Ответы на вопросы к экзамену по эмбриологии - файл n1.doc

приобрести
Ответы на вопросы к экзамену по эмбриологии
скачать (2623.5 kb.)
Доступные файлы (1):
n1.doc2624kb.01.06.2012 08:01скачать

n1.doc

  1   2   3   4   5   6
ЭМБРИОЛОГИЯ
Биология развития (эмбриология) - наука о закономерностях онтогенеза многоклеточных

организмов, начиная с гаметогенеза и включая послезародышевое развитие. Биология развития изучает строение и функции зародышей на последовательных стадиях развития вплоть до становления взрослых форм и последующего старения организма. Развитие находится под контролем генетических факторов и факторов окружающей среды, оно регулируется на уровне целого организма, зачатков органов и тканей, на клеточном, субклеточном, а также молекулярном уровнях.

Биология развития опирается на достижения смежных наук - цитологии, генетики, молекулярной биологии, эволюционной теории и экологии. Поэтому изложение курса "Эмбриология" дополняется необходимыми сведениями из перечисленных выше дисциплин.
1. Предмет и история эмбриологии
Предмет эмбриологии, ее связь с другими биологическими дисциплинами. Краткий обзор истории эмбриологии. Воззрения Гиппократа и Аристотеля. Эмбриология XVII-XVIII вв.

Преформисты и эпигенетики. Работы К.Ф.Вольфа. Развитие эмбриологии в XIX веке. Значение работ К. Бэра. Влияние дарвинизма на эмбриологию. Сравнительно-эволюционное направление (А.О. Ковалевский, Э. Геккель, И.И. Мечников). Исторические корни экспериментальной эмбриологии, ее современные задачи. Каузально-аналитический метод, его сильные и слабые стороны. Дискуссия неопреформистов и неоэпигенетиков (В. Гис, В. Ру, Г.Дриш). Основные направления и задачи современной описательной, экспериментальной, сравнительной и теоретической эмбриологии. Ее связь с цитологией, генетикой и молекулярной биологией.

Прикладное значение эмбриологии.
Эмбриология - наука изучающая индивидуальное развитие многоклеточного организма, а также закономерности изменений его морфофункционального состояния на протяжении всего онтогенеза.

Она включает в себя определенные разделы цитологии, гистологии, генетики и молекулярной биологии. Одним из начал эмбриологии, по-видимому, была акушерская практика (как одна из первых форм медицинской помощи). Второе начало – мировоззренческое ( эмпирическое – движение от факта к факту и теоретическое – общее представление о появлении жизни, зарождении, развитии организма).

Первые теории, послужившие в дальнейшем основой для развития науки, появились во времена античности.

- Эмпедокл (444 до н.э.) утверждал, что человек формируется с 31 дня по 50. Он полагал, что кости есть земля и вода, сухожилия – земля и воздух и т.п. Также считал, что рождение близнецов или уродов есть результат работы воображения матери. Считал, что зародыш начинает дышать с момента рождения.

- Диоген утверждал, что плацента – орган питания зародыша. И высказал идею о последовательном развитии структур.

- Гиппократ – первые регулярные знания в области эмбриологии. (460-370 гг. до н.э.) В основном связаны с акушерством и гинекологией. Труды «О диете», «О семени», «О природе ребенка». Он говорит о трёх неотъемлемых свойствах каждого тела – сухость, влажность, тепло. Они никогда не встречаются раздельно. Все процессы в организме Гиппократ сравнивает с процессами в неорганических телах и с трудовой деятельностью.

Он высказал идею о преформации: «Все части зародыша образуются в одно и то же время. Все члены отделяются друг от друга одновременно и таким же образом растут. Ни один не возникает раньше или позже другого, но те, которые по природе своей толще появляются прежде тонких, не будучи сформированы раньше» (Преформизм – всё определено изначально)

- Аристотель (384-322 гг. до н.э.) Положил начало общей и сравнительной эмбриологии. Труд «О возникновении животных». Он вскрывал куриные яйца, анатомировал и изучал всевозможных зародышей хладнокровных животных и млекопитающих и даже, возможно, абортивных зародышей человека. (Эпигенез - всё возникает заново)

Аристотель:

  1. Предложил классификацию животных по эмбриологическим признакам.

  2. Ввел сравнительный метод изучения и заложил представления о различных путях эмбрионального развития; ему было известно яйцерождение и живорождение.

  3. Установил различия между первичными и вторичными половыми признаками.

  4. Отнес определение пола к ранним стадиям эмбрионального развития.

  5. Выдвинул концепцию неоплодотворенного яйца как сложной машины, части которой придут в движение и станут выполнять свои функции, как только будет поднят главный рычаг.

  6. Правильно истолковал функции плаценты и пуповины.

  7. Связал явление регенерации с явлением эмбриогенеза.

  8. Предвосхитил теорию рекапитуляции своим суждением о том, что в процессе эмбрионального развития общие признаки появляются раньше частных.

  9. Предложил теорию градиентов формообразования своими наблюдениями о более быстром развитии головного конца зародыша.

  10. Установил, что существующие предположения сводятся к антитезе преформация – эпигенез. Сам он настаивал на правильности второго варианта – эпигенеза.

Он также высказал идею 4х причин – материальной, действующей, формальной и финальной. В средние века превалировала четвертая, финальная причина, в силу её связи с идеей божественного начала.

Лишь Френсис Бэкон (1561-1626) доказал. Что с научной точки зрения конечная причина – ненужная концепция. До этого момента со смерти Аристотеля в эмбриологии ничего не менялось.

В 17 веке Антони Ван Левенгук изобрёл микроскоп. Описывал проникновение в матку и трубы сперматозоидов у различных живых организмов.

Полемика между К. Вольфом (Питерская академия наук) и А. Галлером.

Галлер стоял на стороне преформизма, а Вольф показал на примере развития кровеносной, а позже и пищеварительной систем, что сначала системы эти выглядят как листки, затем как желобки, и в конце концов превращаются в трубки. В 1776 составил труд «О формировании кишечника». Авторитет Галлера воспрепятствовал признанию правоты Вольфа, но, со временем, она была признана.

Работы эмбриологов 19 века К. Бэра и Х.Г. Пандера строились именно на признании правоты Вольфа.

К. Бэр. Один из крупнейших естествоиспытателей своего времени. Он развил учение Пндера о зародышевых листках, выделил анимальный (дающий покровы и НС) и вегетативный (дающий сосуды, мышцы, пищеварит. тракт) полюса, зародышевую хорду.

Он сделал выдающееся обобщение, определившее эмбриологию как самомстоятельную науку – сходство в развитии эмбрионов высших и низших животных. Закономерность заключалась в том, что сначала развиваются признаки, характерные для типа, затем класса и т.д.) – Закон Бэра. Он заметил, что онтогенез есть преформированный эпигенез. (Возникает заново, но в предопределенной форме)

Бишоф дал названия зародышевым листкам, сохранившиеся и сегодня (мезо-, энто- и эктодерма) Поставив в основу учение Т.Шванна о клетке. Он показал, что одноименные листки разных животных сходны по гистологическому строению.

Ч.Дарвин подогрел интерес к эмбриологии. Многие эволюционисты пытались использовать эмбриологические данные для подтверждения теории эволюции.

Эрнст Геккель сформулировал основной биогенетический закон «Развитие зародыша есть сжатое и сокращенное повторение эволюционного развития данной группы организмов. Оно тем полнее, чем более сохраняется палингенез (палингенез – признак или процесс в эмбриогенезе, повторяющий соответствующий признак или процесс филогенеза данного вида)
Вейсман (1834-1914) использовал цитогенетический подход, в то время как до этого пользовались лишь сравнительно эволюционным и описательным. Он предложил концепцию о неравномерном делении, о выделении зародышевого пути и о неравно наследственном митозе. Основана на опытах Бовери с аскаридами. Он описывал явление деминуции хроматина (потеря части хромосом в соматических клетках).

Опыты Ру с прижиганием половины 4х клеточного зародыша. (Из половины развивалась только пол орг-ма) Однако при изоляции половинок развивались полноценные орг-мы. Опыты Ганса Дриша с гребневиками ( и прижигание, и изоляция давали уменьшение числа гребней.) Также выяснилось, что дефект, нанесенный цитоплазме незрелого яйца исправляется, а зрелого – ведет к нарушениям у зародыша. Выяснилось, что при удалении бластомеров у кольчатых червей, моллюсков развивается личинка с невосполнимыми дефектами, а у иглокожих, кишечнополостных, асцидий – нормальный зародыш. Это как бы сочетания преформизма у первых и эпигенеза у вторых.

Казуально - аналитический метод пришел на смену описательному и сравнительному. Стала формироваться экспериментальная и аналитическая эмбриология.

Сильные стороны – возможность получать принципиально новую информацию, данные.

Слабые стороны – (что будет если.. Метод основан на эксперименте, теория подгоняется под результат эксперимента. Этот метод не даёт возможности понять механизм, мы видим лишь результат действия.)

Дриш относился к неоэпигенетикам, Ру к неопреформистам.

Именно Дришу удалось установить эквипотенциальность ядер бластомеров некоторых развивающихся яиц. Он установил, что отличаются они цитоплазмой. В то же время яйца морских ежей давали абсолютно идентичные бластомеры. Дриш заключил, чот судьба бластомеров есть функция их положения в целом. (предвосхищение современных убеждений о позиционной информации). Дриш также сделала вывод, чот проспективная потенция бластомера всегда шире его проспективного значения (может развиться больше всего разного, чем получается при нормальном развитии).

Сегодня эмбриология во многом сопряжена с генетикой, молекулярной биологией и цитологией. Использование методов этих наук позволяет глубже вникать в существующие вопросы и устанавливать ранее недоступные детали. Сегодня эмбриология во многом перешла на микроуровень. Экспериментальная эмбриология в наше время во многом урезана в своих возможностях в связи с ограничениями, накладываемыми биоэтикой.


2. Гаметогенез
Формирование первичных половых клеток (гоноцитов) у различных групп животных (губки, кишечнополостные, круглые черви, ракообразные, позвоночные).

Гоноцит или первичная половая клетка - это эмбриональная клетка, из которой впоследствии могут образовываться половые клетки.

У всех животных, имеющих морфологически выраженные гонады, половые клетки закладываются независимо от половой железы (экстрагонадно). С момента обособления и до вселения в гонаду эти клетки и называются гоноцитами.

У некоторых животных половые клетки способны образоваваться из соматических клеток на протяжении всего онтогенеза. К таким животным относятся губки, кишечнополостные и плоские черви. У губок половые клетки образуются из амебоцитов и хоаноцитов. У кишечнополостных половые клетки образуются из интерстициальных (I-) клеток, у плоских и кольчатых червей - из необластов.

Поэтому половые клетки у них могут возникать и в случае регенерации из небольших участков тела взрослых животных при полном удалении половых желез.

У продолжительно голодающих планарий половые клетки могут дедифференцироваться и превращаться в стволовые клетки, используемые для регенерации соматических тканей.

У кольчатых червей происходит раннее обособление зачатка половых клеток, которые образуются из соматических. Таким образом, у них существуют два источника гоноцитов: раннеэмбриональный и соматический.

Согласно современным представлениям, у остальных животных зачаток гоноцитов обособляется на стадии гаструлы или нейрулы. У большинства круглых червей, членистоногих и бесхвостых амфибий половые клетки обособляются уже в процессе дробления.

Так, у двукрылых насекомых еще до начала дробления в заднем полюсе яйцеклетки находятся базофильные гранулы, состоящие из РНК и белка. Впоследствии, половые клетки обособляются именно из этого участка цитоплазмы. У дрозофилы окончательное обособление половых клеток происходит на 13-м делении дробления.

В яйцеклетке веслоногого рака циклопа присутствуют аналогичные гранулы (эктосомы). В результате делений дробления эктосомы распределяются между двумя клетками, которые и дают начало половым. Обособление половых клеток происходит на 5-м делении дробления. Еще раньше (на 4-м делении дробления) половые клетки выделяются у ветвистоусых раков, а также у некоторых выдов круглых червей.

У лошадиной аскариды, в самом начале развития, при делении соматических клеток происходит диминуция хроматина (отторжение в цитоплазму и последующая деградация части хроматина). При образовании гоноцитов диминуции не происходит. Таким образом, половые клетки обособляются от соматических, сохраняя свою тотипотентность.

У рыб гоноциты обособляются в конце гаструляции. Их источником служит первичная энтомезодерма. Возможно, в гонадах взрослых рыб присутствуют первичные половые клетки.

В яйцеклетках амфибий еще в начале периода роста ооцита на вегетативном полюсе обнаруживаются РНК-содержащие структуры, которые следует отнести к половой цитоплазме (безжетлковая цитоплазма, "зародышевая (половая) плазма"). Гоноциты у бесхвостых амфибий выделяются на стадии бластулы, среди бластомеров будущей энтодермы. На стадии поздней гаструлы клетки, содержащие половую плазму, обнаруживаются во внутренней части энтодермы и в области желточной пробки. На стадии хвостовой почки эти клетки располагаются в области дорсальной энтодермы. У молодых личинок они еще некоторое время остаются в составе энтодермы, прежде чем попадут в гонаду.

Формирование гоноцитов у хвостатых амфибий, в отличие от бесхвостых, происходит не автономно, а под влиянием соседних эмбриональных тканей. Гоноциты возникают на стадии гаструлы или нейрулы. Они обособляются из мезодермы под воздействием энтодермы (такое воздействие осуществляется еще на стадии бластулы).

У рептилий первичные половые клетки обнаруживаются во внезародышевой энтодерме.

У птиц первичные половые клетки возникают рядом с задним концом зародыша. Затем они перемещаются вперед, в область головного серпа, все время находясь во внезародышевой области. Когда возникает внезародышевая система кровообращения, гоноциты с током крови перемещаются внутрь тела зародыша.

Половые клетки млекопитающих являются потомками эмбриональных тотипотентных клеток, присутствующих в бластодерме зародыша в период формирования первичной полоски. Затем они попадают в заднюю внезародышевую энтодерму, мигрируют в стенку кишки и в окружающую ее мезенхиму. Далее они перемещаются в дорзальный мезентерий к закладке гонады.

Итак, единственный источник половых клеток у позвоночных, членистоногих и круглых червей - это первичные гоноциты, которые обособляются на ранних стадиях развития. Однако далеко не у всех групп животных гоноциты не могут пополняться за счет соматических клеток на более поздних стадиях развития. У губок, кишечнополостных, некоторых кольчатых червей и полухордовых имеются тотипотентные стволовые клетки, которые в течение всей жизни пополняют запас половых клеток.

Возникновение половых клеток в процессе эволюции - это первая дифференцировка клеток организма. При этом половые клетки сохраняют свою тотипотентность. Такое разделение было важнейшим эволюционным событием, которое позволило перейти от одноклеточности к многоклеточности.

Миграции гоноцитов в гонаду.

Прежде всего гоноциты должны добраться до закладки гонады. Как первичные гоноциты, так и резервные клетки , типа интерстициальных способны двигаться самостоятельно, но значительную часть пусти они проходят пассивно, с током крови. Поблизости от зачатка половой железы гоноциты движутся активно.

На стадии первичных гоноцитов мужские и женские половые клетки, как правило, неотличимы. Различия появляются лишь после их проникновения в половые железы. При этом женские гоноциты заселяют кортикальную часть гонады, а мужские гоноциты - медуллярную.

Половые клетки, попавшие в зачатки гонаду и приступившие к размножению, называются гониями (сперматогонии и оогонии).

У многих животных существуют особые стволовые клетки, продуцирующие гонии в течение долгого периода времени (или даже всей жизни). Известны два типа стволовых клеток. Одни из них делятся ассиметрично, вследствие чего одна из дочерних клеток остается стволовой, а другая вступает на путь дальнейшего развития. Так, например, происходит у дрозофилы.

В других случаях (например, у круглых червей) стволовые половые клетки делятся симметрично, и судьба каждой из них определяется тем, какое положение они случайно займут в гонаде.

Оогенез, его основные периоды: размножение, рост, созревание яйцеклеток.Типы питания яйцеклеток: фагоцитарный, нутриментарный, фолликулярный. Связь яйцеклетки с питательными клетками при разных типах питания; поступающие в яйцеклетку вещества. Превителлогенез и вителлогенез. Профаза мейоза, протекающие в ней цитологические и биохимические перестройки. Амплификация генов. Синтез рРНК и мРНК. Поляризация яйцеклетки. Особенности делений созревания яйцеклетки.

Как уже было сказано, попав в гонаду, гоноциты приступают к размножению путем обычных митотических делений. На этой стадии женские половые клетки называются оогониями. Оогонии прекращают размножаться еще в эмбриональном периоде, задолго до наступления половозрелости самки. У пятимесечного плода человека имеется 6-7млн. женских половых клеток. Потом наступает их массовая гибель путем апоптоза. В результате, к моменту рождения остается около 1 млн. клеток, а к моменту половой зрелости - менее 400 000 клеток. К 50 годам у женщины остается всего около 1 000 половых клеток.

Женская половая клетка, прекратившая размножение, называется ооцит I порядка. Начинается своеобразный, свойственный только этой клетке, период роста. Он связан с поступлением в яйцеклетку питательных веществ извне и с рядом синтетических процессов в самой яйцеклетке. Увеличение яйцеклетки в период роста может быть колоссальным. Так ооциты дрозофилы за 3 дня увеличиваются в 90 000 раз. У млекопитающих ооциты увеличиваются в объеме более чем в 40 раз. Рост яйцеклетки млекопитающего может длиться десятки лет. Например у человека - до 30 лет.

Рост ооцитов принято разделять на два периода. Период малого роста (превителлогенез или цитоплазматический рост) и большого роста (вителлогенез, трофоплазматический рост).

Для периода малого роста характерно относительно малое и пропорциональное увеличение ядра и цитоплазмы, при котором ядерно-цитоплазматическое отношение не изменяется. Весь период превителлогенеза проходит на фоне подготовки клетки к последующим делениям созревания. На этой стадии ооцит I порядка вступает в S-фазу, то есть в фазу удвоения ДНК. После этого наступает профаза 1-го деления мейоза. На этой стадии происходят коньюгация хромосом, образование синаптонемального комплекса, кроссинговер. В ядре ооцита последовательно проходят этапы лептотены, зиготены, пахитены и диплотены. На стадии диакинеза наступает стационарная фаза, при этом дальнейшее течение мейоза сильно замедляется или прекращается полностью. Этот блок мейоза продолжается до достижения особью половозрелости. Однако на этой стадии ДНК ооцита является активной. Она выполняет роль матрицы для синтеза всех видов РНК. Эти молекулы РНК, в основном, синтезируются для использования их яйцеклеткой уже после оплодотворения.

Синтез рРНК связан (28S и 18S) с явлением амплификации генов, кодирующих данные виды РНК. Амплифицированные участи обособляются в виде ядрышек, которых может быть несколько тысяч. Амплификация идет, в основном, на стадии пахитены. После созревания ооцита ядрышки входят в цитоплазму клетки и там лизируются.

Синтез 5S-рРНК и тРНК происходит без амплификации, за счет того, что кодирующие их гены многократно повторены.

Синтез мРНК связан с приобретением хромосомами ооцита структуры "ламповых щеток". При этом период "ламповых щеток" наблюдается у ооцитов с солитарным и фолликулярным типами питания. В других случаях этот период сокращен или отсутсвтует. Молекулы мРНК, запасенные для развития оплодотворенной яйцеклетки, присутствуют в цитоплазме ооцита в виде информосом - комплекса мРНК с белками.

Период большого роста характеризуется сильным ростом цитоплазматических компонентов. Ядерно-цитоплазматическое отношение при этом уменьшается. В течение данного периода в ооците I порядка откладывается желток (лат. вителлус) в виде гранул, а также другие питательные вещества: жиры и гликоген.

По количеству откладываемого желтка яйцеклетки делят на:

Количество жедтка в клетке строго определено генетически и почти не зависит от условий питания самки.

По характеру расположения желтка яйцеклетки классифицируют на:

По способу образования желток делят на:

В ходе эволюции наблюдается переход от факультатиыной гипертрофии клетки-родоночальника будущего организма - к обязательной гипертрофии.

Выделяют следующие способы питания яйцеклеток:

Фолликулярные клетки образуются из коркового слоя яичника и окружают ооцит. Образовавшиеся сферические структуры, содержащие плоские фолликулярные клетки, называются примордиальными фолликулами. Далее фолликулярные клетки становятся квадратными, и фолликул называется первичным однослойным. Однослойные фолликулы, в результате размножения фолликулярных клеток становятся многослойными. Затем фолликулярные клетки начинают выделять жидкость и постепенно резорбироваться. На их месте возникают полости (вторичный фолликул), сливающиеся в конце концов в одну. В результате образуется зрелый третичный фолликул или Граафов пузырек. Затем стенка Граафова пузырька лопается, яйцеклетка освобождается и выходит из яичника в яйцевод, окруженная слоем фолликулярных клеток (лучистый венец - corona radiata). Данный процесс называется овуляцией. После овуляции ооцит приступает к делениям созревания.

Созревание ооцита - это процесс последовательного прохождения двух делений мейоза (делений созревания). Выход из фазы диакинеза и начало собственно делений созревания приурочены к достижению самкой половозрелости и определяются половыми гормонами: гонадотропные гормоны гипофиза воздействют на фолликулярный эпителий, который в ответ выделяет прогестерон и его аналоги. Гормоны фолликулярного эпителия поступают в ооцит и стимулируют его созревание.

Из двух делений созревания первое является редукционным, при этом каждая из образовавшихся клеток приобретает половинный набор хромосом. Поскольку 1-му делению созревания предшествовала S-фаза, каждая из разошедшихся хромосом состоит из двух идентичных хроматид. Эти хроматиды и расходятся по сестринским клеткам во втором делении созревания, которое является эквационным.

Основная особенности делений созревания в ооцитах состоит в том, что эти деления резко неравномерны. Перед первым делением созревания ядро ооцита мигрирует к его поверхности. Та точка поверхности ооцита, к которой ближе всего располагается ядро, названа анимальным полюсом. Противоположная точка - вегетативный полюс. В результате первого деления созревания половина хромосомного набора выталкивается в очень маленькую клетку, которая называется первым редукционным или полярным тельцем.

Яйцевая клетка после выделения I редукционного тельца называется ооцитом II порядка. Второе деление созревания осуществляется путем выделения II редукционного тельца таких же размеров, как и I. После его выделения ооцит II порядка превращается в зрелое яйцо.

Лишь у некоторых видов (некоторые кишечнополостные, морские ежи) мейоз доходит до конца бещ участия сперматозоида, внедряющегося в яйцеклетку. У большинства животных течение мейоза останавливается на некотором этапе созревания. Возникает блок мейоза, и для дальнейшего его протекания требуется активация яйцеклетки.

Различают три типа блока мейоза:

  1. Мейоз останавливается на стадии диакинеза профазы 1-го деления, т.е. участие сперматозоида необходимо для протекания обоих мейотических делений. Этот тип мейоза наблюдается у губок, некоторых представителей плоских, круглых и кольчатых червей, моллюсков. Сюда же относятся собака, лиса и лошадь.

  2. Мейоз останавливается на метафазе 1-го деления созревания. Такой блок отмечен у некоторых губок, немертин, кольчатых червей, моллюсков и почти у всех насекомых.

  3. Мейоз останавливается на метафазе 2-го деления созревания. Сюда относятся почти все хордовые. У летучих мышей блок мейоза происходит на анафазе 2-го деления созревания. Именно на этих стадиях происходит овуляция яйцеклетки.

Как уже говорилось, у яйцеклетки выделяются анимальный и вегетативный полюса. Эта анимально-вегетативная поляризация решающим образом ориентирует последующие морфогенетические процессы: за редкими исключениями первые две борозды делений дробления проходят по взаимно перпендикулярным анимально-вегетативным мередианам, пересекаясь на анимальном и вегетативном полюсах. У взрослых животных передне-задняя ось тела либо совпадает с анимально-вегетативной осью яйцеклетки (позвоночные), либо перпендикулярна ей (членистоногие).

Первые морфологические проявления поляризации яйцеклетки приурочены к периоду вителлогенеза: у большинства яйцеклеток желток откладывается приемущественно в вегетативном полушарии, а ядро оттесняется в анимальное полушарие. Но только во время второго деления созревания поляризация становится устойчивой и необратимой.

Материальные носители полярности яйцеклетки до сих пор полностью не выявлены, но судя по всему, они локализованы в плазматической мембране, а не в цитоплазме яйцеклетки. В последнее время были получены данные о наличии электрических полей, ориентированных от одного полюса яйцеклетки - к другому. Такие поля связаны с неравномерным распределением ионных каналов по мембране. Утверждается, что расположение насосов и ионных каналов однозначно определяет полярность яйцеклетки.

Кроме плазматической мембраны яйцо может быть окружено еще несколькими оболочками. Различают следующие оболочки:

При прохождении яйца по яйцеводу оно вращается. Интересно, что передне-задняя ось зародыша расположена всегда перпендикулярно направлению движения яйца по яйцеводу, а направление от хвоста зародыша к голове совпадает с направлением вращения яйца.

Характерные особенности сперматогенеза. Спермиогенез.

Мужские половые клетки, как и женские, возникают из первичных гоноцитов. При сперматогенезе непосредственными потомками гоноцитов являются стволовые сперматогенные клетки (у млекопитающих их называют сперматогониями типа А). Они присутствуют не только у зародышей, но и у половозрелых самцов. В семенниках млекопитающих они располагаются в пристеночном слое семенных канальцев. Стволовые клетки нерегулярно делятся. Некоторые из них перемещаются ближе к центру канальца, их деления становятся более регулярными (сперматогониальные деления), а после каждого деления изменяется форма и величина клеток. Такие клетки называют сперматогониями (сперматогониями типа В).

Сперматогониальные деления происходят постоянно у половозрелых самцов. Число делений сперматогония определено для каждого вида (4 для человека).

После определенного числа делений сперматогоний передвигается еще ближе к просвету канальца и вступает в профазу 1-го деления созревания. На этой стадии он называется сперматоцитом I порядка.

В результате первого деления созревания сперматоцит I порядка делится на два одинаковых сперматоцита II порядка, которые делятся на две сперматиды, в результате второго деления созревания.

Далее каждая сперматида преобразуется в сперматозоид. Этот сложный цитологический процесс, не сопровождающийся клеточными делениями, называется спермиогенезом. Процесс спермиогенеза продолжается несколько дней (у человека - 23 дня).

Как сперматогонии, так и сперматоциты и сперматиды всех исследованных видов животных связаны между собой цитоплазматическими мостиками, образуя синцитии. Этим объясняется высокая степерь синхронности делений сперматогониев и сперматоцитов. Между сперматидами по таким мостикам могут проходить мРНК.

Важное значение для сперматогенеза имеют соматические клетки, расположенные в стенках семенных канальцев - клетки Сертоли. Клетки Сертоли снабжают сперматогониальные клетки питательными веществами и гормонами, способствуют высвобождению сперматозоидов в просвет канальцев, фагоцитируют неполноценные сперматозоиды.

Клетки Сертоли не контактируют друг с другом на уровне базальной мембраны. Их контакт находится выше, над слоем сперматогоний. У плода и новорожденных между клетками Сертоли имеются лишь щелевые контакты. На протяжении пропубертатного периода происходит образование плотных контактов.

Как уже было сказано, после прохождения делений созревания образуется сперматида, которая является идентичной сперматозоиду генетически, но не цитологически. Основные процессы, происходящие во время спермиогенеза:


3. Оплодотворение
Оплодотворение – вызываемое сперматозоидом побуждение яйца к развитию с одновременноц передачей яйцеклетке наследственного материала отца.

Дистантные взаимодействия гамет.
Дистантные взаимодействия – взаимодействия гамет при осеменении, осуществляющиеся до соприкосновения гамет. К ним относятся хемотаксис, стереотаксис и реотаксис.

Реотаксис – способность сперматозоидом передвигаться против тока жидкости в половых путях самки. Стереотаксис – способность двигаться по направлению к более крупному. чем сам сперматозоид, объекту – яйцеклетке.

К дистантным взаимодействиям можно также отнести реакцию капацитации сперматозоида, происходящую в половых путях самки. (1. Альбумины в половых путях самки связывают холестерин из мембраны сперматозоида, в результате чего уменьшается соотношение холестерин: фосфолипиды. Это приводит к дестабилизации акросомного пузырька. 2. Освобождение активных центров галактозилтрансфераз, ферментов, узнающих  N-ацетилглюкозаминовые остатки в молекуле гликопротеина, расположенного на поверхности прозрачной оболочки яйцеклетки и представляющего, по сути, рецептор сперматозоида).

Случаи хемотаксиса. Гиногамоны, андрогамоны, спермиолизины, их роль.

Хемотаксис – направленное движение сперматозоидов по градиенту концентрации веществ, выделяемых яйцеклеткой (аттрактантов). Хемотаксис встречается у многих групп животных, особенно беспозвоночных: кишечнополостных, моллюсков иглокожих, полухордовых.
Примеры: у морских ежей – хемотаксические факторы пептидной природы (Strongulocentrotus purpuratus – 10-аминокислотный сперакт, у Arabica punctulata – 14-аминоксилотный резакт).

 Термин «Гамоны» предложен в 1940 нем. учёными М. Хартманом и Р. Куном. Вещества, выделяемые женскими и мужскими гаметами, названы ими соответственно гиногамонами и андрогамонами. Гамоны найдены у некоторых растений (водоросли, грибы) и многих животных (моллюски, кольчатые черви, иглокожие, хордовые).

В женских половых продуктах животных выявлены: 1) гиногамон I, усиливающий и продлевающий подвижность сперматозоидов; антагонист андрогамона I; низкомолекулярное термостабильное вещество небелковой природы. 2) Гиногамон II (фертилизин), вызывающий агглютинацию сперматозоидов. Согласно Лилли, он является необходимым звеном при соединении сперматозоида с яйцом, однако, по современным данным, его функция заключается в элиминации значительной части сперматозоидов, приближающихся к яйцу. У морских ежей фертилизин идентичен материалу студенистой оболочки и представляет собой гликопротеид; аналогичное по своему действию вещество имеется внутри яйца у морских ежей (цитофертилизин) и костистых рыб. 3) Вещество, инактивирующее агглютинирующее начало (антифертилизин яйца); у морских ежей осаждает гель студенистой оболочки и вызывает агглютинацию яиц; антагонист гиногамона II; белок.



В мужских половых продуктах животных найдены: 1) андрогамон I, подавляющий подвижность сперматозоидов; антагонист гиногамона I; низкомолекулярное термостабильное вещество небелковой природы. 2) Андрогамон II (антифертилизин сперматозоида), инактивирующий агглютинирующее начало; по действию сходен с антифертилизином яйца; относительно термостабильный белок. 3) Андрогамон III, вызывающий разжижение кортикального слоя яйца; низкомолекулярное термостабильное соединение (у морских ежей, по-видимому, ненасыщенная жирная кислота). 4) Лизины сперматозоида, растворяющие яйцевые оболочки; термолабильные белки (у млекопитающих — фермент гиалуронидаза).

Т.о., гамоны действуют как хемотаксические, рецепторные и литические агенты.
Контактные взаимодействия гамет.

Включают реакции активации сперматозоида и яйцеклетки, процессы слияния гамет (плазмогамии и кариогамии).
Активация спермия - акросомная реакция.

Реакция активации сперматозоида начинается при контакте его головки со студенистой оболочкой яйцеклетки. Контакт с гликопротеинами оболочки яйцеклетки вызывает открытие Ca2+ и Na + каналов.

1)В результате поступления ионов кальция в сперматозоид происходит слияние плазмалеммы с передней частью мембраны акросомы.

2)Раскрытие мембраны акросомы.

3)Выход протеаз из акросомы, лизис третичной (у млекопитающих – студенистой, zona pellucida) оболочки яйца.

4)В результате поступления Na+ из внешней среды в клетку, происходит отток H+ (через

Na+/Н+ - обменник), рН повышается и это приводит к взрывоподобному переходу G-актина в F-актин. В результате полимеризации актина задняя часть мембраны акросомы образует один (акросомная нить) или множество (акросомные микроворсинки) выростов.

Повышение pH также приводит к активации динеиновой АТФазы в шейке сперматозоида => повышение двигательной активности жгутика.

5) Взаимодействие биндина, встроенного в мембрану акросомной нити (бывшей внутренней мембраны акросомного пузырька) с рецептором на желточной оболочке яйцеклетки.

6)Лизис желточной оболочки яйцеклетки, образование бугорка оплодотворения.
У млекопитающих активация сперматозоида происходит без образования акросомного выроста. Диссоциация мембран сперматозоида и яйцеклетки происходит вдоль головки сперматозоида. Ферменты акросомы растворяют лучистый венец и сперматозоид вступает в контакт с блестящей оболочкой, которая образована белками ZP1-3. Контакт с ZP3 – 1 часть акросомной реакции. Затем изливается фермент проакрозин, который взаимодействует с ZP2 и лизирует блестящую оболочку. Возникает контакт задней мембраны акросомы и мебраны яйца, они сливаются с формированием единой наружной мембраны, ограничивающей канал, соединяющий две клетки.
Активация яйцеклеток - кортикальная реакция. Ее биохимические основы.

1)Моментом начала активации яйцеклетки считается образование бугорка оплодотворения.

Происходит благодаря полимеризации кортикального актина. Бугорок оплодотворения формируется после рецепции биндинов рецепторами желточной оболочки яйца.

2) Мембраны сперматозоида и яйцеклетки сливаются, образуется канал, по которому затем пройдут ядро и центриоль сперматозоида. В мембране сперматозоида, оказавшейся частью этого канала, находятся Na+ каналы, по которым натрий поступает в цитоплазму яйца. Мембранный потенциал яйцеклетки на несколько секунд меняется с -70 мВ на + 10 мВ => быстрый блок полиспермии. Это объясняется тем, что положительно заряженная мембрана яйцеклетки для сперматозоидов непроницаема (наличие потенциал-зависимых рецепторов).

3) При контакте биндина с мембранным рецептором яйцеклетки меняется конформация G-белка. Он активирует фосфолипазу С, которая также встроена в мембрану. Она расщепляет фосфатидил-инозитол-4,5-дифосфат(PIP2) на диацилглицерол, DAG, (он затем через протеинкиназу С стимулирует транспорт Na+ внутрь клетки, H+ - наружу, что приводит к подъему синтеза белка в цитоплазме яйцеклетки и синтез ДНК в мужском и женском ядрах) и инозитол-3-фосфат (IP3). Последний стимулирует выход Ca2+ из ЭПР. Кальций стимулирует экзоцитоз кортикальных гранул (альвеол) яйцеклетки (происходит кортикальная реакция). При этом в пространство между плазмалеммой и желточной оболочкой высвобождается ряд веществ:

1) вителлиновая деламиназа. Отделяет желточную облочку от плазмалеммы путем лизирования динеина, их соединяющего.

2) Спермрецепторная гидролаза лизирует сайты соединения налипших сперматозоидов, очищая от них поверхность яйца.

3) Осмотически активный гликопротеид, приводяший к поступлению воды в щель между плазмалеммой и желточной оболочкой => образованию перивителлинового пространства.

4) Фактор, способствующий затвердеванию желточной оболочки (теперь она называется оболочкой оплодотворения и становится недоступной для сперматозоидов). Медленный блок полиспермии.

5)Гиалин – структурный белок, участвующий в формировании гиалинового слоя, располагающегося у яйцеклеток некоторых видов над плазмалеммой.

Помимо этого, увеличение концентрации Ca2+ приводит к:

Фаза зрелости яйцеклеток различных групп животных при проникновении сперматозоида.

Мейоз завершается еще во время оогенеза у морских ежей и некоторых кишечнополостных.

У остальных видов происходит блок мейоза, который снимается только с оплодотворением.

1) Диакинез профазы I. Губки, плоские, круглые, кольчатые черви, моллюски, щетинкочелюстные, лиса, собака и лошадь.

2) Метафаза I - губки, немертины, кольчатые черви, моллюски, почти все насекомые.

3) Метафаза II – почти все хордовые. (У летучих мышей – анафаза II).

В состоянии метафазы II яйцеклетку удерживает белковый комплекс MPF, деградацию которого предотвращает циклин В. А его защищает от деградации pp39mos.

Поведение пронуклеусов и центриолей при оплодотворении.

Ионы кальция, попавшие в цитоплазму при активации яйцеклетки, активируют протеазу кальпин II. Последний инактивирует pp39mos, запускается обратный каскад, который выводит яйцеклетку из блока мейоза. Образуется зрелый женский пронуклеус.

При попадании в яйцеклетку сперматозоид разворачивается шейкой по ходу дальнейшего движения. Т.о., проксимальная центриоль (в яйцеклетку попадает чаще всего только она) занимает положение перед еще компактизированным ядром. На ней происходит сборка микротрубочек, что обеспечивает движение мужского ядра. В ядре, тем временем, лизируется ядерная оболочка, что предоставляет контакт между цитоплазмой яйцеклетки и хроматином. Под действием факторов цитоплазмы происходит замена протаминов на гистоны, что приводит к деконденсации хроматина. Теперь ядро называется мужским пронуклеусом.

Пронуклеусы сближаются, совершая «танец пронуклеусов». Сначала мужской пронуклеус движется внутрь яйца перепендикулярно поверхности – это «дорожка проникновения». Затем оба пронуклеуса движутся по «дорожке копуляции».

Синтез ДНК в пронуклеусах. Кариогамия.

Кариогамия – объединение хромосомных наборов пронуклеусов. Происходит только после завершения делений созревания яйцеклеткой.

При кариогамии или незадолго перед ней происходит репликация ДНК. Каждый пронуклеус – n2c. Кариогамия переходит непосредственно в первое деление зиготы. Центриоли веретена этого деления могут быть обе от сперматозоида, у некоторых видов – одна от матери, вторая от отца.

У животных, сперматозоид которых проникает в зрелую яйцеклетку, после кариогамии образуется интерфазное ядро зиготы. У остальных хромосомы выстраиваются в метафазную пластинку первого деления.

Определение пола при оплодотворении.

Определение пола при оплодотворении осуществляется на основании тех половых хромосом, которые достались зиготе и будущему организму от яйцеклетки и сперматозоида.

В таком случае есть два варианта определения пола:

1)в диплоидном наборе XX – ж,

XY (в редких случаях XO) – м.

То есть женский пол гомогаметен, мужской – гетерогаметен. Такое определение пола встречается у большинства млеков, амфибий, у нематод. моллюсков. иглокожих, большинства членистоногих.

2)У других видов гетерогаметен женский пол (ZW), гомогаметен мужской (ZZ). Птицы, пресмыкающиеся, тутовый шелкопряд.

Пол также может определяться не фактическим наличием Y-хромосомы, а соотношением X:аутосомы (у дрозофил). Чем больше Х, тем больше организм приобретает фенотип самки. Y хромосома на определение пола не влияет, но самцы без нее стерильны.

При оплодотворении осуществляется только хромосомное определение пола, тогда как существуют еще и генный (при различных мутациях гена SRY, например – при делеции участка с ним появляются XY женщины, при переносе на X или аутосому – ХХ мужчины) и геномный механизмы (у пчел), и некоторые другие.

Ооплазматическая сегрегация в разных типах яиц, ее морфогенетическая роль. Цитологические механизмы определения сагиттальной плоскости в яйцеклетке амфибий.

После проникновения сперматозоида начинаются процессы расслоения, отмешивания различных составных частей цитоплазмы яйцеклетки (ооплазмы) – ооплазматическая сегрегация.

стр.61-62

Намечается радиальная (относительно анимально-вегетативной оси) симметрия.

У амфибий желтый (где вошел сперматозоид) и серый серпы. Через их середину проходит сагиттальная плоскость симметрии.

Искусственный и естественный партеногенез. Гиногенез. Андрогенез. Теоретический интерес и практическое применение этих явлений.

стр.62-64 Развитие яйцеклетки без сперматозоида.

Стимулируется различными факторами: к-та/ температура итп. Которые похожи на реакции активации, идущие после контакта со сперм-ом. Обычно получаются диплоидные организмы.

Гиногенез: сперматозоид активирует яйцеклетку, но его ядро не участвует.

Андрогенез – развитие на базе мужского ядра и мужского пронуклеуса.

Экстракорпоральное оплодотворение у животных и человека.

Экстракорпоральное оплодотворение – оплодотворение вне организма матери. Формально этим термином можно обозначить наружное осеменение у многих групп животных (рыбы, амфибии и т.д.). Чаще термин ЭКО встречается как обозначение вспомогательной процедуры при бесплодии, в ходе которых слияние гамет отца и матери происходит in vitro, развитие зародыша до стадии 2-5 дней – в инкубаторе, а затем следует его имплантация в материнский организм.

Как правило, для экстракорпорального оплодотворения стараются получить несколько яйцеклеток, так как это повышает эффективность лечения бесплодия этим методом. Поскольку в норме у женщины в течение одного менструального цикла созревает одна яйцеклетка, то для получения нескольких яйцеклеток проводят так называемую процедуру «стимуляции суперовуляции». Для этого пациентке назначают инъекции гормональных препаратов (ФСГ, ЛГ, ХГ, ГнРГ). При достижении доминантным фолликулом определенного размера (16-20 мм) назначают процедуру извлечения яйцеклеток — пункцию фолликулов яичника. Полученную жидкость исследуют с помощью микроскопа для обнаружения яйцеклеток.

Обнаруженные яйцеклетки отмывают от фолликулярной жидкости и переносят в лабораторную посуду с культуральной средой. В качестве лабораторной посуды используют чашки Петри, либо культуральные планшеты. Посуду с яйцеклетками помещают в инкубаторы, где они содержатся до оплодотворения. При невозможности получить яйцеклетки у пациентки (отсутствие яичников, менопауза и пр.) возможно использование донорских яйцеклеток (то есть яйцеклеток другой женщины). В качестве донора яйцеклеток может выступать бескорыстный донор (родственница, знакомая) или платный донор. Сперму пациент получает самостоятельно. В случае невозможности получения спермы путем эякуляции, используют хирургические методы: аспирация содержимого эпидидимиса, биопсия яичка и пр. Сперму получают в день пункции фолликулов супруги. Если получение спермы в день пункции невозможно, то используют предварительное получение спермы с последующим замораживанием и хранением в жидком азоте. Перед оплодотворением яйцеклетки сперматозоиды отделяют от семенной жидкости. Для этого проводят многократное центрифугирование спермы в культуральной среде.
  1   2   3   4   5   6


ЭМБРИОЛОГИЯ
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации