Словарь - Печерский Д.М. Палеомагнитология, петромагнитология и геология. Словарь-справочник - файл n1.doc

приобрести
Словарь - Печерский Д.М. Палеомагнитология, петромагнитология и геология. Словарь-справочник
скачать (1203.5 kb.)
Доступные файлы (1):
n1.doc1204kb.30.05.2012 08:10скачать

n1.doc

1   ...   16   17   18   19   20   21   22   23   ...   49

М


назад

*МАГГЕМИТ – минерал, γ-Fe2O3, катион-дефицитный магнетит, степень однофазного окисления которого Z=1 (т.е. все железо перешло в трехвалентную форму), в результате 1/9 мест железа в В-подрешетке – вакансии. В природе маггемит, главным образом, продукт однофазного окисления магнетита, известны и иные пути образования маггемита, например, из лепидокрокита. Структура шпинели, аналогичная магнетиту, но меньшего размера ячейка (ао=0,831нм) и плотность упаковки (0,153). Ферримагнетик. Удельная намагниченность насыщения Js=80 Ам2/кг (меньше, чем у магнетита из-за вакансий), точка Кюри 675°С (выше, чем у магнетита из-за уплотнения решетки). Магнитная жесткость заметно выше, чем у магнетита, тогда как палеомагнитная стабильность, как правило, низкая, в связи с чем значительная часть естественной остаточной намагниченности маггемита вязкая. Соответственно, объекты, содержащие практически только маггемит, большей частью, не пригодны для палеомагнитных исследований. Обычно маггемит неустойчив к нагревам, и в большом интервале температур, начиная, примерно с 300°С, переходит в гематит. Для маггемит-магнетитовых ассоциаций характерен пик на кривой термомагнитного анализа в районе 150-200°С – результат снятия напряженного состояния, связанного с маггемитизацией. Фазовый переход крупнозернистого маггемита в гематит сопровождается спадом намагниченности и ростом магнитной жесткости; в случае тонкозернистого маггемита отмечается спад и намагниченности, и магнитной жесткости, т.к. критический размер однодоменного состояния гематита гораздо выше, чем у маггемита, и многие мелкие зерна гематита, образующиеся из маггемита, оказываются суперпарамагнитными. При нагреве маггемита в вакууме образуется магнетит. Маггемиты с изоморфными примесями более устойчивы к нагревам и сохраняются до 700°С. Маггемит – один из наиболее распространенных магнитных минералов зоны окисления (выветривания), высокочувствительный индикатор низкотемпературного окисления, что широко используется в петромагнитных исследованиях зон выветривания и гидротермальных изменений.

МАГМАТИЧЕСКАЯ ПОРОДА – горная порода, образовавшаяся непосредственно из магмы в результате остывания последней и перехода из жидкого в твердое состояние.

*МАГМОВЫЙ ОЧАГ – резервуар, заполненный магмой. Различаются очаги первичного накопления магмы и промежуточные очаги – результат задержки магмы при ее движении вверх. Современные магмовые очаги, и те и другие, выделяются, главным образом, по сейсмическим, сейсмологическим и геоэлектрическим данным. Установлена эмпирическая зависимость точки Кюри (состава) первично-магматического титаномагнетита в магматических породах основного состава от глубины очага (последнего равновесного состояния магмы в результате длительного ее стояния в одних условиях, т.е. на одной глубине), из экспериментальных данных (Нкм=82-0,14Тс) и из сравнения петромагнитных и сейсмологических данных (Нкм=80-0,16Тс, для глубин более 10км). По этой зависимости глубина первичных очагов вулканов срединных хребтов океанов, континентальных рифтов и других зон растяжения однообразна и составляет 50-60км, тогда как под зонами сжатия, субдукции (это, прежде всего вулканизм островных дуг) глубина очагов широко варьирует – 60 км и более до 20км и менее. Очевидно, это промежуточные очаги, где равновесие достигается. Обычно глубина промежуточных очагов уменьшается от более ранних этапов вулканизма к более поздним. Есть зоны сложного вулканизма, где этапы преобладающего сжатия сменяются этапами преимущественного растяжения, в результате изменяется и глубина очагов (например, молодой вулканизм Армении, Камчатки).

Печерский и др., 1975.

МАГНЕЗИОФЕРРИТ – минерал, феррошпинель, MgFe2O4; крайний член серии твердых растворов магномагнетитов. Удельный вес 4,52 г/см3, плотность упаковки 0,158, параметр решетки ао=0,838нм. Ферримагнетик, точка Кюри Тс=310°С, удельная намагниченность насыщения Js=24Ам2/кг. Чистый магнезиоферрит – редкий минерал, встречается в вулканитах; как гидротермальный минерал, образует срастания с гематитом. Более распространен магномагнетит. См. феррошпинели.

МАГНЕТИЗМ АТОМОВ обусловлен: 1) существованием у электрона спинового магнитного момента, 2) орбитальным движением электронов в атоме, создающим орбитальный магнитный момент (точнее, магнитный момент движения электронного облака вокруг ядра), 3) магнитным моментом ядра, который создается спиновыми моментами протонов и нейтронов. Определяющую роль в магнетизме атомов играет первый механизм.

МАГНЕТИЗМ ГОРНЫХ ПОРОД – см. петромагнетизм, петромагнитология.

МАГНЕТИЗМ ПЕРЕХОДНЫХ ЭЛЕМЕНТОВ. К переходным элементам относятся, прежде всего, элементы группы железа (Титан, скандий, хром, марганец, железо, кобальт, никель), а также группы палладия, платины, редкоземельные и актиниды. В петромагнетизме определяющее значение имеют элементы группы железа и в первую очередь само железо, благодаря его большой распространенности на Земле и в космосе по сравнению со всеми остальными переходными элементами. В атомах переходных элементов внутренние оболочки (d, f-слои) заполнены электронами не полностью, в этих слоях спиновые и орбитальные магнитные моменты не скомпенсированы, что приводит к существованию у изолированных атомов переходных элементов значительного магнитного момента. Магнитные моменты атомов переходных элементов (в магнетонах Бора): Ti3+, V4+ – 1,8; Cr3+, Mn4+ – 3,81-3,86; Cr2+, Mn3+ – 4,8-5,0; Fe3+ – 5,4-6; Fe2+, Co3+ – 5,0-5,5; Co2+ – 2,9-3,4.

*МАГНЕТИТ – минерал, Fe3O4, феррошпинель. Удельный вес 5,2 г/см3, ао=0,8396, плотность упаковки 0,157. Ферримагнетик, удельная намагниченность насыщения Js=92Ам2/кг, точка Кюри Тс=580°С. Особенность магнетита – наличие изотропной точки (-143°С) и точки Вервея (150°С). Наиболее распространенный в природе магнитный минерал, присутствует практически во всех типах горных пород, главным образом, продукт процессов метаморфизма, гидротермальных изменений, гетерофазного изменения титаномагнетитов, ильменита, сульфидов железа, известен биогенный магнетит. В окислительных условиях (поверхности Земли) магнетит неустойчив и изменяется: 1) однофазное окисление с образованием катион-дефицитного магнетита вплоть до маггемита происходит в низкотемпературных условиях, обычно водных, 2) гетерофазное окисление, ведущее к распаду с образованием оторочек и ламеллей гематита (мартитизация) вплоть до полного превращения магнетита в гематит, происходит как в высокотемпературных, так и низкотемпературных условиях..
1   ...   16   17   18   19   20   21   22   23   ...   49


М
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации