Зуев В.В., Поцелуева Л.Н., Гончаров Ю.Д. Кристаллоэнергетика как основа оценки свойств твердотельных материалов - файл n1.doc

приобрести
Зуев В.В., Поцелуева Л.Н., Гончаров Ю.Д. Кристаллоэнергетика как основа оценки свойств твердотельных материалов
скачать (3189 kb.)
Доступные файлы (1):
n1.doc3189kb.07.07.2012 04:41скачать

n1.doc

1   2   3   4   5   6   7   8   9   ...   19

1.2.2. Определение валентных состояний атомов в рамках остовно-электронной концепции строения минералов и других твердых тел


В современной кристаллохимической литературе вопрос о валентности[1], т. е. числе участвующих в связях электронов у атомов, образующих химические соединения, освещен явно недостаточно, а точнее односторонне. Дело в том, что в гетероатомных неорганических кристаллах (к которым относится большинство минералов) обычно ясна валентность катионных, но не анионных компонентов. Такая ситуация традиционно объясняется тем, что до сих пор во всех современных учебниках и справочниках по химии распространены предельно-ионные модели кристаллов типа Na+Cl-, Cu+Cl-, Mg2+O2-, Ве2+O2-, Zn2+S2-, Al3+N3-, Al23+O32-, Si4+O22- и др., в которых (по соответствующим степеням окисления) галоид одновалентен, кислород и сера двухвалентны, а азот трехвалентен. Однако фактическая валентность неметаллов в соединении далеко не всегда совпадает с их степенями окисления, что в физике полупроводников было известно уже давно. Так, в соответствии с правилом Гримма-Зоммерфельда в кристаллах с тетраэдрической координацией атомов и двухэлектронными связями sp3-типа хлор в CuCl семивалентен, кислород в ВеО и сера в ZnS шестивалентны, азот в AlN пятивалентен и т. д. Здесь уместно упомянуть о дискуссии между такими крупнейшими учеными, как Полинг и Филипс, по вопросу о фактическом числе участвующих в связях электронов у атомов в кристаллах (таблица 1.14).

Таблица 1.14

Две трактовки электронного строения кристаллов с тетраэдрической координацией атомов согласно данным работы (Pauling, 1969; Phillips, 1969)

Кристаллы

Числа связующих электронов у атомов согласно

Полингу

Филлипсу

СС

4+4 = 8e-

4+4 = 8e-

BN

3+3 = 6e-

3+5 = 8e-

BeO

2+2 = 4e-

2+6 = 8e-

 

Из этой таблицы следует, что Полинг, будучи апологетом классической теории валентности, постулирует неизменность, сохранение валентности обоих компонентов соединений при переходе от молекул к кристаллам (трехвалентость азота, двухвалентность кислорода). Филипс же, оперируя соответствующими спектроскопическими данными, доказывает пятивалентность азота в кристалле BN и шестивалентность кислорода в кристалле ВеО. Таким образом, даже у крупнейших ученых нет единого мнения по обсуждаемой проблеме.

Естественно, возникает вопрос: какова же фактическая валентность неметаллов в таких, например, кристаллах, как NaCl, MgO, ВеО, Al2O3, SiO2? В большинстве современных учебников по структурной химии, кристаллохимии и минералогии (Бокий, 1971; Урусов, 1975; Уэллс, 1987, 1988; Marfunin, 1994), к сожалению, нет ответа на этот вопрос. Имеющиеся же в литературе соответствующие данные скудны и противоречивы. Так, одна из альтернатив (выше упомянутая в связи с дискуссией Полинг-Филлипс) решения данного вопроса утверждает сохранение валентностей атомов при переходе от молекулы к кристаллу. Например, С. С. Бацанов, ссылаясь на Л. Полинга, пишет (Бацанов, 2000, с. 275): «в кристалле, например, NaCl может существовать только одна нормальная химическая связь Na-Cl, а с остальными лигандами атом натрия может взаимодействовать только электростатическим способом». Понятно, что эта ситуация соответствует одновалентному состоянию хлора в кристалле и остовно-электронной формуле [Na+](0,33e-)6[Cl+]. Итак, согласно этому подходу, на формульную единицу кристалла NaCl приходится одна (0,33e-x6 = 2e-) делокализованная двухэлектронная связь Na-Cl. Другой подход, наиболее последовательно отстаиваемый Сандерсэном соответствующими энергетическими расчетами (Sanderson, 1983), предполагает, что на формульную единицу кристалла NaCl (как и многих других галоидов щелочных металлов) приходится 4 двухэлектронных делокализованных связи Na-Cl, что можно отразить в виде следующей остовно-электронной формулы [Na+](1,33e-)6[Cl7+] с семивалентным хлором. Таким образом, имеются явно противоречащие друг другу точки зрения по вопросу о валентности хлора в кристалле NaCl, и целесообразность обсуждения данного вопроса очевидна.

Первая систематическая попытка его решения была предпринята в рамках остовно-электронной концепции строения минералов (Минералогический справочник, 1985; Зуев, 1990). Однако в указанных и других предыдущих работах (Сюше, 1969; Тимесков, 1969; Макаров, 1981; Семенов, 2001) выбор тех или иных валентных состояний (зарядов атомных остовов) неметаллов в кристаллах зачастую был сделан довольно формально (произвольно) без надлежащего энергетического обоснования. В частности, в моделях конституции минералов по Тимескову принимаются максимально возможные (групповые) валентные состояния неметаллов согласно их положению в той или иной группе Периодической системы. В работах Семенова оценка валентности (заряда остова) кислорода в простых и сложных кристаллических оксидах принимается из расчета, чтобы электронные заряды межатомных связей имели целочисленные (кратные заряду электрона) значения, что представляется довольно искусственным приемом. Цель данного раздела - внести соответствующие уточнения, касающиеся истинных валентностей атомов в минералах по сравнению с нашими предыдущими данными (Зуев, 1990).

Как оказалось, озаглавленная проблема вполне успешно решается при использовании параметров энергии сцепления атомных остовов и связующих электронов в рассматриваемых кристаллических соединениях при оценке их твердости. Для этого достаточно обратиться к результатам расчетов по следующим формулам (Зуев, 2002; см. также формулы (1.17-1.19) в предыдущем разделе):

W = ?In + E?; Wv = (W/M)?; НМ = 3,5Wv, (1.20)

в которых W - энергия сцепления атомных остовов и связующих электронов (МДж/моль); ?In - сумма потенциалов ионизации атомов или энергия образования атомных остовов из свободных нейтральных атомов (МДж/моль)[2]; E? - энергия атомизации (энергия сцепления атомов) соединения (МДж/моль); Wv - удельная объемная энергия сцепления атомных остовов и связующих электронов соединения (МДж/см3); M - его молекулярный вес (г/моль); ? - плотность (г/см3); НМ - относительная твердость по 15-балльной минералогической шкале.

В качестве примеров рассмотрим ряд простых и сложных кристаллических соединений из различных классов: ковалентных, ионно-ковалентных, металлических и ионно-ковалентно-металлических.

В кристалле алмаза - типичного ковалентного соединения четырехвалентный углерод в состоянии 2sp3-гибридизации образует двухэлектронные связи С-С. Поэтому единственным вариантом строения алмаза будет остовно-электронная модель (Зуев, 1990) - |[C4+](2e-)4[C4+]| По формулам (1.20) W = I1 + I2 + I3 + I4 + E? = 1,086 + 2,352 + 4,62 + 6,222 + 0,714 = 14,99 МДж/моль[3], Wv = (14,99/12,01)x3,52 = 4,39 МДж/см3, НМ = 3,5x4,39 = 15,4, что соответствует справочным данным (Поваренных, 1963).

Второй пример - ионный, а, точнее, ковалентно-ионный кристалл виллиомита NaF, обладающий кубической координационной структурой (типа NaCl) с октаэдрической координацией атомов. В силу его диамагнетизма для кристалла NaF имеет смысл рассмотреть 4 варианта электронного строения с нечетной меняющейся валентностью фтора: 1, 3, 5 и 7. Из таблицы 1.15 следует однозначный выбор в пользу второго варианта с остовами [Na+] и [F3+], поскольку в том случае расчетная твердость кристалла NaF почти в точности равна экспериментальной. Аналогичный результат получается для флюорита в случае принятия для него модели с остовами [Ca2+] и [F3+] и одноэлектронными связями Ca-F (таблица 1.16). Для селлаита MgF2 совпадение расчетной и экспериментальной твердости (4,5) получается в случае принятия остовов [Mg2+] и [F3+]. Расчетная твердость кристалла LiF (структура типа NaCl) в предположении остовного состава

Таблица 1.15

Варианты остовно-электронного строения кристалла NaF (виллиомита) в сопоставлении с расчетной твердостью (справочная твердость 3)

Варианты

остовов

Заряд связи q(Na-F), e-

W,

МДж/моль

Wv,

МДж/см3

НМ

[Na+][F+]

0,33

2,94

0,20

0,7

[Na+][F3+]

0,67

12,36

0,82

2,9

[Na+][F5+]

1,0

31,79

2,12

7,4

[Na+][F7+]

1,33

65,27

4,35

?15

Таблица 1.16

Варианты остовно-электронных моделей флюорита CaF2 в
сопоставлении с расчетной твердостью (справочная твердость 4)

Варианты

остовов

Заряд связи

q(Ca-F), e-

W,

МДж/моль

Wv,

МДж/см3

НМ

[Ca2+][F+]2

0,5

6,67

0,27

1,0

[Ca2+][F3+]2

1,0

25,51

1,04

3,6

[Ca2+][F5+]2

1,5

64,37

2,62

9,2

[Ca2+][F7+]2

2,0

131,33

5,35

>15

 

[Li+][F3+]оказалась равной 4,4 в согласии со справочной твердостью (4,5) по данным (Акустические кристаллы, 1982). Для обладающего структурой типа кварца кристалла BeF2 близость расчетной и экспериментальной твердости (4-4,5) имеет место в случае принятия в этом кристалле остовов [Be2+] и [F3+].

Для сложных кристаллических фторидов, например, криолитионита Na3Al2Li3F12 в предположении остовного состава [Na+]3[Al3+]2x[Li+]3[F3+]12 получаются следующие данные: W = 155,68 МДж/моль, Wv = 1,15 МДж/см3 и НМ = 4 (экспериментальная твердость по разным источникам от 3 до 5). Таким образом, в кристаллических фторидах, по всей вероятности, реализуются остовы [F3+].

Следует подчеркнуть один важный момент. Неметаллы могут участвовать в соединениях как в виде полных атомных остовов с зарядами, соответствующими номеру группы Периодической системы, так и в виде атомных остовов с неподеленными электронами. Последнее относится, в первую очередь, к высокоэлектроотрицательным неметаллам (O, F и др.), остовы которых способны прочно удерживать свои внутренние потенциально валентные электроны. В рассмотренных фторидах эту ситуацию можно представить в виде полного заряда остова с двумя неподеленными парами электронов - [(F7+)4e-] = [F3+].

По данным таблицы 1.17 для кристалла галита NaCl делается выбор в пользу остовно-электронной модели с остовами [Na+][Cl5+] и одноэлектронными связями Na-Cl. Аналогичным образом - по соответствию расчетной и экспериментальной твердости - доказывается, что в строении других кристаллических хлоридов принимают участие

Таблица 1.17

Варианты остовно-электронных моделей галита NaCl в сопоставлении с расчетной твердостью (экспериментальная твердость 1,6-2,5)

Варианты

остовов

Заряд связи

q(Na-Cl), e-

W,

МДж/моль

Wv,

МДж/см3

НМ

[Na+][Cl+]

0,33

2,39

0,09

0,3

[Na+][Cl3+]

0,67

8,51

0,31

1,1

[Na+][Cl5+]

1,0

20,21

0,75

2,6

[Na+][Cl7+]

1,33

40,59

1,5

5,2

 

именно остовы [Cl5+]. Так, если принять для гидрофилита CaCl2 остовы [Ca2+] и [Cl5+], то расчеты дают W = 41,09 МДж/моль, Wv = 0,82 МДж/см3 и НМ = 2,9 (экспериментальная твердость равна 3).

Таким образом, в отличие от фторидов, в кристаллических хлоридах могут иметь место более высоко зарядные остовы хлора (например, с одной неподеленной парой электронов - [(Cl7+)2e-] = [Cl5+]). Различие в зарядах остовов фтора и хлора в кристаллических соединениях естественным образом объясняется значительным различием электроотрицательностей атомов (F - 4, Cl - 3), благодаря чему более электроотрицательный остов [F7+] способен удерживать две неподеленные пары электронов, а менее элетроотрицательный остов [Cl7+] - одну неподеленную пару электронов.

Следует оговориться, что тенденция реализации остовов [Cl5+] в кристаллических хлоридах справедлива, строго говоря, лишь для координационных соединений с высокими КЧ(Cl), поэтому ее не следует абсолютизировать. В частности, в кристалле AlCl3, обладающим слоистой структурой с октаэдрической координацией алюминия и двойной уголковой хлора, реализуются, по всей вероятности, остовы [Cl3+]. Соответствующая остовно-электронная формула с двухэлектронными связями Al-Cl будет [Al3+](2e-)6[Cl3+]3, для которой расчеты дают W = 28,66 МДж/моль, Wm = 0,215 МДж/г и максимальную частоту колебания атомов по ниже приведенной формуле (1.21) vm = 7 ТГц в согласии со справочными данными (Мамыров, 1991).

Далее рассмотрим координационные кристаллические оксиды различных валентных типов М2О, МО и МО2. По данным таблицы 1.18 обладающий структурой типа антифлюорита кристалл Na2O построен из остовов [Na+] и [O4+], поскольку его экспериментальная относительная твердость близка к 2,5. Аналогичным образом для кристалла периклаза MgO (экспериментальная твердость которого около 6) из трех теоретически возможных принимается остовно-электронная модель с остовами [Mg2+] и [O4+] и одноэлектронными связями Mg-O (таблица 1.19)[4], а для кристалла кварца SiO2 (экспериментальная твердость которого около 7) делается выбор в пользу остовно-электронной модели с остовами [Si4+] и [O4+] и трехэлектронными (полуторного порядка) связями Si-O (таблица 1.20).

Таблица 1.18

Варианты остовно-электронных моделей кристалла Na2O в
сопоставлении с расчетной твердостью

Варианты

остовов

Заряд связи

q(Na-O), e-

W,

МДж/моль

Wv,

МДж/см3

НМ

[Na+]2[O2+]

0,5

7,89

0,3

1,0

[Na+]2[O4+]

0,75

19,34

0,75

2,6

[Na+]2[O6+]

1,0

43,66

1,69

5,9

 

Таблица 1.19

Варианты остовно-электронных моделей периклаза MgO в
сопоставлении с расчетной твердостью

Варианты

остовов

Заряд связи

q(Mg-O), e-

W,

МДж/моль

Wv,

МДж/см3

НМ

[Mg2+][O2+]

0,33

7,89

0,7

2,5

[Mg2+][O4+]

1,0

20,66

1,83

6,4

[Mg2+][O6+]

1,33

44,97

3,99

14

 

Таблица 1.20

Варианты остовно-электронных моделей кварца SiO2 в
сопоставлении с расчетной твердостью

Варианты

остовов

Заряд связи

q(Si-O), e-

W,

МДж/моль

Wv,

МДж/см3

НМ

[Si4+][O2+]2

2,0

21,23

0,94

3,3

[Si4+][O4+]2

3,0

46,77

2,06

7,2

[Si4+][O6+]2

4,0

95,4

4,21

14,7

 

Особого внимания заслуживают данные таблицы 1.20 для кварца, в которой фактически решается принципиальный вопрос о порядке (кратности) кремнекислородных связей в этом минерале. Дело в том, что до сих пор авторы некоторых квантово-химических расчетов продолжают настаивать на ординарных связях Si-O в модификациях SiO2 с тетраэдрической координацией атомов кремния (включая кварц). Однако из таблицы 1.20 следует невозможность как ординарных, так и двойных кремнекислородных связей в кварце, тогда как полуторный порядок этих связей наиболее вероятен, поскольку находится в соответствии с твердостью минерала, обусловленной соответствующей энергией сцепления атомных остовов и связующих электронов.

До сих пор мы рассматривали простые (бинарные) кристаллические соединения. Разумеется, аналогичный подход возможен и по отношению к более сложным кристаллам. В качестве первого примера обратимся к форстериту Mg2SiO4. В некоторых предыдущих работах (Тимесков, 1969; Макаров, 1979; Зуев, 1990) принимается общее число валентных электронов в форстерите равным 32e-, что соответствует проявлению максимально возможной валентности кислорода или, другими словами, остовам [O6+]. Однако по параметрам Wv и НМ (таблица 1.21) в форстерите, экспериментальная (справочная) твердость которого близка к 7 (Зуев, 1990), кислород реализуется в виде остовов [O4+], как и в кристаллах MgO и SiO2. Наличие неподеленных электронов у шестизарядного остова кислорода в форстерите следует из прецизионных расчетов деформационной электронной плотности (Van der Wal, Vos, 1987).

Таблица 1.21

Варианты остовного состава форстерита a-Mg2SiO4 в
сопоставлении с расчетной твердостью

Варианты остовов

W, МДж/моль

Wv, МДж/см3

НМ

[Mg2+]2[Si4+][O2+]4

34,14

0,77

2,7

[Mg2+]2[Si4+][O4+]4

88,15

2,00

7

[Mg2+]2[Si4+][O6+]4

185,41

4,22

14,8

 

Аналогичные данные о кислородных остовах [O4+] были получены для многих других простых и сложных координационных (а также каркасных) кристаллических соединений (BeO, Al2O3, Fe2O3, CaO, BaO, ZnO, CuO, CuFeO2, MgAl2O4, BeAl2O4, FeFe2O4, CaTiO3, FeTiO3, Be2SiO4, FeWO4, Ca3Al2Si3O12 и др.). Таким образом, вывод о весьма распространенном (универсальном) четырехвалентном состоянии кислорода в оксидных кристаллах можно считать энергетически доказанным, что представляется весьма важным для неорганической кристаллохимии вообще.[5] Это состояние остова кислорода [O4+] = [(O6+)2e-] со сферической внешней неподеленной парой 2s2-электронов идеально подходит для построения координационных кристаллов, поскольку предполагает возможность реализации практически любых КЧ кислорода. Кроме того, имеет смысл еще раз подчеркнуть, что повышенная стабильность и соответственно распространенность четырехвалентного состояния кислорода, его способность прочно удерживать остовом [O6+] неподеленную пару электронов в кристаллических оксидах объясняются высокой электроотрица-тельностью кислорода.

Корректность принятия остовов [O4+] в силикатах доказывается, в частности, критерием межатомных расстояний, что следует из следующих данных:

минерал

формула

q(Si-O), e-

d(Si-O), Е

кварц

SiO2

3,0

1,61

циркон

ZrSiO4

2,78

1,62

кианит

Al2SiO5

2,60

1,62

фенакит

Be2SiO4

2,36

1,63

форстерит

Mg2SiO4

2,36

1,64

гроссуляр

Ca3Al2Si3O12

2,26

1,65

Как видим, наблюдается четкая обратная зависимость длин связей Si-O от их электронных зарядов, рассчитанных (в случае принятия во всех этих минералах остовов [O4+]) по методикам автора (Зуев, 1990). С другими вариантами остовов кислорода - [O6+] в форстерите и гроссуляре, [O5+] в фенаките, принятыми нами ранее (Зуев, 1990), расчеты приводят к резкому нарушению выявленной естественной корреляции.

Расчеты по формулам Кордеса (Kordes, 1964) и Приходько (Приходько, 1973) дают для радиуса остова [O6+] величину 0,11 Е, а для остова [O4+] величину 0,21 Е. Тот факт, что решетки кристаллов типа МО в большинстве случаев кристаллизуются в структурном типе галита-галенита с октаэдрической координацией атомов (КЧ = 6) находит следующее чисто геометрическое объяснение, исходящее из соотношения радиусов остова [O4+] и связующего электрида. В кристаллических оксидах типа MgO имеют место связывающие электриды с зарядом 1e- (таблица 1.19), радиусы R которых можно оценить из данных для молекулы Н2+. Ее остовно-электронная формула |[H+](1e-)[H+]|, а межатомное расстояние d(H-H) = 1,06 Е. Поскольку Н+ является практически «бестелесным» ионом, то радиус однозарядного электрида R = 1,06/2 = 0,53 Е. Так как ri(O4+) = 0,21 Е, то имеем отношение радиусов остова и электрида равным 0,21/0,53 = 0,4, которое идеально удовлетворяет именно октаэдрической координации кислорода (Гиллеспи, 1975). Заметим, что в случае принятия предельно-ионной модели, например, кристалла MgO, отношение ионных радиусов ri(Mg2+) = 0,86 Е и ri(O2-) = 1,26 Е (Современная кристаллография, 1979) составляет величину 0,86/1,26 = 0,68, которая, хотя и не противоречит октаэдрической координации атомов, но менее удовлетворительна по сравнению с предыдущей. Таким образом, в соответствии с остовно-электронным подходом октаэдрическая координация атомов в кристаллических оксидах типа МО в первую очередь определяется (диктуется) анионами кислорода, а точнее соответствующим соотношением размеров его остовов и связующих электридов.

Твердость сложных кристаллических соединений с комплексными радикалами (нитратов, сульфатов) определяется прочностью слабых связей нерадикальных катионов с кислородом, и разрушение таких кристалллов происходит именно по этим связям. При этом прочные связи внутри радикалов сохраняются. Очевидно, что оценка твердости таких кристаллов по параметрам Wv не правомерна, поскольку этот параметр учитывает в усредненном виде энергию всех связей М-О (как нерадикальных, так и радикальных катионов). Поэтому в таблицу 1.22 продемонстрирован другой метод контроля остовного состава соединений - по соответствию расчетных и экспериментальных максимальных частот колебаний атомов (nm, ТГц), вычисляемых по формуле (Зуев, 2002):

vm = 19,3Wm0,66, (1.21)

где Wm - удельная массовая энергия сцепления остовов и электронов соединения, вычисляемая по отношению W/M (см. формулу (1.17)).

Таблица 1.22
1   2   3   4   5   6   7   8   9   ...   19


1.2.2. Определение валентных состояний атомов в рамках остовно-электронной концепции строения минералов и других твердых тел
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации