Реферат - Нанотехнологии - файл n1.doc

Реферат - Нанотехнологии
скачать (376.5 kb.)
Доступные файлы (1):
n1.doc377kb.11.06.2012 05:52скачать

n1.doc

Министерство науки и образования Украины

Харьковский Национально Технический университет «ХПИ»

Реферат

по истории науки и техники

на тему:

НАНОТЕХНОЛОГИИ

Выполнил:

студент группы КИТ-28а

Клёнышев Олег


Харьков 2009

Оглавление


Нанотехнология — междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомарной структурой путём контролируемого манипулирования отдельными атомами и молекулами [1, c.3].



Ученые, достигшие сегодня высоких результатов в области нанотехнологий, во многом обязаны двум изобретениям конца прошлого столетия. В 1981 году физики Герд Бинниг (Gerd Binnig) и Генрих Рорер (Heinrich Rohrer) из исследовательской лаборатории IBM создали сканирующий туннелирующий микроскоп, который позволил им увидеть отдельные атомы. А уже в 1986 году он был модернизирован Гердом Биннигом и позволил не только наблюдать атомы, но и манипулировать ими. Оба ученых за свои революционные труды были удостоены Нобелевской премии. В 1990 году увидела свет эпохальная статья двух исследователей из той же лаборатории IBM - Айглера и Швейцера, под названием "Позиционирование отдельных атомов с помощью сканирующего туннельного микроскопа", и многим стало ясно, что пророчество Фейнмана сбылось - весь мир обошла "нанофотография" удивительной мозаики, образующей символику компании IBM, "выгравированная" отдельными атомами ксенона на поверхности никелевого монокристалла с немыслимой ни в какие времена атомарной точностью.

С появлением сканирующего микроскопа началось широкое развитие нанотехнологий - способов обработки частиц, размеры которых находятся в пределах от одного до ста нанометров (1 нм = 10-9 м). Чтобы лучше представить данный порядок величин достаточно вообразить Земной шар и футбольный мяч - именно так соотносится в размерах последний и наночастицы. Сегодня Бинниг продолжает свою научную работу в лабораториях IBM, разрабатывая и совершенствуя технологию создания жестких дисков нового поколения без намагничивающих записывающих и считывающих головок.

Манипуляции наночастицами

Проблемой манипуляцией атомов при помощи сканирующего микроскопа занимался и ученый Дон Айглер (Don Eigler), который также проводил свои эксперименты в лабораториях IBM. Он в 1989 году впервые не только смог переместить атомы при помощи сканирующего микроскопа, но и научился делать это в заданных направлениях и на заданные расстояния. Сегодня при помощи его установки свободно можно перемещать наночастицы, управляя процессом с компьютера. Один из опытов Айглера видится очень показательным, так как может явиться своеобразным коридором связующим цифровую реальность и наномир. Так, ученый расположил атомы кобальта на поверхности меди таким образом, что они образовали замкнутый эллипс. После помещения в одну из частей эллипса еще одного атома кобальта, во второй его половине (пустой) прослеживался сигнал аналогичный наличию в ней какой-то атомоподобной частицы.

Понятно, что никакой частицы в пустом фокусе эллипса не было. Однако наличие сигнала на сканирующем микроскопе ученый объяснил с помощью эффекта шепота, который достаточно давно известен людям. Его суть заключается в том, что даже тихий разговор человека в специально спроектированном помещении может быть слышен в противоположном его краю, тогда как нормальной слышимости речь будет совершенно неразборчива с близкого к нему расстояния. Примером таких помещений могут служить множественные театры, которые, как известно, имеют эллиптическую форму. Такой эффект обусловлен конструкцией стен и потолков, которые в сумме целенаправленно отражают звуковые волны. Согласно дуализму свойств микрочастиц, атомы ведут себя аналогично волнам, именно поэтому в пустой части фокуса эллипса наблюдался эффект подобный звуковому эффекту шепота. Таким образом, изменяя форму эллипса действия данного явления на атомарном уровне можно избежать, то есть на одном элементарном звене (кольцо атомов кобальта) получить как присутствие сигнала "атома-призрака", так и его отсутствие. Следовательно, варьирование формы расположения атомов кобальта создает основу для создания интерпретатора двоичной системы исчисления. Массивы наночастиц, разложенных по поверхности меди кольцеобразно, могут создать невероятной емкости устройства хранения данных, считывателем которых станет сканирующий микроскоп.

Другой эффект, позволяющий создавать устройства хранения и запоминания, был открыт исследователями из Иллинойского университета, которые разработали методику для размещения на стандартном полупроводниковом кристалле массива органических молекул, которые в принципе можно использовать в качестве запоминающих устройств классического по своей топологии типа. Технология относительно проста. С готовой кремниевой пластины предварительно удаляется оксидная пленка (например, при помощи рентгеновского излучения). Затем, в глубоком вакууме, поверхность, состоящая из химически чистого кремния, покрывается слоем атомов водорода. С помощью сканирующего туннельного микроскопа (похоже, он становится основным производственным инструментом нанотехников) можно удалять из этого слоя отдельные атомы водорода, создавая на поверхности рельефный рисунок, таким образом, чтобы углубления рельефа стали бы областями чистого кремния. Если на полученную заготовку нанести органические молекулы, то они одним концом присоединятся к кремнию, а вторым будут свободно "парить" над поверхностью, при этом вращаться с частотой до терагерца. Ученые утверждают, что этим вращением можно управлять при помощи электрических импульсов. Таким образом, может быть создан упорядоченный массив (все зависит от шаблона, по которому делаются дырки в водородном покрытии) управляемых переключающихся элементов - то есть механическая молекулярная память, с частотой функционирования порядка нескольких терагерц. Естественно, все пока находится в глубоко экспериментальной стадии, но возможности открываются колоссальные.

Нанотехнологии сегодня

Уже сегодня существует целый ряд разработок, основывающихся на элементах нанотехнологии. Например, компания IBM недавно представила новую технологию хранения информации, с помощью которой можно будет добиться плотности записи порядка триллиона бит на квадратный дюйм, что в 20 раз больше, чем у самого совершенного на сегодня магнитного носителя. Кремниевым запоминающим устройствам до этого показателя еще дальше. В новой технологии Millipede компании IBM - все необычно: и подход к организации хранении данных, и время (в хронологическом отношении развития компьютерного прогресса) "рождения" новой технологии, и небывалое количество циклов записи/перезаписи. Ноу-хау компании IBM лишь "эхо" давно забытых перфокарт, с единственной лишь разницей в том, что технология реализована на микроскопическом уровне и не является "одноразовой" по отношению к носителю информации. Основной элемент Millipede - массив одноконечных кремниевых кронштейнов длиной 70 и толщиной 0,5 мкм (в будущем эти цифры, конечно же, уменьшаться), на каждом из которых находится микроскопическая игла длиной 2 мкм. В представленном компанией IBM демонстрационном образце использовался массив 32 х 32 с размерами всего 3 х 3 мм.

О своем достижении в области электронных технологий на молекулярном уровне поведала и компания НР. В ее лаборатории достигли наивысшей плотности на данный момент и даже готовы продемонстрировать 64-бит чип энергонезависимой памяти, в котором роль ячеек памяти играют отдельные молекулы. Этот чип умещается на площади в один квадратный микрон. Кроме того HP удалось совместить запоминающие и управляющие элементы в одном молекулярном устройстве. Самое удивительное, что у компании HP уже разработана опытная методика производства нанолитографической печати, позволяющей делать копии чипов на пластинах, подобно тому, как делаются копии страниц с оригинал-макета в типографиях.

Нанотехнологии применимы и в таких "прикладных" областях как создание охладительных установок. Термоионный метод охлаждения, разрабатываемый фирмой Cool Chips, находится на совершенно ином, более глубоком физическом уровне, нежели классические методы, "орудующие" воздушным потоком, или холодильники Пельтье, которые используют термоэлектронный эффект. Термоионный охладитель - это термоионный преобразователь, в котором под действием напряжения происходит отвод "горячих" электронов (электронов с большой энергией) от охлаждаемой поверхности. Что касается ожидаемой эффективности разработки Cool Chips, то она, включая все потери (даже отток тепла через проводники) составит порядка 70-80%, при теоретической интенсивности теплоотвода порядка 5кВт/кв.см. Если сравнивать новую технологию с традиционными методами охлаждения, то КПД компрессорных систем равен 40-50%, термоэлектрических - 8%, в лучшем случае при большом научном прорыве приблизительно 20-30% [2, c.7].

Наноустройства научатся самовоспроизведению

Единственной проблемой, стоящей на пути развития нанотехнологий сегодня, является слишком большой масштаб сборки. Перемещение отдельных молекул производится с помощью зондов, управляемых компьютером, который, в свою очередь, управляется человеком. Процедура сборки наноустройств имеет ограниченный диапазон и не автоматизирована на наноуровне.


Прогресс. Компьютеры следующего поколения будут созданы нанороботами

Ученые считают, что сдвинуть дело с мертвой точки поможет управляемый механосинтез. В ходе этой, пока еще теоретической процедуры, молекулы можно будет собирать из атомов с помощью механического приближения — сокращения расстояния между атомами до тех пор, пока не вступят в действие химические связи. Это возможно лишь при наличии манипулятора, который способен оперировать отдельными атомами в радиусе до 100 нм. Управлять столь тонким устройством человек уже не сможет, для этого потребуется нанокомпьютер. И скорее всего он должен быть встроен прямо в наноробота-сборщика, который будет осуществлять сборку устройств.

Американский институт молекулярного производства объявил конкурс на изготовление первого такого устройства с призовым фондом $250 тыс. По самым оптимистичным оценкам, стратегический дует из нанокомпьютера и наноманипулятора будет создан не раньше 2015 года. После этого развитие нанотехнологий ничто уже не будет сдерживать, ведь первый манипулятор сможет воспроизвести сам себя без участия человека. Дальше будет еще проще. Используя свойства ДНК к размножению, несколько бактерий смогут за несколько часов довести свое количество до нескольких миллионов, не требуя ничего, кроме незначительных объемов энергии и сырья.

Биотехнологии, нанороботы

В медицине и биотехнологиях использование нанороботов также сулит невероятные прорывы. Многие тяжелые и даже неизлечимые заболевания, перед которыми пасует современная медицина, перестанут быть опасной угрозой. Медицинские нанороботы доберутся до пораженных органов и злокачественных клеток, не требуя хирургического вмешательства и химиотерапии.


Хирургия будущего. Медицинские нанороботы дешевы в производстве и безвредны для организма

Британский футуролог Обри де Грей убежден, что благодаря нанотехнологиям станет возможным регулярно обновлять клетки организма и таким образом фактически достичь бессмертия. Больше того, он убежден, это вовсе не дело отдаленного будущего — первыми бессмертными, по его мнению, станут люди, родившиеся в начале XXI века.


Обри де Грей: нанобессмертие уже не за горами

Другие ученые в своих прогнозах заходят еще дальше и предсказывают, что нанотехнологии позволят перестроить человеческий организм. Например, дадут возможность управлять энергетическим балансом, поставляя в организм калории, без необходимости употреблять в пищу продукты, содержащие эти калории.

Благодаря нанотехнологиям станет возможным повысить биологическую совместимость различных протезов и имплантов с нервными тканями человека. Возможно, сбудется мечта писателей фантастов жанра «киберпанк», которые описывали нейроинтерфейсы, позволявшие людям будущего взаимодействовать с компьютерами непосредственно через нервную систему.

