Шпоры к Государственному экзамену по математике и методике преподавания математике в ЛГПУ - файл n22.txt

приобрести
Шпоры к Государственному экзамену по математике и методике преподавания математике в ЛГПУ
скачать (1493.6 kb.)
Доступные файлы (33):
n1.doc625kb.23.06.2009 00:30скачать
n2.doc35kb.20.06.2009 14:42скачать
n3.docскачать
n4.txt2kb.22.06.2009 21:13скачать
n5.txt4kb.22.06.2009 21:18скачать
n6.txt1kb.22.06.2009 21:19скачать
n7.txt2kb.22.06.2009 21:20скачать
n8.txt4kb.22.06.2009 21:21скачать
n9.txt3kb.22.06.2009 21:21скачать
n10.txt2kb.22.06.2009 21:22скачать
n11.txt1kb.22.06.2009 21:23скачать
n12.txt2kb.22.06.2009 21:24скачать
n13.txt3kb.22.06.2009 21:25скачать
n14.txt3kb.22.06.2009 21:25скачать
n15.txt4kb.22.06.2009 21:14скачать
n16.txt1kb.22.06.2009 21:25скачать
n17.txt2kb.22.06.2009 21:26скачать
n18.txt3kb.22.06.2009 21:26скачать
n19.txt8kb.22.06.2009 21:27скачать
n20.txt2kb.22.06.2009 21:28скачать
n21.txt4kb.22.06.2009 21:28скачать
n22.txt7kb.22.06.2009 21:28скачать
n23.txt2kb.22.06.2009 21:29скачать
n24.txt4kb.22.06.2009 21:30скачать
n25.txt5kb.22.06.2009 21:31скачать
n26.txt3kb.22.06.2009 21:14скачать
n27.txt1kb.22.06.2009 21:31скачать
n28.txt3kb.22.06.2009 21:15скачать
n29.txt2kb.22.06.2009 21:15скачать
n30.txt3kb.22.06.2009 21:16скачать
n31.txt3kb.22.06.2009 21:16скачать
n32.txt2kb.22.06.2009 21:17скачать
n33.txt2kb.22.06.2009 21:18скачать

n22.txt


26. Методика изучения темы «Многогранники».
Тема МНОГОГРАННИКИ является одной из центральных в курсе стереометрии средней школы. Широкие возможности для развития пространственных представлений открываются при использовании различных наглядных пособий, ТСО.
На тщательное выполнение чертежа фигуры учащийся затрачивает около 5 минут. Это непроизводственная затрата времени. Поэтому иногда, желая сэкономить время, учителя допускают неточное и небрежное выполнение чертежа основной фигуры, концентрируя основное внимание например на построении сечения. Это ухудшает качество учебной работы и в конечном счете не дает возможности проверить качество знаний учащихся. Учитель может использовать диафильмы. При проведении такой работы не требуется выполнение чертежа в тетради. Вместе с тем правильно выполненный чертеж находится в поле зрения учащихся.
Тему можно разделить на след.части:
1.	определение многогранника. Элементы многогранника. Выпуклые многогранники.
2.	призмы. Параллелепипеды.
3.	пирамиды.
4.	 правильные многогранники.
5.	объемы многогранников.
1) изучение темы начинается с введения понятия многогранника. В большинстве учебников он характеризуется как ограниченное геометрическое тело с определенными характерными свойствами, только в Атанасяне рассматривается, как поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело. Для введения понятия учащимся понадобятся знания из курса планиметрии, которые необходимо повторить, а именно: понятие многоугольника, его элементы, выпуклые многоугольники. Перед определением понятия многогранника следует продемонстрировать учащимся модели различных многогранников, провести анализ определений, продемонстрировать отдельные его части; только после этого дать определение многогранника, собрав все сказанное воедино. Затем привести примеры из окружающей жизни.
Для закрепления изученного можно решить ряд задач на моделях. 2) основное внимание при изучении призм уделяется рассмотрению их частного вида – параллелепипеда. Наибольшие трудности, вызывают вопросы, связанные с построением и вычислением линейных углов для двугранных углов призмы, углов между ребрами и гранями . этим вопросам нужно уделить особое внимание, составив специальные упражнения для выработки соответствующих навыков у учащихся. Призма определяется как многогранник, обладающий определенными свойствами. В процессе работы над этим понятием необходимо показать модели различных призм, прямых и наклонных. При наблюдении подмечается то, что является общим для всех призм, и на основе этого дается определение. После этого показывается способ построения призмы, что по сути дела является конструктивным доказательством его существования. Важно подчеркнуть, что на изображении призмы боковые ребра – равные параллельные отрезки. В случае прямой призмы принято боковые ребра изображать вертикальными отрезками.
В ходе объяснения необходимо сделать выводы об элементах n – угольной призмы:
1. n – угольная призма имеет n+2 граней, n боковых граней.
2. n – угольная призма имеет 3n ребер, n боковые ребер.
3. n – угольная призма имеет 2n вершин.
4. n – угольная призма имеет n(n – 3) диагоналей. 
Новым для учащихся является понятие высоты призмы, поэтому на построение высоты призмы и на определение этого понятия нужно обратить особое внимание. Целесообразно отметить на моделях, что в отдельных случаях основание высоты призмы может лежать на одном из ребер основания или совпадать с боковым ребром. После введения понятия высоты можно перейти к формулам для вычисления площади поверхности призмы и площади боковой поверхности. При выводе этих формул учитель, демонстрируя развертку поверхности данной призмы, убеждает учащихся, что задач сводится к вычислению площади полученного многоугольника. Параллелепипед рассматривается, как частный вид призмы. Свойства параллелепипедов аналогичны свойствам параллелограммов из курса планиметрии, поэтому повторение можно построить таким образом:
- при изучении параллелепипеда общего вида повторить общие свойства параллелограмма 
- при изучении прямого параллелепипеда повторить  свойства прямоугольника.
Свойства граней и диагоналей параллелепипеда сформулировать по аналогии со свойствами сторон и диагоналей параллелограмма. Включить задачи на построение сечения параллелепипеда плоскостью и вычисление площади полученного сечения. 3) прежде всего сообщается, что пирамида – это новый вид многогранников. Изучение пирамиды можно начать с рассмотрения способа ее построения, а потом дать ее определение. При построении следует заметить, что одна из граней у пирамиды – произвольный многоугольник, а все остальные грани – треугольники с общей вершиной. Классификация пирамид делается в зависимости от вида многоугольника, который лежит в ее основании. В зависимости от этого различают треугольные, четырехугольные и т.д. n – угольные пирамиды. Обращается особое внимание, что треугольная пирамида называется тетраэдром. Элементы пирамиды надо показать на рисунке и сделать соответствующие записи. При выполнении записей о числе тех или иных элементов у конкретной пирамиды надо сделать обобщение для n – угольные пирамиды.  Особо подчеркнуть, что в отличие от призм пирамиды не имеют диагоналей. Понятие о поверхности пирамиды и вычисление ее площади следует дать с помощью развертки пирамиды. Понятие об усеченной пирамиде целесообразно ввести параллельно с изучением свойств сечений пирамиды плоскостью, параллельной основанию.
4) раздел о правильных многогранниках носит описательный характер. На его изучение целесообразно отвести целый урок. 
Материал о правильных многогранниках существенно дополняет и завершает раздел. Фактически здесь продолжается классификация многогранников; из выпуклых многогранников выделяются правильные. Правильные многогранники – яркий пример геометрических фигур, имеющих центр, оси и плоскости симметрии. В большинстве школьных учебников по геометрии в качестве одного из определяющих свойств правильного многогранника выделяются следующие: все его грани – равные правильные многоугольники. У Погорелова это свойство заменено другим: грани рассматриваемого выпуклого многогранника – правильные многоугольники с одним и тем же числом сторон. Эти свойства эквивалентны, но первое яснее и проще и поэтому легче запоминается. В качестве второго определяющего свойства выбирается одно из следующих:
- в каждой вершине одно и то же число ребер
- в каждой вершине сходится одно и то же число граней
- все многогранные углы равны
- все двугранные углы равны.
Свойства 1 и 2 срабатывают, когда мы хотим проверить, является или нет данный многогранник правильным. А 3 и 4 дают возможность решать содержательные задачи на правильный многогранник. После введения определения учитель на моделях показывает его элементы.
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации