Шпоры к Государственному экзамену по математике и методике преподавания математике в ЛГПУ - файл n8.txt

приобрести
Шпоры к Государственному экзамену по математике и методике преподавания математике в ЛГПУ
скачать (1493.6 kb.)
Доступные файлы (33):
n1.doc625kb.23.06.2009 00:30скачать
n2.doc35kb.20.06.2009 14:42скачать
n3.docскачать
n4.txt2kb.22.06.2009 21:13скачать
n5.txt4kb.22.06.2009 21:18скачать
n6.txt1kb.22.06.2009 21:19скачать
n7.txt2kb.22.06.2009 21:20скачать
n8.txt4kb.22.06.2009 21:21скачать
n9.txt3kb.22.06.2009 21:21скачать
n10.txt2kb.22.06.2009 21:22скачать
n11.txt1kb.22.06.2009 21:23скачать
n12.txt2kb.22.06.2009 21:24скачать
n13.txt3kb.22.06.2009 21:25скачать
n14.txt3kb.22.06.2009 21:25скачать
n15.txt4kb.22.06.2009 21:14скачать
n16.txt1kb.22.06.2009 21:25скачать
n17.txt2kb.22.06.2009 21:26скачать
n18.txt3kb.22.06.2009 21:26скачать
n19.txt8kb.22.06.2009 21:27скачать
n20.txt2kb.22.06.2009 21:28скачать
n21.txt4kb.22.06.2009 21:28скачать
n22.txt7kb.22.06.2009 21:28скачать
n23.txt2kb.22.06.2009 21:29скачать
n24.txt4kb.22.06.2009 21:30скачать
n25.txt5kb.22.06.2009 21:31скачать
n26.txt3kb.22.06.2009 21:14скачать
n27.txt1kb.22.06.2009 21:31скачать
n28.txt3kb.22.06.2009 21:15скачать
n29.txt2kb.22.06.2009 21:15скачать
n30.txt3kb.22.06.2009 21:16скачать
n31.txt3kb.22.06.2009 21:16скачать
n32.txt2kb.22.06.2009 21:17скачать
n33.txt2kb.22.06.2009 21:18скачать

n8.txt


13. Понятие функции в школьном курсе математики.
 Различные подходы к изучению функций в средней школе определяются также местом функционального материала в общей структуре курсов алгебры. Слишком раннее введение функций (значительно опережающее изучение тождественных преобразований, уравнений и неравенств) влечет за собой снижение уровня строгости в обосновании свойств функций. В школе ф-ция опред-ся как «зав-ть переем. y от перем. x, если каждому знач. x соотв. единств. знач. y» (что позволяет больше внимания уделить изуч-ю конкр-х ф-ций, т.е. данное опред-е не громоздко- сократился уч. материал имеющий лишь теор. знач.). Введение понятия функции – длительный процесс. Этот процесс ведется по 3 основным направлениям:
- способы задания и общие свойства функции, графическое истолкование области определения, области значений, возрастания и т.д. на основе метода координат;
- глубокое изучение отдельных функций и их классов;
- расширение области приложения алгебры за счет включения в нее идеи функции.
Первое из этих идей появляется ранее остальных. Особое значение имеет усвоение важного представления: однозначности соответствия аргумента и определенного по нему значению функции. Для рассмотрения этого вопроса привлекаются различные способы задания функции.
Чаще других применяется задание функции формулой. Все другие способы играют подчиненную роль. При введении понятия сопоставление разных способов задания функции выполняет важную роль: 1) оно связано с практической потребностью: и таблицы и графики служат для удобного представления функции;
2) оно важно для усвоения всего многообразия аспектов понятия функции. 
Перевод задания функции из одной формы представления в другую – необходимый методический прием при введении понятия  функции.
Пример: изобразить график функции   на промежутке  . На рассмотренном этапе учащиеся не знают общего вида графика линейной функции. Поэтому график они могут построить только по точкам. Учитель может обратить внимание на то, что по точкам нельзя построить целиком график функции, если она определена на бесконечном множестве, но заметно, что эти точки лежат на прямой. Можно предложить другой пример: упростить формулу, задающую функцию; с целью показать, что одна и та же функция может определятся различными формулами.
Или найти значения функции при некоторых значениях аргумента. 
В VII—IX классах изуч-е ф-ций ведется по такой схеме: I) рас-реть подводящую з-чу, с помощью к-ой мотивируется изуч-ние новой ф-ции; 2) сформулировать определение ф-ции (сообщить формулу); 3) составить таблицу знач-й ф-ции и построить «по точкам» ее график; 4) провести исследование осн. св-в ф-ции (преимущественно по графику); рас-реть   з-чи   и   упраж-я   на   применение изуч-ых св-в ф-ции.
Особенность этой схемы состоит в том, что при исследовании  ф-ции  больше опираются   на   наглядно-геом-ий   подход,   аналит-кое   же   исследование ф-ции    носит   ограниченный   хар-р. Соотнош. наглядно-геом-го и аналит-го методов исследований ф-ции определяет уровень строгости изложения уч. материала. Повышение уровня строгости при изучении функций возможно за счет усиления роли аналит-го метода исследования.
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации