сприймати навантаження, прикладене тільки в їх плоскості, і потребують закріплення зі своєї плоскості зв'язками або іншими елементами. Просторові ферми утворюють жорсткий просторовий брус, здатний сприймати навантаження, що діє в будь-якому напрямі. Кожна грань такого бруса є плоскою фермою. Прикладом просторового бруса може служити баштова конструкція.

Основними елементами ферм є пояси, утворюючі контур ферми, і грати, що складаються з розкосів і стійок.

Відстань між вузлами поясу називають панеллю (d), відстань між опорами - прольотом (l), відстань між осями (або зовнішніми гранями) поясів - висотою ферми (hф).

Пояси ферм працюють в основному на подовжні зусилля і момент (аналогічно поясам суцільних балок); грати ферм сприймають в основному поперечну силу, виконуючи функцію стінки суцільної балки.

З'єднання елементів у вузлах здійснюють шляхом безпосереднього примикання одних елементів до інших. Для того, щоб стрижні ферм працювали в основному на осьові зусилля, а впливом моментів можна було нехтувати, елементи ферм слід центрувати по осях, що проходять через центри тяжіння.

Залежно від призначення, архітектурних вимог і схеми додатку навантажень ферми можуть мати найрізноманітнішу конструктивну форму. Їх можна класифікувати по наступних ознаках: статичній схемі, контуру поясів, системі грат, способу з'єднання елементів у вузлах, величині зусилля в елементах.

По статичній схемі ферми бувають: балочні (розрізні, нерозрізні, консольні), арочні, рамні.

Залежно від контура поясів ферми підрозділяють на сегментних, полігональних, трапецеїдальних, з паралельними поясами і трикутні.

Контур поясів ферм в значній мірі визначає їх економічність. Теоретично найбільш економічною по витраті сталі є ферма, обкреслена по епюрі моментів. Для однопролітної балочної системи з рівномірно розподіленим навантаженням це буде сегментна ферма з параболічним поясом. Проте криволінійний контур поясу підвищує трудомісткість виготовлення, тому такі ферми в даний час практично не застосовують.

Для зниження трудомісткості виготовлення ферма має бути по можливості простій з найменшим числом елементів і додаткових деталей.

Трикутна система грат має найменшу сумарну довжину елементів і найменше число вузлів. Розрізняють ферми з висхідними і низхідними опорними розкосами. Якщо опорний розкіс йде від нижнього опорного вузла ферми до верхнього поясу, то його називають висхідним. При напрямі косоока від опорного вузла верхнього поясу до нижнему - низхідним. У місцях додатку зосереджених навантажень (наприклад, в місцях того, що спирається прогонів крівлі) можна встановити додаткові стійки або підвіски. Ці стійки служать також для зменшення розрахункової довжини поясу. Стійкі і підвіски працюють тільки на місцеве навантаження.

Недоліком трикутних грат є наявність довгих стислих розкосів, що вимагає додаткової витрати стали для забезпечення їх стійкості.

У системі розкосу грат всі розкоси мають зусилля одного знаку, а стійкі - іншого. Так, у фермах з паралельними поясами при висхідному розкосі стійки розтягнуті, а розкоси стислі; при низхідному - навпаки. Очевидно, при проектуванні ферм слід прагнути, щоб найбільш довгі елементи були розтягнуті, а стискування сприймалося короткими елементами. Грати розкосу більш металоємні і трудомісткі в порівнянні з трикутною, оскільки загальна довжина елементів грат більше і в ній більше вузлів. Застосування грат розкосу доцільне при малій висоті ферм і великих вузлових навантаженнях.

Ефективність ферм може бути підвищена при створенні в них попередньої напруги.







Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации