Законы развития науки и техники - файл n1.docx

приобрести
Законы развития науки и техники
скачать (254 kb.)
Доступные файлы (1):
n1.docx254kb.07.07.2012 22:34скачать

n1.docx

Министерство образования и науки Российской Федерации

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Аэрокосмический институт

Кафедра технологии машиностроения, металлообрабатывающих станков и комплексов

РЕФЕРАТ

по дисциплине «История развития инженерного дела и оборудования»

На тему: Законы развития науки и техники.

Руководитель

__________Кравцов А.Г.

«___»___________2010 г.

Исполнитель

Студент группы 07 ПО-2

________Харченко О.С..

«___»___________2010 г.

Оренбург 2010

Содержание

Введение…………….……………………………………….…………….2

1 История науки и техники……………………..………………………...3

2 Законы развития науки и техники……………………………………..6

  1. Законы развития науки……………………………………………...6

  2. Законы развития техники………………………...………………...8

Заключение………………………………………………………………21

Список используемой литературы……………………………………...22
Введение
Развитие человечества, уже много столетий связано с развитием науки и техники. На протяжении многих лет люди улучшали существующую науку и технику, а также изобретали новую. Техника же помогала людям развиваться самим, улучшать свои навыки и способности.

Как и весь наш мир, наука и техника существует и развивается на основе законов. Разработка законов науки и техники велась достаточно давно, сегодня же эти законы представляют большой интерес для практического использования. Законы науки и техники, могут иметь многоплановое приложение в инженерном творчестве. Во-первых, на основе законов науки и техники могут быть разработаны наиболее эффективные методы инженерного творчества. Во-вторых, привязка к конкретному классу технического объекта позволяет определить наиболее структурные свойства, облик и характеристики технического объекта в следующих поколениях.

В данной работе рассмотрены наиболее основные законы науки и техники, на основании которых можно анализировать существующие технические объекты.
1 История науки и техники

Для понимания сущности истории науки и техники необходимо четко представлять себе основные понятия, такие как история, наука, техника и закон.

История (от греческого – расспрашиваю, исследую, рассказ о прошедшем) имеет множество значений: процесс развития чего-либо; комплекс исторических наук, изучающих прошлое человечества во всей его конкретности и многообразии; наука о развитии какой-либо области природы или знания; действительность в ее развитии и движении; прошлое, сохраняющееся в памяти человечества; рассказ, повествование [1].

По общепринятому определению наука – это сфера человеческой деятельности, функция которой – выработка объективных знаний о действительности; одна из форм общественного сознания. Она включает как деятельность по получению нового знания, так и её результат – сумму знаний, лежащих в основе научной картины мира, обозначение отдельных отраслей научного знания. Наука в каждый рассматриваемый момент времени представляет собой совокупность знаний о природе, обществе, мышлении, накопленных в ходе общественно-исторической жизни людей [2].

Цели науки – описание, объяснение и предсказание процессов и явлений действительности, составляющих предмет её изучения, на основе открываемых ею законов.

Исторически сложившееся понятие техника (от греческого – искусная, искусство, мастерство, профессия, уловка, способ) – это совокупность средств человеческой деятельности, которые созданы для осуществления процессов производства и обслуживания непроизводственных потребностей общества; машины, механизмы, приборы, устройства, орудия той или иной отрасли производства; совокупность навыков и приемов в каком-либо виде деятельности, мастерства (строительная техника, музыкальная) [2].

В технике материализованы знания и производственный опыт, накопленный человечеством в процессе развития общественного производства. Структура техники определяется его отраслевой принадлежностью.

Закон, необходимое, существенное, устойчивое, повторяющееся отношение между явлениями. Закон выражает связь между предметами, составными элементами данного предмета, между свойствами вещей, а также между свойствами внутри вещи. Но не всякая связь есть закон. Связь может быть необходимой и случайной. Закон - это необходимая связь. Он выражает существенную связь между сосуществующими в пространстве веществами. Это закон функционирования [3].

Закон, объективно существующая необходимая связь между явлениями, внутренняя существенная связь между причиной и следствием [4].

В.П.Тугаринов дает следующее определение закона: "Закон есть такая взаимосвязь между существенными свойствами или ступенями развития явлений объективного мира, которая имеет всеобщий и необходимый характер и проявляется в относительной устойчивости и повторяемости этой связи" [5].

Таким образом, можно сказать что понятие "закон" служит для обозначения существенной и необходимой, общей или всеобщей связи между предметами, явлениями, системами их сторонами или другими составляющими в процессе существования и развития.

История науки и техники – это самостоятельная отрасль исторической науки, дисциплинарное оформление которой происходит в настоящее время. Она является комплексной наукой, одновременно гуманитарной, естественной и технической.

Жизнь человечества радикально изменяется тогда, когда в науке делаются открытия, а в технике появляются новшества, вызывающие революционные всплески.

Буржуазные революции разрушили многие феодальные порядки и обеспечили быстрое развитие производства. Однако развитие экономики столь быстрыми темпами было невозможно без использования достижений науки и техники. К началу XIX в. была накоплена огромная сумма знаний в различных областях науки. Постоянно происходили радикальные открытия в науке. Устанавливается прочная взаимосвязь науки и техники, стимулирующих развитие друг друга. Результатом этой связи, научно-технической деятельности математиков, физиков, химиков, механиков, конструкторов, экспериментаторов в конце XVIII-XIX вв. стали выдающиеся изобретения в технике и технологии, имевшие исключительное значение в производстве. Изобретением, имевшим огромное значение, был паровоз «Ракета» С. Стефенсона (1781-1848), развивающий скорость до 50 км/ч и положивший начало развитию парового железнодорожного транспорта. Ученые А. Вольта (1745-1827), Г.Дэви (1778-1829), М.Фарадей (1791-1867) заложили основы для применения электричества, нового вида энергии, которая нашла быстрое использование в различных технических областях в последней трети XIX в.: в промышленности, в передаче на расстояние буквенно-цифровых сообщений телеграфной связи; электричество стало использоваться для освещения помещений, улиц (дуговое освещение, лампа накаливания), на транспорте (трамвай), в быту и т.д. Оно позволило строить фабрики и заводы за чертой города, что изменило облик городов.

Во второй половине XIX в. резко возросло значение нефтедобывающей и нефтеперерабатывающей промышленности. Изобретение А. Белла (1847-1922) – телефон уже через несколько лет получил распространение во всех развитых странах мира. Научные открытия и технические достижения вызвали к жизни новые отрасли производства – химическую, электротехническую и др. Зарождается вычислительная техника, автоматизация, производство искусственных материалов, используются свойства атома. Эти достижения во многом явились основой производства уже XX в.

По сравнению с предыдущим периодом темп изменений становится очень быстрым, резко сокращаются сроки открытий в области науки и техники до внедрения их в производстве. Машинная индустрия требует непрерывного технологического обновления. Таким образом, достижения науки и техники в конце XVIII-XIX вв. были грандиозными, они означали переход к новому, второму этапу научно-технического прогресса, охватывающему период с XIX в. до середины XX в., этапу, являющемуся основой индустриальной цивилизации.

Технические изобретения и применение их в производстве положили начало промышленному перевороту, его родиной в 60-70-х гг. XVIII в. стала Англия. Промышленный переворот представляет собой систему экономических, технико-технологических и социально-политических изменений, обеспечивающих переход от основанного на ручном труде мануфактурного производства к машинному. Завершающим этапом промышленного переворота было создание машиностроения – производства машин машинами. Предпосылками промышленного переворота послужили: накопление капитала благодаря мануфактурному производству; рынок рабочей силы; спрос на промышленное производство (емкость внутреннего рынка); политика протекционизма. Промышленный переворот общеисторический, закономерный этап в становлении и развитии капиталистического строя. Этот этап был достигнут и пройден различными странами Европы, Северной Америки и Японией в основном в течение XIX в.

Рост промышленного производства и рыночных связей обусловили необходимость совершенствования средств транспорта и развития путей сообщения. 15 сентября 1830 г. началось железнодорожное движение между промышленными городами Манчестером и Ливерпулем.

С начала XIX в. наладилось использование в машиностроении токарных станков, гидравлических прессов, механических молотов и т. д. В 20-30-х гг. выпуск машин производился уже в основном машинным способом. Механизация производства создала условия для перехода от простой кооперации к комплексу машин, что является признаком перехода к господству крупной машинной индустрии.

2 Законы развития науки и техники

2.1 Законы развития науки

История науки есть история смены различных теорий и их борьбы. Неполнота, несовершенство знаний неизбежно приводит к тому, что один и тот же ряд наблюдаемых фактов получает разное объяснение у разных ученых, они видят эти факты как бы с различных ракурсов. Это зависит от различия взглядов, склада мышления, дарования и т. п. Однако с течением времени наука неизбежно приходит к единому взгляду на них.

Рассмотрим законы развития науки:

Первый закон. Он называется законом относительной самостоятельности развития науки. Такая относительная самостоятельность включает в себя внутреннюю логику развития, потребность в систематизации знаний, борьбу мнений, взаимное влияние наук, взаимодействие с разными формами общественного сознания, преемственность идей и т. п. – то есть все те факторы, от которых, если не считать потребности производства (или бытовые), зависит развитие науки.

Второй закон. Следующий закон отражает такие явления, как критика и борьба мнений в науке. То есть развитие науки происходит на основе борьбы новых и старых идей.

Третий закон. Этот закон выражает взаимодействие наук и имеет сейчас особенно важное значение для понимания происходящих процессов научно-технического прогресса.

Наука представляет собой единое целое. Существующее разделение науки на отдельные области обусловлено различием природы вещей и закономерностей, которым эти вещи подчиняются в процессе движения и развития. Различные области науки развиваются, взаимодействуя друг с другом разными путями:

- через использование знаний, полученных другими науками;

- посредством использования методов изучения других наук;

- через технику и производство;

- через изучение общих свойств различных видов материи.

Четвертый закон характеризует процесс математизации практически всех научных дисциплин. Математика проникает сейчас даже в такие области знания как история, биология и др. С помощью ЭВМ расшифровываются древние рукописи Майя и т. п. Во многих разделах физики, астрономии – математика является незаменимым аппаратом.

Пятый закон относится к дифференциации и интеграции наук, которые неизменно присутствуют в развитии современного естествознания.

Процесс дифференциации – перерождение различных ветвей науки в самостоятельные научные дисциплины. Вместе с тем этот процесс сопряжен с процессом интеграции, связывающим разные отрасли естествознания, так как наблюдается бурное развитие пограничных наук: генная инженерия, биогеохимия, инженерная психология и др.

Шестой закон – преемственность в науке. Наука представляет собой продукт деятельности многих поколений. Ее объективное содержание не выходит с общественного строя, а развивается и накапливается на протяжении всей истории человечества. Использование и развитие знаний, накопленных предыдущими поколениями, то есть преемственность, представляет собой объективный закон развития науки. Без него просто невозможно никакое развитие!

Седьмой закон, открытый Ф. Энгельсом, – ускоренное развитие науки – действует и сейчас. Достижения XIX века во много раз превосходят достижения XVIII века, а достижения XX века (даже второй его половины) превосходят достижения предыдущих времен.

Восьмой закон свидетельствует о неизбежности научных революций. Анализ истории развития естествознания показывает, что оно и развивалось очень неравномерно. Периоды относительной стабильности, постепенного накопления знаний неизбежно с течением времени сменялись более кратковременными периодами революций, когда происходит коренная ломка теоретических представлений, считавшихся ранее незыблемыми.