2009 год для нанотехнологий начался с сенсации. Американские ученые из университета Джона Хопкинса объявили о создании наноробота, способного уничтожать раковые клетки. Микроскопическое устройство размером с частичку пыли имеет в диаметре меньше одной десятой миллиметра, при этом оно способно проникать в организм человека и перемещаться по нему, ориентируясь на биохимические сигналы клеток. Робот умеет отличать злокачественные клетки от здоровых и удалять их и организма.


Без проводов. Нанороботы управляются магнитом

Внешне наноробот похож на краба — у него есть «туловище» и три пары «клешней», которыми он цепляется за ткани и проводит все необходимые манипуляции. Впрочем, «клешни» раскрываются лишь когда робот добирается до цели — по организму он путешествует в виде гладкого шарика. Сам процесс движения обеспечивается благодаря магнитному испульсу. Конструкция робота содержит частицы никеля, врачи воздействуют на них с помощью магнитов, задавая направление движения зонда.

Нанороботы дешевы в производстве, легко управляются и абсолютно безвредны для организма, констатирует Дэвид Гэрсиас, возглавляющий проект в университете Джона Хопкинса. По его словам, они могут стать отличной альтернативой традиционным хирургическим инструментам. Но самым большим их преимуществом является возможность проводить диагностику организма путем взятия клеточных проб без хирургических разрезов.

Нанотехнологии в металургии

Компания Battelle, один из крупнейших партнеров Министерства энергетики США, объявила о создании «умного» покрытия, которое поможет предотвращать ржавление металлов. Покрытие само распознает места, в которых металл начал ржаветь, на самых ранних стадиях, когда процесс невозможно заметить невооруженным глазом.

Интеллектуальным это покрытие делают нанотехнологии. Сотрудники лаборатории компании разработали наноматериалы, которые взаимодействуют с коррозией — вступая в реакцию с ржавчиной, они начинают флюоресцировать. Опыты пока проводились только с алюминием, однако разработчики уверяют, что химический состав покрытия в будущем может быть адаптирован практически к любому виду металла.

Актуальность изобретения в США ни у кого не вызвала вопросов. Только по оценка Министерства обороны США, коррозия оборудования, подконтрольного этому ведомству, ежегодно обходится в $10 млрд. Если покрытие, разработанное Battelle, получит широкое применение и позволит восстанавливать металлические конструкции еще до того, как коррозия станет видимой невооруженным глазом, экономия будет колоссальной.

А немецкие ученые из института Фраунгофера разработали технологическую линию, которая позволит печатать неорганические электронные компоненты по тому же принципу, по которому работают офисные принтеры. По словам руководителя проекта Михаэля Янка, в основе технологии лежат чернила из наночастиц.

Сегодня для производства микросхем повсеместно используется фотолитография — на подготовленную поверхность производится осаждение материалов, которые затем подвергаются воздействию света через маску-шаблон, благодаря рисунку которой удается засветить лишь необходимые участки схемы. При этом большая часть осаждаемых материалов не используется и затем удаляется путем травления. Учитывая в каких количествах современная промышленность производит электронные компоненты для различных видов компьютерной и бытовой техники, методика, которая позволила бы наносить материал только на участки, которые непосредственно формируют рисунок схемы, могла бы привести к многомиллиардной экономии в мировом масштабе.

Янк говорит, что компоненты произведенные по новой технологии обойдутся примерно вдвое дешевле тех, которые производятся сегодня по обычной технологии с использованием кремниевых материалов.

Замена нефти и газа

Возможность практически бесконечного воспроизведения любой конструкции при наличии сырья и некоторого количества энергии — весьма небольшого, как уверяют ученые, - делает нанотехнологии универсальной технологией будущего. КПД получения электроэнергии из солнечного света, например, в случае применения нанотехнологий может достигать 90% против 20% у применяемых сегодня солнечных панелей. Это не только решает проблему энергообеспечения самих нанороботов, но и открывает широкие перспективы для решения энергетических проблем человечества.

Возможность создания конструкций на наноуровне изменит машиностроительную индустрию. Вернее, похоронит ее — отпадет необходимость в промежуточных машинах, которые необходимы для создания других машин. Их заменят универсальные наноконструкторы, способные создать любое устройство на уровне атомов и молекул.

Нанотехнологии могут обеспечить прорыв в освоении космоса, сделав возможным автоматическое строительство и самосборку орбитальных станций и роботов для исследования других планет. Энергию нанороботы будут черпать из солнца, а сырье для работы будут брать в окружающей среде [3,c.13]

Нанотехнолгии в военной промышленности

США


В середине 1990-х годов Пентагон включил нанотехнологии в список шести стратегических областей фундаментальных исследований, что предопределило стабильное финансирование данной научной области на долгосрочный период.

В 2000 году президент Билл Клинтон объявил о начале реализации "Национальной нанотехнологической инициативы", и под программу стали интенсивно выделяться достаточно большие средства. В период с 2005 по 2008 годы на изыскания в этой области США выделили около 3,7 миллиарда долларов (включая и гражданские проекты).

В 2004 году был составлен обновленный стратегический план "Национальной нанотехнологической инициативы", рассчитанный на период до 2015 года.

Он предусматривает финансирование следующих направлений: фундаментальные нанометрические явления и процессы; наноматериалы; нанометрические устройства и системы; исследование контрольно-измерительных приборов, метрология и нанотехнологические стандарты; производство наноизделий; создание специализированных лабораторий для проведения исследований и приобретение контрольно-измерительной аппаратуры.



Солдат будущего. Фото с сайта www.rangermade.us

Особую роль в достижении поставленных целей играет созданный на базе Массачусетского технологического института Институт военно-прикладных нанотехнологий. Институт занимается разработкой экипировки и вооружения в рамках семи проектов, каждый из которых посвящен повышению возможностей "солдата будущего". Среди первых опытных образцов, созданных в рамках одного из проектов, необходимо отметить боевой бронежилет толщиной несколько миллиметров. Такая "динамическая броня" будет содержать сложные наномолекулярные соединения, благодаря которым новая форма будет одновременно совмещать в себе бронежилет, а также экзоскелет и универсальное медицинское оборудование.

Для повышения жесткости костюма к нановолокнам добавляются наночастицы, которые соединяются между собой и упрочняют общую структуру. Кроме того, добавление различных наночастиц к нановолокнам позволит изменить электропроводность. Таким образом, существует возможность создания отдельных проводящих участков костюма, обеспечивающих связь расположенных внутри него сенсоров с управляющей системой и передачу энергии к наноактюаторам экзоскелета.

Компания NanoTriton ведет разработку новых материалов на основе нескольких полимеров, которые позволят защитить военнослужащего от пуль и осколков. В настоящее время ведутся разработки в направлении создания энергопоглощающих полимеров на основе жидких кристаллов. Ключевыми материалами для перспективного костюма военнослужащего будут нановолокна на основе полиуретана, а также нанополимеры.

Ведутся научно-исследовательские и опытно-констукторские работы (НИОКР) в области создания нанокерамических материалов. В частности, при использовании наноструктур из карбида кремния удалось в три раза повысить жесткость материалов по сравнению с обычными изделиями из этого материала. На их основе выпускаются различные покрытия, в частности NanoTuf, которое состоит из наночастиц в растворе и в несколько раз увеличивает прочность пластика.

Кроме того, Пентагон ежегодно выделяет компании Inframat Corp. около двух миллиардов долларов в год на исследования "нанокраски", которая позволит менять цвет наподобие хамелеона, а также предотвратит коррозию и сможет "затягивать" мелкие повреждения на корпусе машины.

Ученые, которые занимаются созданием нанооружия, утверждают, что благодаря потенциалу наносборки и молекулярного конструирования станет возможным создание невидимых видов вооружения, которое будет в десятки раз мощнее обычного оружия. Оно будет напоминать облако пыли, способное взорвать любой объект, в том числе и подземный.



"Умная пыль". Фото с сайта www.nanosvit.com

По мнению ряда зарубежных военных специалистов, разведка местности с помощью "умных молекул" станет возможна уже через 7-10 лет. Облако "умной пыли" будет состоять из пылинок, представляющих собой часть системы наблюдения и анализа. Среди них будут видеокамеры с возможностью передачи информации, каналы связи, узлы обработки разведданных. Такой разведцентр, напоминающий небольшое дымное облако, должен самостоятельно перемещаться и обладать высокой степенью живучести и защищенности.

Несмотря на широкое распространение информации о достижениях США в области нанотехнологий, теоретические наработки, принципы создания новых материалов и практические результаты их исследований держатся в строжайшем секрете. По мнению американских военных специалистов, технологический прорыв в области нанотехнологий предоставит США небывалые военно-политические преимущества как над предполагаемым противником, так и над своими союзниками.

Израиль




Боевой робот-шершень. Фото с сайта www.elementy.ru

Израильские специалисты работают над несколькими военными проектами, в которых предполагается использование нанотехнологий. Один из самых амбициозных - боевой робот-шершень.

Предполагается, что такой летательный аппарат будут использовать для обнаружения и уничтожения противника на поле боя, в первую очередь в районах жилой застройки. Шершень планируется оборудовать видеокамерой, которая позволит передавать картинку на пункт управления войсками, также он сможет нести на себе заряд взрывчатки.

Помимо боевых нанороботов, израильские ученые разрабатывают систему микродатчиков, которые можно будет разбрасывать на территории противника, чтобы с их помощью в режиме реального времени получать всевозможную информацию о происходящем на месте.

Также в Израиле идут исследования, направленные на создание новых видов индивидуальной защиты военнослужащих. Ученые создают легкий и суперпрочный материал для производства специальной одежды для бойцов, которая призвана заменить тяжелые бронежилеты. В настоящее время в городе Кирьят-Гате построен завод стоимостью более 3,5 миллиарда долларов для разработки и производства подобных материалов.

Великобритания




Micromechanical Flying Insect. Фото с сайта www.static.howstuffworks.com

Наиболее интересным нанопроектом в Великобритании является MFI (Micromechanical Flying Insect - механическое летающее насекомое). В рамках программы предполагается создание микроробота-шмеля. Доктор Джон Баркер, профессор Центра исследований в области наноэлектроники в Глазго, уже создал математическую модель процесса собирания микроустройств в стаи и обмена информацией между ними для совместных действий.

Ведутся разработки моделей боевого применения групп MFI в различных видах боя. Планируется, что себестоимость таких насекомых составит около 10 центов, а производить их будут так называемые "нанофабрики" прямо на поле боя.

Китай


В настоящее время в Китае насчитывается около 800 компаний, занимающихся внедрением нанотехнологий, и более 100 научно-исследовательских лабораторий. Характер их работы традиционно остается закрытым. Однако не исключено, что большинство из них ориентировано на удовлетворение нужд оборонно-промышленного комплекса. Наибольший интерес у китайских военных вызывают микрочипы, способные повышать живучесть личного состава при применении противником оружия массового поражения.

Россия


Для реализации различных проектов в области нанотехнологий в России создана госкорпорация "Роснанотех", разработана "Стратегия развития нанотехнологической отрасли". Согласно этому документу, на развитие "наноиндустрии" к 2015 году будет выделено 180 миллиардов рублей. Освоение средств возложено на "Роснанотех", работающий под контролем правительства. При этом "Роснанотех" выведен из-под действия закона о банкротстве. Таким образом, созданы оптимальные условия для реализации нанопроектов.

Основными направлениями исследований российских ученых являются создание высокопрочных материалов (в частности, "жидкая броня"), мощных энергоисточников ("аморфный кремний", над которым работает НПП "Квант"), невидимых и меняющих цвет нанообъектов, наноматериалов для униформы военнослужащих, новой защиты от оружия массового поражения и других [4,20].

Нанотехнологии в Медицине


- Упорядоченные одним образом, атомы составляют дома и свежий воздух; упорядоченные другим, они образуют золу и дым.

- Уголь и алмазы, рак и здоровая ткань: вариации в упорядочении атомов различили дешевое от драгоценного, больное от здорового.

Рассматривая отдельный атом в качестве кирпичика или "детальки" нанотехнологи ищут практические способы конструировать из этих деталей материалы с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции.

В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нано-роботов (наноботов). Любую химически стабильную структуру, которую можно описать, на самом деле, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другого нанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью.

В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов.

Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых.

Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток.

Прогнозируемый срок создания роботов-врачей, первая половина XXI века.

В действительности наномедицины пока еще не существует, существуют лишь нанопроекты, воплощение которых в медицину, в конечном итоге, и позволит отменить старение.

Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными.

Это обусловлено тем, что нанотехнологии имеют большой потенциал коммерческого применения для многих отраслей, и соответственно помимо серьезного государственного финансирования, исследования в этом направлении ведутся многими крупными корпорациями.

Наноботы или молекулярные роботы могут участвовать (как наряду с генной инженерией, так и вместо нее) в перепроектировке генома клетки, в изменении генов или добавлении новых для усовершенствования функций клетки.

Важным моментом является то, что такие трансформации в перспективе, можно производить над клетками живого, уже существующего организма, меняя геном отдельных клеток, любым образом трансформировать сам организм!

Описание нанотехнологии может показаться притянутым за уши, возможно, потому что ее возможности столь безграничны, но специалисты в области нанотехнологии отмечают, что на сегодняшний день не было опубликовано ни одной статьи с критикой технических аргументов Дрекслера. Никому не удалось найти ошибку в его расчетах. Между тем, инвестиции в этой области (уже составляющие миллиарды долларов) быстро растут, а некоторые простые методы молекулярного производства уже вовсю применяются.

Нанотехнологии могут привести мир к новой технологической революции и полностью изменить не только экономику, но и среду обитания человека. В рамках этой статьи мы рассматриваем лишь перспективность этих технологий для отмены старения людей.

Вполне возможно, что после усовершенствования для обеспечения "вечной молодости" наноботы уже не будут нужны или они будут производиться самой клеткой.

Для достижения этих целей человечеству необходимо решить три основных вопроса:

1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.
2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.
3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.

Основная сложность с нанотехнологией - это проблема создания первого нанобота. Существует несколько многообещающих направлений.

- Одно из них заключается в улучшении сканирующего туннельного микроскопа или атомно-силового микроскопа и достижении позиционной точности и силы захвата.
- Другой путь к созданию первого нанобота ведет через химический синтез. Возможно, спроектировать и синтезировать хитроумные химические компоненты, которые будут способны к самосборке в растворе.
- И еще один путь ведет через биохимию. Рибосомы (внутри клетки) являются специализированными наноботами, и мы можем использовать их для создания более универсальных роботов.

Группа нанотехнологов из института предвидения заявила, что стремительный рост нанотехнологий выходит из-под контроля, но в отличие от Билла Джойа, вместо простого запрета на развитии исследований в этой области, они предложили установить правительственный контроль над исследованиями.

Такой надзор, может предотвратить случайную катастрофу, например когда наноботы создают сами себя (до бесконечности), потребляя в качестве строительного материала все на своем пути,  включая заводы, домашних животных и людей.

Рей Курцвейл - к 2020 году появится возможность поместить внутри кровеносной системы миллиарды нанороботов размером с клетку, по оценкам Роберта Фрайтаса, ведущего ученого в области наномедицины, это случится не ранее, чем в 2030-2035 году.

Эти наноботы смогут тормозить процессы старения, лечить отдельные клетки и взаимодействовать с отдельными нейронами. Так ассеблеры практически сольются с нами [5, c.24]

Список литературы

  1. http://ru.wikipedia.org

  2. http://www.price.od.ua

  3. http://www.segodnya.ua/news/13056027.html

  4. http://www.lenta.ru/articles/2008/05/16/nano/

  5. http://www.starenie.ru/texnologii/nanotex.php


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации