Шпоры к Государственному экзамену по математике и методике преподавания математике в ЛГПУ - файл n19.txt

приобрести
Шпоры к Государственному экзамену по математике и методике преподавания математике в ЛГПУ
скачать (1493.6 kb.)
Доступные файлы (33):
n1.doc625kb.23.06.2009 00:30скачать
n2.doc35kb.20.06.2009 14:42скачать
n3.docскачать
n4.txt2kb.22.06.2009 21:13скачать
n5.txt4kb.22.06.2009 21:18скачать
n6.txt1kb.22.06.2009 21:19скачать
n7.txt2kb.22.06.2009 21:20скачать
n8.txt4kb.22.06.2009 21:21скачать
n9.txt3kb.22.06.2009 21:21скачать
n10.txt2kb.22.06.2009 21:22скачать
n11.txt1kb.22.06.2009 21:23скачать
n12.txt2kb.22.06.2009 21:24скачать
n13.txt3kb.22.06.2009 21:25скачать
n14.txt3kb.22.06.2009 21:25скачать
n15.txt4kb.22.06.2009 21:14скачать
n16.txt1kb.22.06.2009 21:25скачать
n17.txt2kb.22.06.2009 21:26скачать
n18.txt3kb.22.06.2009 21:26скачать
n19.txt8kb.22.06.2009 21:27скачать
n20.txt2kb.22.06.2009 21:28скачать
n21.txt4kb.22.06.2009 21:28скачать
n22.txt7kb.22.06.2009 21:28скачать
n23.txt2kb.22.06.2009 21:29скачать
n24.txt4kb.22.06.2009 21:30скачать
n25.txt5kb.22.06.2009 21:31скачать
n26.txt3kb.22.06.2009 21:14скачать
n27.txt1kb.22.06.2009 21:31скачать
n28.txt3kb.22.06.2009 21:15скачать
n29.txt2kb.22.06.2009 21:15скачать
n30.txt3kb.22.06.2009 21:16скачать
n31.txt3kb.22.06.2009 21:16скачать
n32.txt2kb.22.06.2009 21:17скачать
n33.txt2kb.22.06.2009 21:18скачать

n19.txt


23. Параллельность прямых и плоскостей на плоскости и в пространстве.
Знания о взаимном расположении прямых и пл-тей лежат в основе изуч-я св-в геом-х фигур как в план-и так и в стереом-и. Парал. прямые на пл-ти: 
Ввод-ся: 
1) опред-е парал. прямых 
(2 прямые на пл-ти парал. – если они не имеют общих точек – Погорелов; 2 прямые на пл-ти парал, если они не имеют общих точек или совпадают – Атанасян)) 2) св-ва:
 а)   
б)  
в) сама себе парал. прямая 
3) аксиома парал-ти (утверждает сущ. парал. прямых)
 4) теорема о парал-ти (2 прямые парал. 3 -  парал.)
Парал-ть в пр-ве:
Ввод-ся: 1) парал-ть прямых (2 прямые парал., если они лежат в одной пл-ти и не пересек.) 2) парал-ть прямой и пл-ти (прямая и пл-ть парал., если они не пересек.) 3) парал-ть пл-тей (2 пл-ти парал., если они не пересек.).
Параллельность прямых на плоскости.В процессе беседы с учащимися надо постоянно напоминать, что речь идет о прямых на плоскости.Учение о параллельности прямых можно разделить на след.части:- определение параллельных прямых;- существование параллельных прямых;- построение параллельных прямых;- аксиома параллельных;- свойства параллельных прямых;- признаки параллельности прямых;- применение изученного к решению задач. Формулировки определений параллельных прямых в учебных пособиях, так же как и подходы к их изучению различны.В процессе работы над определением параллельных прямых следует особо выделить, что они лежат в одной плоскости, и требовать это постоянно от учащихся. Определение следует записать в тетради, выделив видовые отличия.Две прямые называются параллельными, если:1) лежат в одной плоскости2) не пересекаются.3) не имеют общих точек                                                                                                          или совпадают.Вопрос о существовании параллельных прямых также решается не одинаково. Здесь можно отметить два подхода:рассматривается специальная теорема, показывающая существование параллельных прямых, а затем дается аксиома параллельных;рассматривается аксиома параллельных, а затем доказывается теорема, показывающая существование таких прямых. Второй подход может породить трудности, которые помешают убедить учащихся в необходимости доказательства существования параллельных прямых, поскольку целый ряд рассуждений проводится на основе предположения , что такие прямые на самом деле есть.
В практике школы большое распространение получили обоснования признаков параллельности прямых на основе сравнения углов, образуемых при пересечении двух прямых третьей.Раздел об углах, образующихся при пересечении двух прямых третьей, как показывает опыт, не вызывает затруднений.Рисунок к введению этих понятий не должен отражать частных случаев: две прямые не должны изображаться параллельными, а секущая не должна быть к ним перпендикулярной.
                                                                         Прямые разбивают плоскость на три части: две внешние и одну внутреннюю.                                                                    Для лучшего запоминания лучше произвести соответствующие записи:
3 и 6, 4 и 5 – внутренние накрест лежащие; 1 и 8, 2 и 7 – внешние накрест лежащие;3 и 5, 4 и 6 – внутренние односторонние; 2 и 6, 1 и 5, 4 и 8, 3 и 7 – соответственные; 1 и 7, 2 и 8 – внешние односторонние.
Большую роль в изучении параллельных прямых играет аксиома параллельных. В учебной литературе приведены различные ее формулировки:через данную точку проходит не более одной прямой, параллельной данной прямой или Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.Особый интерес представляет методика работы над теоремами – признаками параллельности прямых по Погорелову и Атанасяну. Дано: с – секущая,   - внутренние накрест лежащие; Доказать:  .
                                                                




? (от противного) 
По Погорелову 	По Атанасяну
1.	пусть а и b непараллельны, то есть пересекаются в точке С.
2.	построим АД=ВС и некоторую точку Е на прямой b.
3.	?ВАД=?АВС по первому признаку равенства треугольников.
4.	 АВД= ВАС, так как ?ВАД=?АВС.
5.	 АВЕ= ВАС , так как  .
6.	 АВД= АВЕ как равные одному и тому же   ВАС.
7.	лучи ВД и ВЕ совпадают, так как  АВД= АВЕ (аксиома откладывания углов).
8.	Д принадлежит прямой b , так как лучи ВД и ВЕ совпадают.
9.	прямые а и b имеют две различные общие точки Д и С, что невозможно.
10.	предположение, что  а и b пересекаются, неверно, значит  .
1.	пусть а и b непараллельны, то есть имеют общую точку С.
2.	  - внутренний в ?АВС, а   - внешний в ?АВС.
3.	 >  по теореме о внешнем угле треугольника. Это противоречит условию теоремы.
4.	предположение, что а и b непараллельны, неверно. Значит  .

 Перед доказательством признаков параллельности прямых необходима специальная работа по организации повторения вопросов, составляющих основу доказательства. Повторение проводится по рисункам, при этом предполагается их варьирование во избежание частных случаев. Большую роль в усвоении материала играют задачи. Задачи могут быть использованы при формировании понятий темы, при подготовке к доказательству, при использовании изученных теорем. Параллельность прямых в пространстве.
Беседу следует начать с вопроса: сколько общих точек могут иметь две прямые? Ясно, что две прямые могут иметь только одну общую точку , в этом случае они называются пересекающимися; если больше, то совпадают. Параллельно с рассуждениями должна появиться таблица с заголовком: взаимное расположение прямых в пространстве., на котором отражаются все 4 случая. Возникает вопрос могут ли 2 прямые в пространстве располагаться так, что через них нельзя провести плоскость? Такие прямые есть, их следует показать в окружающей действительности. После этого вводится термин: скрещивающиеся прямые. Подробно следует остановиться на решении задачи о проведении прямой параллельной данной и проходящей через данную точку пространства. В пространстве можно провести сколь угодно много прямых, параллельных данной ; совокупность таких прямых наз.связкой параллельных прямых. Параллельность прямой и плоскости:Начало по аналогии с пред.пунктом. Встает вопрос: нельзя ли о параллельности прямой и плоскости судить параллельности двух прямых? Естественно, одна из таких прямых есть данная прямая, а другая должна принадлежать данной плоскости. Так появляется теорема, носящая имя признака параллельности прямой и плоскости.
В порядке закрепления следует решить следюзадачи: 1) даны плоскость и точка М вне плоскости. Через точку М провести прямую, параллельную плоскости. 2) даны прямая и точка М вне прямой. Через точку М провести плоскость параллельную данной прямой. Параллельность плоскостей:
Начало по аналогии. О параллельности двух плоскостей судят по параллельности прямых, связанных с этими плоскостями. Отсюда можно вывести две гипотезы: 1) если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны. 2) если две параллельные прямые одной плоскости соответственно параллельны двум параллельным прямым другой плоскости, то плоскости параллельны. Вторая гипотеза отвергается, так как в пересекающихся плоскостях можно выбрать по прямой, параллельной линии их пересечения.
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации