Расчетно-графическая работа-усиление ж/б балок с нормальными трещинами - файл n1.doc
приобрестиРасчетно-графическая работа-усиление ж/б балок с нормальными трещинамискачать (77.4 kb.)
Доступные файлы (1):
n1.doc
Петрозаводский Государственный УниверситетКафедра строительных конструкций, оснований и фундаментов РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА Усиление ж/б балок с нормальными трещинами по курсу: « Реконструкция зданий и сооружений» Выполнил: студент гр.51502
Пауков П. Н.
Принял: Таничева Н.В
Петрозаводск 2002 Содержание:
Содержание: 3
1 Исходные данные 3
2 Усиление ригеля междуэтажного перекрытия 4
2.1 Усиление ригеля междуэтажного перекрытия упругой промежуточной опорой 4
1 Определение изгибающих моментов М1, М2 4
2 Определение высоты сжатой зоны бетона 4
3 Определение относительной высоты сжатой зоны, исходя из условий равновесия 5
4 Проверка несущей способности балки по нормальному сечению 5
5 Определение Мр в середине пролета в результате подведения упругой опоры 5
6 Определение Р в середине пролета в результате подведения упругой опоры 6
7 Определение прогибов конструкции 6
8 Определение момента инерции ж/б сечения 6
9 Подбор сечения балки упругой опоры 6
2.2 Усиление ригеля междуэтажного перекрытия подведением жесткой опоры 7
1 Вычисление моментов 7
2 Проверка достаточности арматуры в верхней части сечения 7
2.1 Определение высоты сжатой зоны бетона 7
2.2 Несущая способность опорного сечения балки 8
2.3 Усиление ригеля междуэтажного перекрытия с помощью предварительно-напряженных затяжек 9
1 Определение приведенной площади армирования 9
2 Вычисление приведенной высоты сечения 10
3Определение высоты сжатой зоны бетона, усиленная затяжками 10
4 Проверка ограничения, которое накладывается на высоту сжатой зоны изгибающих элементов 10
5 Определение относительной высоты сжатой зоны 10
6 Определение момента способного выдержать сечением 11
7 Определение усилия необходимого для предварительного натяжения затяжек 11
Список литературы: 11
1 Исходные данные
Таблица 1 – Исходные данные для расчета
№ | Существующая | Нагрузка после | Класс | Рабочая | Монтажная | Расчетный | Разм. сечения, (см) |
вар | нагрузка, q1 (кН/м) | усиления, q2 (кН/м) | бетона В | ар-ра | ар-ра | пролет, L0 (м) | b | h |
18 | 20.0 | 27.0 | В20 | 4 16 AIII | 2 10AI | 7.0 | 25 | 60 |
Принятые материалы и их характеристики:
Бетон В20: Rb = 11.5МПа,
;
Арматура: АIII с RS = 365МПа, AI с RS = 225МПа.
2 Усиление ригеля междуэтажного перекрытия
2
.1 Усиление ригеля междуэтажного перекрытия упругой промежуточной опорой
Рисунок 1 – Расчетная схема ригеля
1 Определение изгибающих моментов М1, М2


, где
М1-изгибающий момент в середине пролета балки от существующей нагрузки
М2-от нагрузки после усиления
q1 – существующая нагрузка (по заданию);
q2 – нагрузка после усиления (по заданию);
2 Определение высоты сжатой зоны бетона

, где
RS – расчетное сопротивление продольной арматуры растяжению;
AS – площадь продольной арматуры;
Rb – расчетное сопротивление бетона на сжатие;

- коэффициент условия работы бетона по СНиП 2.03.01-84*;
b – ширина расчетного сечения.
3 Определение относительной высоты сжатой зоны, исходя из условий равновесия

, где
h0 =
h - a = 60 – 4,85 = 55,15
см – рабочая высота сечения,


- расстояние от равнодействующей усилий в арматуре до ближайшей грани сечения (

по п.5.5[1]);
т.к.

, то

= 0.18
Условие

<

соблюдается
Рисунок 2 – Армирование ж/б балки
4 Проверка несущей способности балки по нормальному сечению

, где
Rb – расчетное сопротивление бетона на сжатие;
b – ширина расчетного сечения;
h0 – рабочая высота сечения.
Так как ординаты эпюры моментов несущей способности балки, то
необходимо усиление конструкции. В качестве элемента усиления принимаем упругую опору.
5 Определение Мр в середине пролета в результате подведения упругой опоры
6 Определение Р в середине пролета в результате подведения упругой опоры

, где
l0 – расчетный пролет элемента.
7 Определение прогибов конструкции
Прогиб балки с учетом усиления при условии, что она работает без трещин, в растянутой зоне определяется по формуле:

, где

, где
ВRed – жесткость приведенного сечения балки;
Eb – начальный модуль упругости при сжатии и растяжении;
8 Определение момента инерции ж/б сечения
Будем исходить из предположения, что ось центра тяжести проходит по середине высоты сечения балки. Следовательно, момент инерции площади поперечного сечения определяется по формуле:
9 Подбор сечения балки упругой опоры
Определение момента инерции для требуемого сечения балки
Требуемая жесткость усиленного элемента:
Исходя из формулы для определения прогибов

, находим
Ix:




полученному значению
Ix принимаем I 30 с
Ix = 7080
см4.
Рисунок 3 – Сечение подпирающей балки
2.2 Усиление ригеля междуэтажного перекрытия подведением жесткой опоры
При подведении жесткой опоры для усиления ригеля изменится его расчетная схема.
При этом также изменится эпюра изгибающих моментов, и в середине пролета появится момент с противоположным знаком.
1 Вычисление моментов

Н
есущая способность балки до усиления составляет: 
Так как момент от внешней нагрузки

несущей способности конструкции не достаточно для восприятия внешней нагрузки в качестве усиления предусмотрено жесткую опору, которую располагают по середине пролета балки.
2 Проверка достаточности арматуры в верхней части сечения
В верхней части исходя из задания, установлена арматура 2

10 AI с
RS = 225
МПа;
АS = 157
мм2.
2.1 Определение высоты сжатой зоны бетона

, где
RS – расчетное сопротивление продольной арматуры растяжению;
AS – площадь продольной арматуры;
Rb – расчетное сопротивление бетона на сжатие;

- коэффициент, учитывающий длительность действия нагрузки;
b – ширина расчетного сечения.

= 0.02

2.2 Несущая способность опорного сечения балки

;
т

.к.

>

- то в результате усиления на опоре образуется пластический шарнир, который вызывает пластические перераспределения усилий в эпюре «Мр». Снижение опорного момента в результате образования пластического шарнира составляет:
Пластическое перераспределение эпюры «Мр» эквивалентно прибавлению к ней треугольной эпюры с ординатой в вершине

. Ордината эпюры на расстоянии 0.425l2 составляет:
Ордината эпюры «Мр» в пролете в результате пластического перераспределения составит:
Расчет подпирающей опоры Характеристики опоры:
ж/б колонна 200х200, В15
RB=8,5 Мпа; RSC=365 Мпа; AS,TOT=4,52 см2
L0=0,7 м; H=0,7*3,6=2,52 м;
L0/H=2,52/0,2=12,6м
По отношению L
0/H и N
1/N по таблице 26,27 стр. 140 определяем значение коэффициентов
Вычисляем прочность ригеля после усиления его подведением опоры:

>0,5
определение усилия, которое способна выдержать колонна:
Проверка условия N=94,5 кН < N=416,35кН – несущая способность обеспечена.
2.3 Усиление ригеля междуэтажного перекрытия с помощью предварительно-напряженных затяжек
1 Определение приведенной площади армирования
В качестве предварительно-напряженных затяжек применим стержневую арматуру 2

18АIV.
Приводим фактическую площадь сечения к площади рабочей арматуры балки класса АIII

, где
RS(AIV) – расчетное сопротивление арматуры класса AIV;
RS(AIII) – расчетное сопротивление арматуры класса AIII;
Az – площадь арматуры, применяемой в качестве затяжек.
Рисунок 8 – Сечение элемента: а) до усиления, б) после усиления
2 Вычисление приведенной высоты сечения

, где
AS – площадь продольной арматуры ригеля;
Azn – приведенная площадь продольной арматуры с учетом затяжек;
h0 – рабочая высота сечения;
hoz – приведенная высота сечения с учетом введения в конструкцию ригеля затяжек;

- коэффициент, учитывающий длительность действия нагрузки;
b – ширина расчетного сечения.
Определение высоты сжатой зоны бетона, усиленная затяжками

, где
RS – расчетное сопротивление продольной арматуры растяжению;
AS – площадь продольной арматуры в ригеле;
Azn – приведенная площадь продольной арматуры с учетом затяжек;
Rb – расчетное сопротивление бетона на сжатие;

- коэффициент, учитывающий длительность действия нагрузки;
b – ширина расчетного сечения.

<

4 Проверка ограничения, которое накладывается на высоту сжатой зоны изгибающих элементов

- характеристика сжатой зоны бетона;
5 Определение относительной высоты сжатой зоны

, где

- напряжение в арматуре,
МПа, принимаемое для данного класса, в нашем случае

=
RS;

- предельное напряжение в арматуре сжатой зоны, по п. 3.12*[1].
т.к.

>

, условие выполняется
6 Определение момента способного выдержать сечением

;
т.к.

>

- то значит, действующая нагрузка будет воспринята конструкцией и положение затяжек оставляем без изменений
7 Определение усилия необходимого для предварительного натяжения затяжек
Данное усилие определяется исходя из следующего отношения:
По таблице определяем необходимую величину предварительного напряжения затяжек:
Тогда усилие необходимое для натяжения затяжек будет:

, где

- нормативное сопротивление арматуры растяжению по таблице 19*
СНиП 2.0301-84.
Список литературы:
СНиП 2.03.01-84*. Бетонные и железобетонные конструкции/Госстрой СССР. - М.:ЦИТП Госстроя СССР,1989. - 80с.
Мандриков А.П. Примеры расчета железобетонных конструкций: Учебное пособие для техникумов. 2-е изд., перераб. и доп. - М.: Стройиздат, 1989.
Байков В.Н., Сигалов Э.Е. Железобетонные конструкции: Общий курс. Учебник для вузов. 4-е изд., перераб. - М.: Стройиздат,1985.
Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-86). – М.: ЦИТП, 1989.