Девятый закон описывает усиление связи науки с производством, что в итоге привело к пониманию науки как одного из важнейших элементов производительных сил. В результате возникла техногенная цивилизация, на смену которой идет антропогенная цивилизация или постиндустриальное общество.

Наука есть создание жизни. Из окружающей жизни научная мысль человека берет приводимый в форме научной истины материал. Наука есть проявление действия в человеческом обществе совокупной человеческой мысли.

2.2 Законы развития техники

Первый закон прогрессивной эволюции техники

Действие закона прогрессивной эволюции в технике аналогично действию закона естественного отбора, который Ч. Дарвин открыл в живой природе.

Закон имеет следующую формулировку. В технических объектах с одинаковой функцией переход от поколения к поколению вызван устранением выявленного главного дефекта (дефектов), связанного, как правило, с улучшением критериев развития, и происходит при наличии необходимого научно-технического уровня и социально-экономической целесообразности следующими наиболее вероятными путями иерархического исчерпания возможностей конструкции:

а) сначала при неизменном физическом принципе действия и техническом решении улучшаются параметры ТО до приближения к глобальному экстремуму по значениям параметров;

б) после исчерпания возможностей цикла а) происходит переход к более рациональному техническому решению (структуре), после чего развитие опять идет по циклу а). Циклы а) и б) повторяются до приближения к глобальному экстремуму по структуре для данного принципа действия;

в) после исчерпания возможности циклов а) и б) происходит переход к новому физическому принципу действия, после чего развитие опять идет по циклам а) и б). Циклы а) и б) повторяются до приближения к глобальному экстремуму по принципу действия для множества известных физических эффектов.

При этом в каждом случае перехода от поколения к поколению в соответствии с частными закономерностями происходят изменения конструкции, корреляционно связанные с характером дефекта у предшествующего поколения, а из всех возможных изменений конструкции реализуется в первую очередь то, которое позволяет устранить дефект при минимальных интеллектуальных и производственных затратах, т.е. здесь проявляется принцип наименьшего действия.

В формулировке закона использовано понятие "глобальный экстремум". Математически строгое определение этого термина дается в математической дисциплине, называемой вариационным исчислением. Смысл термина можно понять, исходя из следующего рассуждения. Функции нескольких переменных могут иметь экстремумы, соответствующие определенным комбинациям значений переменных. Это - локальные экстремумы. Очевидно, что множество локальных экстремумов позволяет выделить общий для них глобальный экстремум функции нескольких переменных.

В процессе совершенствования объекта в рамках одного физического принципа действия критерии развития обычно меняются не равномерно. В первое время после перехода от одного цикла к другому рост совершенствуемого критерия экспоненциально ускоряется, а потом затухает, что собственно, и говорит об исчерпании данного цикла. Поэтому зависимость значения критерия развития от времени имеет S-образную форму и называется S-функцией. Иногда ее называют жизненным циклом изделия.

Интересно отметить, что такая форма жизненного цикла свойственна не только техническим объектам, но и объектам природы. Она и открыта была в 1845 г. Верхолстом при изучении кривых роста популяций живых существ.

В качестве примера на рисунке 1 приведена кривая роста народонаселения на земном шаре с 1850 г., с учетом прогноза до 2075 г.



Рисунок 1 – Рост народонаселения на земле



Рисунок 2 – Динамика производительности колонн синтеза аммиака

На рисунке 2 показана динамика, за период с 1910 г. до 1990 г., производительности колонн синтеза аммиака. Из рисунка 2 следует, что физический принцип действия, заложенный Ф. Габером в основу связывания атмосферного азота с получением аммиака на катализаторе при высоком давлении, использован до предела. Создавать реакторы более высокой производительности на этом принципе не позволяют мощности современного станочного оборудования, транспортные устройства и др.

Поэтому сейчас исследуются другие принципы: микробиологическое связывание азота, плазмохимические процессы и др.

Аналогичный характер носит динамика процессов, происходящих в экономике - рост объемов производства, потребления энергоресурсов и т.д. Это демонстрирует рисунок 3.



Рисунок 3 – Динамика потребления энергии в мире (млрд. т. усл. т)

Самое важное приложение закона прогрессивной эволюции заключается в построении на его основе методологии системного иерархического выбора глобально-оптимальных конструкторско-технологических решений - от выбора рациональной функциональной структуры до оптимального технического решения.

Методология ориентирована на изучение и использование всех возможных путей улучшения ТО. Если при этом решение каждой задачи будет выполняться с достаточно полным информационным обеспечением и будет находиться глобально оптимальное решение, то можно гарантировать, что создаваемый ТО по уровню будет соответствовать мировым достижениям.

Следует заметить, что для перехода к использованию нового физического принципа действия не всегда нужно ждать исчерпания ресурсов уже используемого физического принципа действия (ФПД).

Если при наличии необходимого научно-технического потенциала переход к новому техническому решению или принципу действия обеспечивает получение дополнительной эффективности, существенно превышающей дополнительные интеллектуальные и производственные затраты, то может произойти скачок к новому техническому решению или принципу действия и без исчерпания возможностей совершенствования старого технического решения. Нередко это приводит к параллельному развитию выполнения одинаковых функций на основе разных ФПД. Например: получение электроэнергии на тепловых и атомных электростанциях; совершенствование тепловозов и электровозов; строительство кирпичных и панельных жилых домов.

Большое практическое значение в рамках рассматриваемого закона имеет изучение закономерности изменения критериев развития на протяжении использования одного принципа действия, т.е. изучение S-функций.

Это позволяет установить, насколько недоиспользованы возможности реализованного в техническом объекте ФПД, Если эти возможности имеют значительные резервы, на основе прогнозирования, базирующегося на экстраполяции S-функции, можно сформулировать конкретное задание на улучшение основных показателей ТО.

Если же анализ показывает, что возможности применяемого принципа действия практически исчерпаны, делается вывод о необходимости поиска нового ФПД.

Второй закон стадийного развития техники (открыт С.С. Товмасяном)

Этот закон отражает изменения, происходящие в процессе исторического развития как отдельных классов ТО, так и техники в целом.

Его можно сформулировать следующим образом. ТО, предназначенные для обработки материалов, имеют четыре стадии развития, связанные с реализацией четырех фундаментальных функций, (см. закон соответствия между функцией и структурой):

1) на первой стадии ТО реализует только технологическую функцию, стальное делает человек;

2) на второй стадии развития ТО реализует технологическую и энергетическую функции;

3) на третьей стадии добавляется функция управления;

4) на четвертой стадии добавляется функция планирования.

Переход к каждой очередной стадии происходит при исчерпании природных возможностей человека по дальнейшему увеличению производительности и др. качественных показателей, а также при наличии необходимого научно-технического уровня и социально-экономической целесообразности.

Таблица 2.1- Стадия развития техники

Выполняемая

функция

Начало стадии

Каменный век

XVIII век

Середина

XX века

Конец

XX века

Технологическая

ТО

ТО

ТО

ТО

Энергетическая

человек

ТО

ТО

ТО

Управления

человек

человек

ТО

ТО

Планирования

человек

человек

человек

ТО

Практическое использование закона стадийного развития связано с получением в процессе исследования технического объекта ответов на следующие вопросы:

На какой стадии развития находится изучаемый технический объект?

Ограничивают ли возможности человека существенное улучшение основных показателей ТО?

Имеются ли необходимые научно-технические возможности для перехода на следующую стадию?

Имеется ли социально-экономическая целесообразность перехода на следующую стадию?

Следует обратить внимание на тот интересный факт, что, чем больше функций передается от человека к технике, тем глубже инженер должен знать эргономику - науку о физических и психический возможностях человека.

Из закона стадийного развития техники вытекают две важные закономерности:

Каждая стадия развития техники, как правило, имеет два периода развития: сначала основная фундаментальная функция реализуется с помощью универсального технического средства, затем происходит дифференциация и специализация технических средств. Так, на первой стадии развития техники был пройден путь от общего рубила до 500 разновидностей одних только молотков; на второй стадии от мускульной энергии пришли к современному разнообразию источников энергии; на третьей - от универсальной ЭВМ к специализированным ЭВМ и микропроцессорам.

При этом на каждой новой стадии резко возрастает относительное разнообразие технических объектов и область их применения в связи с появлением широких возможностей конструктивного изменения и приспособления подсистемы, реализующей очередную фундаментальную функцию, и комбинирования этой подсистемы с различными вариантами других подсистем технического объекта.

Чем большее число фундаментальных функций реализовано с помощью технических средств, тем меньше ограничений накладывают естественные возможности человека, тем больше возможностей открывается для совершенствования технического объекта и тем выше темпы технического прогресса.

В качестве иллюстрации на рисунке 4 показана динамика регистрации изобретений в СССР в период с 1925 г. по 1992 годы.



Рисунок 4 - Динамика изобретательства в СССР

Третий закон расширения множества потребностей-функций

Для открытия новых направлений развития техники важно предусмотреть появление новых потребностей в обществе. В этом отношении полезен закон расширения множества потребностей-функций. Выше приводилась формулировка этого закона, данная К. Марсом.

Современная формулировка звучит следующим образом.

При наличии необходимого потенциала и социально-экономической целесообразности возникшая новая потребность удовлетворяется с помощью впервые созданных технических средств; при этом возникает новая функция, которая затем существует до тех пор, пока ее реализация будет обеспечивать сохранение и улучшение жизни людей. Число таких потребностей-функций монотонно возрастает по экспоненциальному закону

Полезно отметить, что трудом ряда ученых (А. Маслов и др.) удалось установить приоритет потребностей, который позволяет судить о направлениях развития техники.

А. Вечные потребности, значимость которых всегда остается неизменно высокой: обеспечение пищей, обеспечение жильем, обеспечение одеждой, обеспечение оборонной техникой, защита от преступных нападений, защита от природных катастроф, защита от болезней и болевых ощущений.

В. Вечные потребности, значимость которых сильно возросла в XX в: защита от больших искусственных катастроф и локальных аварий в промышленности, на транспорте и т.д. Получение новой информации, сбор, хранение, обработка и передача информации. Красота окружающей среды. Обеспечение индивидуально и общественно полезного досуга людей.

С. Новые потребности, возникшие во второй половине XX в. и по значимости близкие к вечным. Защита от глобального уничтожения человечества. Обеспечение нормальной пресной водой. Обеспечение нормальным воздухом. Обеспечение нормальных условий сна.

Все это обобщенные первичные потребности, которые имеют многоуровневое иерархическое разделение на частные первичные потребности. Они, в свою очередь, вызывают вторичные потребности 1-го уровня в производстве ТО, далее 2-ой уровень и т.д.

Четвертый закон относительного постоянства

Этот закон можно сформулировать следующим образом: не существует изделий, не имеющих отклонений относительно некоторого материального образца. Ошибкой считается лишь превышение допустимого отклонения.

Для конструктора и изготовителя этот закон имеет важное значение, поскольку он представляет собою основу определения границ допускаемых изменений материального комплекса с позиций эффективности технических средств.

В машиностроении оценка допускаемых отклонений от номинальных параметров, является предметом изучения отдельной научной дисциплины "Основ взаимозаменяемости". Здесь учитывается, с одной стороны, возможность применяемого технического оборудования обеспечить ту или иную точность выполнения операции, с другой стороны, возможность ТО, изготовленного с определенными отклонениями от номинальных характеристик, выполнять заданные функции.

Чтобы предвидеть отклонения свойств изделий, необходимо понимать, что производство представляет собою стохастический процесс. Стохастический или случайный процесс является результатом действия множества элементов со случайными свойствами - элементов, которые однако можно описать не случайным образом, а на основе теорий вероятностей.

Доступный пример стохастического процесса - поведение студентов. Оно носит случайный характер. Пример - очередность выхода из аудитории после звонка. Длительное наблюдение позволит предсказать некоторую вероятность этой очередности.

Допуски и посадки, определяемые в соответствии с законом относительного постоянства, лежат в основе стандартизации типовых деталей и инструмента, применяемого в различных отраслях производства. Научно-технический прогресс способствует повышению точности процессов и изделий. Поэтому действие закона связано с развитием техники.

Пятый закон возрастания разнообразия технических объектов

Разнообразие технических объектов, составляющих техносферу мира, страны или отрасли, а также разнообразие отдельного класса технических объектов, имеющих одинаковую обобщенную функцию, в связи с необходимостью наиболее полного удовлетворения человеческих потребностей, обеспечения наиболее высоких темпов повышения производительности труда и улучшения других критериев прогрессивного развития техники со временем монотонно и ускоренно возрастает по экспоненциальному графику

Возрастание происходит за счет появления новых потребностей-функций, качественной и количественной специализации функций, а также за счет дифференциации технических объектов, выполняющих качественно и количественно одинаковую функцию, но имеющих различия по конструкции.

Это - эмпирической закон, выведенный на основе большого статистического материала. В качестве иллюстрации в табл.2.2 приведены данные по количеству моделей легковых, включая гоночные, спортивные и рекордные, и грузовых, включая седельные тягачи и самосвалы, автомобилей.

Нарушения общей тенденции, приходящиеся на годы гражданской войны, последовавшей после Октябрьской революции 1917 г., и на годы Великой Отечественной войны (1941 - 1945) легко объяснимы. Выпуск бронетехники и специальных машин военного назначения в таблице 2.2 не учтен.

Возрастание разнообразия технических объектов, как и объектов природных, не может происходить безгранично. Вспомним, например, что все многообразие и многоцветие природы слагается из химических элементов, которых, немногим более сотни. Поэтому, наряду с законом возрастания разнообразия технических объектов, в природе и технике действует излагаемый ниже закон ограниченного разнообразия.

Таблица 2.2 - Количество моделей автомобилей, выпускаемых отечественными автозаводами в 1896 - 1983 г. г.

Годы

Количество выпускаемых моделей

легковые автомобили

грузовые автомобили

1896 - 1900

2

0

1900 - 1910

10

4

1911 - 1917

13

4

1922 - 1932

5

8

1933 - 1941

20

36

1941 - 1945

6

5

1946 - 1956

53

40

1957 - 1969

74

67

1970 - 1982

38

68

Шестой закон ограниченного многообразия

Применительно к технике закон может быть сформулирован следующим образом.

Многообразие, являющееся необходимым условием существования единства сложных технических средств и способов их действия, должно иметь границы.

Правда, известно, что увеличение различий между характеристиками изделий объективно обусловлено требованием их общественно-технической адекватности в непрерывно усложняющемся мире, где действует закон возрастания разнообразия технических объектов.

Но, с другой стороны, чем шире используется данное техническое средство, тем в большей мере приобретает значение закон ограниченного разнообразия. Пример - изготовление разными заводами телевизоров с унифицированными схемами. Закон проявляет себя в унификации и стандартизации.

Седьмой закон возрастания сложности технических объектов

Качественную историческую картину возрастания сложности ТО описал К. Маркс. Об этом шла речь выше. Ориентировочную количественную картину дает таблица 2.3.

Таблица 2.3 - Возрастание сложности ТО

Время

Приближенное число классов ТО

Среднее число деталей в наиболее сложных ТО

100 000 лет назад

5

1

10 000 лет назад

50

10

1000 лет назад

1000

100

Настоящее время

50000

10000

Несколько более подробную градацию ТО по сложности с прогнозом на будущее дал Г.Н. Поворов, см. таблицу 2.4.

Таблица 2.4 - Сложность систем по Г.Н. Поворову

Уровень сложности

Примеры ТО

1.

Простые предметы

Одноэлементные орудия раннего каменного века (рубило и др.).

2.

Превращающиеся предметы

Использование огня при изготовлении керамической посуды.

3.

Сложные предметы

Составные орудия из жестко соединенных деталей (ткани).

4.

Простые системы

Машины и устройства с числом элементов 10 - 103 и определенным детерминированным их взаимодействием (машины XV - XVI в. в)

5.

Сложные системы

Технические системы с числом элементов 104 - 107 и выше с массовым случайным их взаимодействием, например АТС.

6.

Превращающиеся системы

Системы, способные к росту, развитию, самоорганизации. Число элементов 108 - 1030.

7.

Парадоксальные системы

Системы столь обширные и сложные, что они способны управлять пространством и временем, и изменять космические формы своего бытия. Число элементов 1030 - 10200

А.Н. Половинкин предпринял попытку вывести универсальный показатель сложности.

Показатель сложности S определяется положительным числом, большее значение которого соответствует более сложному ТО.

8 Закон убывающей полезности

Этот закон является общим, действующим как в живой природе, так и в технике.

В живой природе он проявляется в снижении работоспособности стареющего организма, в снижении урожайности плодоносящих растений и т.д. В технике закон проявляется как в области ее совершенствования, так и в области эксплуатации технического объекта. Он может быть сформулирован следующим образом.

Затраты на совершенствование технического объекта в пределах одного физического принципа действия по мере исчерпания резервов ФПД приносят все меньший эффект. По мере старения технического объекта, находящегося в эксплуатации, частота его отказов возрастает, а расходы на восстановление растут, пока не достигнут размеров получаемого от восстановления эффекта.

Следовательно, существует срок службы ТО, после которого восстановление и дальнейшая эксплуатация ТО становятся нецелесообразными.
Заключение

И так на основе имеющихся законов можно анализировать существующие конкретные технические объекты, устанавливать их уровень развития, а также прогнозировать их дальнейшее развитие. Но прогнозировать развитие науки и техники в целом очень затруднительно, так как такой прогноз будет условным и неточным. В настоящее время еще не сложилась единая система законов развития науки и техник. Будущим исследователям законов развития науки и техники предстоит серьезно исследовать все имеющиеся материалы. Не менее интересно исследовать стремительно развивающиеся сегодня системы высоких технологий. Здесь тоже имеются свои законы. Особенно это касается микроэлектроники, компьютеров и программирования. В них наверняка имеются те законы и закономерности, которые еще не выявлены.
Список используемых источников

1. Друянов, Л.А. Законы природы и их познание./ Л.А. Друянов. - М.: Просвещение, 1982. - 112с.

2. Ковалев, А.М. Общество и законы его развития/ А.М. Ковалев. - М.: Изд. МГУ, 1975. - 416с.

3. Мелещенко, Ю.С. Техника и закономерности ее развития/ Ю.С. Мелещенко. - М.: Лениздат, 1970. - 246с.

4. Панибратов, В.Н. Категория "закон". Проблемы истории и объективно-диалектического содержания/ В.Н. Панибратов. - Л.: Наука, 1980. - 128с.

5. Кузин, А.А.К. Маркс и проблемы техники/ А.А. Кузин - М.: Наука, 1968. - 112с.

6. Семенов, С.А. Развитие техники в каменном веке/ С.А. Семенов. - М.: Наука, 1968. - 361с.

7. Каменев, А.Ф. Технические системы: закономерности развития/ А.Ф. Каменев. - М.: Машиностроение, 1985. - 216с.

8. Половинкин, А.И. Основы инженерного творчества/ А.И. Половинкин. - М.: Машиностроение, 1988. - 368с.

9. Половинкин, А.И. Законы строения и развития техники (постановка проблемы и гипотезы)/ А.И. Половинкин. М.: Волгоград: изд. Волгоградского политехнического института, 1985. - 202с.




Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации