Шпоры по физике за 1й семестр - файл n9.doc

приобрести
Шпоры по физике за 1й семестр
скачать (2795.1 kb.)
Доступные файлы (12):
n1.jpg182kb.20.01.2012 22:53скачать
n2.jpg615kb.01.12.2011 19:59скачать
n3.jpg615kb.01.12.2011 20:01скачать
n4.jpg626kb.01.12.2011 20:03скачать
n5.jpg224kb.01.12.2011 20:04скачать
01 shpora A4.doc1220kb.26.06.2005 22:57скачать
02 shpora A4.doc902kb.26.06.2005 23:33скачать
n8.doc245kb.14.01.2012 13:07скачать
n9.doc226kb.14.01.2012 14:05скачать
n10.doc615kb.14.01.2012 20:55скачать
n11.doc212kb.13.01.2012 01:07скачать
n12.doc245kb.14.01.2012 13:07скачать
Победи орков

Доступно в Google Play

n9.doc

1.Пространство и время в механике Ньютона

Классическая механика оперирует несколькими основными понятиями и моделями. Среди них следует выделить:

Пространство. Считается, что движение тел происходит в пространстве, являющимся евклидовым, абсолютным (не зависит от наблюдателя), однородным (две любые точки пространства неотличимы) и изотропным (два любых направления в пространстве неотличимы).

Время — фундаментальное понятие, не определяемое в классической механике. Считается, что время является абсолютным, однородным и изотропным (уравнения классической механики не зависят от направления течения времени).
9. Уравнение Ньютона

Уравнением Ньютона называют линейное неоднородное дифференциальное уравнение 2–го порядка с постоянными коэффициентами вида

y '' + ?02y = Fcos?x.

Известно, что однородное уравнение y '' + ?0y = 0 описывает свободные колебания материальной точки с частотой колебаний ?0

y(x) = C1cos(?0x) + C2sin(?0x) .

Неоднородное уравнения с правой частью Fcos(?x) описывает колебания материальной точки под действием внешней периодической силы, частота которой ? .

Если ?0 ? ? , то общее решение уравнения имеет вид



Если ?0 = ? , то



26. Уравнение Клапейрона – Клазиуса

Уравнение Клапейрона — Клаузиуса — термодинамическое уравнение, относящееся к квазистатическим (равновесным) процессам перехода вещества из одной фазы в другую (испарение, плавление, сублимация, полиморфное превращение и др.). Согласно уравнению, теплота фазового перехода (например, теплота испарения, теплота плавления) при квазистатическом процессе определяется выражением



где L — удельная теплота фазового перехода, ?v — изменение удельного объёма тела при фазовом переходе.

Уравнение названо в честь его авторов, Рудольфа Клаузиуса и Бенуа Клапейрона.

Элементарный вывод


Между температурой фазового перехода и внешним давлением существует функциональная связь, причём при фазовом переходе производная терпит разрыв. Тогда изотермы для рассматриваемого вещества будут иметь характерный вид, изображённый на рисунке. Для вывода существенен горизонтальный участок изотермы, соответствующий фазовому переходу. Слева и справа от этого участка всё вещество находится в одной фазе. Осуществим цикл Карно при бесконечно малой разности температур следующим образом: сначала сообщаем телу теплоту, переводя его из состояния 1 в состояние 2, затем адиабатически охлаждаем его на температуру dT, после чего замыкаем цикл, отводя теплоту и переводя вещество в фазу 1 с последующим адиабатическим нагревом. Совершённая работа равна площади цикла:

?A = dp(V2 ? V1)

Сообщённая теплота равна

?Q = Lm

где L — удельная теплота фазового перехода, m — масса тела. Согласно теореме Карно,



Отсюда


28.Уравнение Ван-дер-Ваальса

Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.

Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.

Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия U становится функцией не только температуры, но и объёма.

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:



где

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка a учитывает силы притяжения между молекулами (давление на стенку уменьшается, т.к. есть силы, втягивающие молекулы приграничного слоя внутрь), поправка b — силы отталкивания (из общего объёма вычитаем объём, занимаемый молекулами).

Для ? молей газа Ван-дер-Ваальса уравнение состояния выглядит так:




32. Релятивистская энергия

Согласно специальной теории относительности между массой и энергией существует связь, выражаемая знаменитой формулой Эйнштейна



где E — энергия системы, m — её масса, c — скорость света. Несмотря на то, что исторически предпринимались попытки трактовать это выражение как полную эквивалентность понятия энергии и массы, что, в частности, привело к появлению такого понятия как релятивистская масса, в современной физике принято сужать смысл этого уравнения, понимая под массой массу тела в состоянии покоя (так называемая масса покоя), а под энергией только внутреннюю энергию, заключённую в системе.
3.Макроскопические параметры как средние значения микроскопических

Для ответа на очень многие вопросы достаточно знать не поведение отдельных молекул, а только макроскопические параметры, характеризующие состояние всей системы. Такими параметрами являются, например, объем системы, ее масса, полная энергия. Если система находится в состоянии равновесия, то она характеризуется еще и такими параметрами, как давление и температура. Значения макроскопических параметров определяются не поведением отдельных молекул, а средним результатом, к которому приводит их совокупное движение, то есть средними значениями микроскопических параметров.

Задача молекулярно-кинетической теории состоит в том, чтобы установить связь макроскопических параметров системы со средними значениями микроскопических величин и дать способ вычисления этих средних значений на основе законов движения отдельных частиц. Такой подход справедлив для газовых систем. Так, например, для одного моля идеального газа молекулярно-кинетическая теория устанавливает связь между произведением двух макроскопических параметров - давления Р и молярного объема - и средним значением микроскопического параметра Е - кинетической энергии хаотического теплового движения одной молекулы:

,где - постоянная Авогадро.
7. Основное уравнение МКТ

, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i — число степеней свободы молекул (i = 3 в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Вывод основного уравнения МКТ


Пусть имеется кубический сосуд с ребром длиной l и одна частица массой m в нём.

Обозначим скорость движения vx, тогда перед столкновением со стенкой сосуда импульс частицы равен mvx, а после — ? mvx, поэтому стенке передается импульс p = 2mvx. Время, через которое частица сталкивается с одной и той же стенкой, равно .

Отсюда следует:



Так как давление , следовательно сила F = p * S

Подставив, получим:

Преобразовав:

Так как рассматривается кубический сосуд, то V = Sl

Отсюда:

.

Соответственно, и .

Таким образом, для большого числа частиц верно следующее: , аналогично для осей y и z.

Поскольку , то . Это следует из того, что все направления движения молекул в хаотичной среде равновероятны.

Отсюда или .

Пусть  — среднее значение кинетической энергии всех молекул, тогда:

, откуда .

Для одного моля выражение примет вид

8.Распределение Максвелла для молекул и проекций скорости молекул идеального газа

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где Ni является числом молекул, имеющих энергию Ei при температуре системы T, N является общим числом молекул в системе и k — постоянная Больцмана. (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем gi, обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма.

Распределение Максвелла для вектора скорости [vx, vy, vz] — является произведением распределений для каждого из трех направлений:

,

где распределение по одному направлению:



Это распределение имеет форму нормального распределения. Как и следует ожидать для покоящегося газа, средняя скорость в любом направлении равна нулю.
9.Среднеквадратичная, наиболее вероятная, среднеарифметическая скорости молекул

Уравнение среднеквадратичной скорости молекулы легко выводится из основного уравнения МКТ для одного моля газа.

, для 1 моля N = Na, где Na — постоянная Авогадро

Nam = Mr, где Mr — молярная масса газа

Отсюда окончательно

Наиболее вероятная скорость


наиболее вероятная скорость, — вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению . Чтобы найти её, необходимо вычислить , приравнять её к нулю и решить относительно :





Среднеарифметическую:



11.Число столкновений, длина свободного пробега молекул идеального газа

Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкивают­ся друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь l, который называется длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна, но так как мы имеем дело с огромным числом молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега молекул <l>.

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d (рис. 68). Он зависит от скорости сталкивающихся молекул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

Так как за 1 с молекула проходит в среднем путь, равный средней арифметической скорости <v>, и если <z> — среднее число столкновений, испытываемых одной молеку­лой газа за 1 с, то средняя длина свободного пробега



Для определения представим себе молекулу в виде шарика диаметром d, которая движется среди других «застывших» молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d, т. е. лежат внутри «ломаного» цилиндра радиусом d (рис. 69).

Среднее число столкновений за 1 с равно числу молекул в объеме «ломаного» цилиндра:



где п — концентрация молекул, V = d2 <v> <v> — средняя скорость молекулы или путь, пройденным ею за 1 с). Таким образом, среднее число столкновений



Расчеты показывают, что при учете движения других молекул



Тогда средняя длина свободного пробега



т. е. <l> обратно пропорциональна концентрации n молекул. С другой стороны, из (42.6) следует, что при постоянной температуре n пропорциональна давлению р. Следовательно,



12.Термодинамическое равновесие

Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объем, энтропия). В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений.

На практике условие изолированности означает, что процессы установления равновесия протекают гораздо быстрее, чем происходят изменения на границах системы (то есть изменения внешних по отношению к системе условий) и осуществляется обмен системы с окружением веществом и энергией. Иными словами, термодинамическое равновесие достигается, если скорость релаксационных процессов достаточно велика (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (этот случай имеет место в геологических процессах).

В реальных процессах часто реализуется неполное равновесие, однако степень этой неполноты может быть существенной и несущественной. При этом возможны три варианта:

- равновесие достигается в какой-либо части (или частях) относительно большой по размерам системы — локальное равновесие,

- неполное равновесие достигается вследствие разности скоростей релаксационных процессов, протекающих в системе — частичное равновесие,

- имеют место как локальное, так и частичное равновесие.
13. Температура

Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

В Международной системе единиц (СИ) термодинамическая температура входит в состав семи основных единиц и выражается в кельвинах. В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды — температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном. Изменение температуры на один градус Цельсия тождественно изменению температуры на один Кельвин. Поэтому после введения в 1967 г. нового определения Кельвина, температура кипения воды перестала играть роль неизменной реперной точки и, как показывают точные измерения, она уже не равна 100 °C, а близка к 99,975 °C.

Существуют также шкалы Фаренгейта и некоторые другие.
14. Внутренняя энергия

Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:



где

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:



где

Идеальные газы


Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

.

Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах); в общем случае CV(T,V) является функцией и температуры, и объёма.

Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

?U = ?CV?T,

где ? — количество вещества, ?T — изменение температуры.


15. Закон о равномерном распределении энергии по степеням свободы молекул

В статистической физике выводится закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статистической системы, которая находится в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы — в среднем энергия, равная kT. Колебательная степень обладает вдвое большей энергией, т.к. на нее приходится как кинетическая энергия (как в случае поступательного и вращательного движений), так и потенциальная, причем средние значения потенциальной и кинетической и энергии одинаковы. Значит, средняя энергия молекулы



где i — сумма числа поступательных, числа вращательных в удвоенного числа колеба¬тельных степеней свободы молекулы: i=iпост+iвращ+2iколеб
В классической теории рассматривают молекулы с жесткой связью между атомами; для них i совпадает с числом степеней свободы молекулы.
Так как в идеальном газе взаимная потенциальная энергия взаимодействия молекул равна нулю (молекулы между собой не взаимодействуют), то внутренняя энергия для одного моля газа, будет равна сумме кинетических энергий NA молекул:
(1)
Внутренняя энергия для произвольной массы m газа.

где М — молярная масса, ? — количество вещества.
18. Адиабатический процесс

Адиабати́ческий или адиаба́тный проце́сс  — термодинамический процесс в макроскопической системе, при котором система не получает и не отдаёт тепловой энергии. Серьёзное исследование адиабатических процессов началось в XVIII веке.

Адиабатический процесс является частным случаем политропного процесса. Адиабатические процессы обратимы, только тогда, когда в каждый момент времени система остаётся равновесной (например, изменение состояния происходит достаточно медленно) и изменения энтропии не происходит. Некоторые авторы (в частности, Л. Д. Ландау) называли адиабатическими только квазистатические адиабатические процессы.

Адиабатический процесс для идеального газа описывается уравнением Пуассона. Линия, изображающая адиабатный процесс на какой-либо термодинамической диаграмме, называется адиабатой. Существует ряд явлений природы, которые могут считаться адиабатическим процессом, кроме того, он получил применение в технике.

19. Обратимые и необратимые процессы


В изолированной термодинамической системе через некоторый промежуток времени устанавливается внутреннее равновесие, при котором рабочее тело по всей массе имеет одинаковую температуру и давление.

При равенстве давлений в системе и в окружающей среде изменение объема рабочего тела прекращается, и передача энергии в форме работы отсутствует (система находится в механическом равновесии со средой). Равенство температур рабочего тела и среды обеспечивает термическое равновесие. При этом между системой и окружающей средой не возникает передачи энергии в форме теплоты. Термодинамический процесс возможен только при нарушении механичес­кого или термического равновесия, и чем сильнее нарушается равновесие, тем быстрее протекает процесс. Все реальные термодинамические системы не изолированы от окружающей среды, которая выводит их из равновесия. Поэтому они являются неравновесными. Учитывая чрезвычайную сложность теплотехнических расчетов таких процессов, на практике их заменяют равновесными, то есть такими, при которых система проходит последовательно бесчисленное множество равновесных состояний. Эти равновесные процессы называют квазистатическими.

Рис. 5.1. Линии обратимых прямого A-B и обратного B-A процессов на pv-диаграмме

Для любой термодинамической системы можно представить два состояния, между которыми будет проходить два процесса: один от первого состояния ко второму и другой, наоборот, от второго состояния к первому. Первый процесс называют прямым, второй — обратным. Если после прямого процесса 1—2 следует обратный 2—1 и при этом термодинамическая система возвращается в исходное состояние, то такие процессы принято считать обратимыми. При обратимых процессах система в обратном процессе проходит через те же равновесные состояния, что и в прямом процессе. При этом ни в окружающей среде, ни в самой системе не возникает никаких остаточных явлений, то есть не имеет значения идет процесс А-В или В-А (рис. 5.1).

Различают механически и термически обратимые процессы.

В механически обратимом процессе обмен энергией между системой и окружающей средой протекает в форме работы при бесконечно малой разности давлений.

В термически обратимом процессе термодинамическая система обменивается с окружающей средой энергией в форме теплоты при бесконечно малой разности температур.

Любой равновесный термодинамический процесс изменения состояния рабочего тела будет всегда обратимым. Обратимые процессы являются идеальными.

Действительные термодинамические процессы совершаются при конечной разности давлений и температур рабочего тела и окружающей среды и поэтому являются неравновесными. Такие процессы необратимы.

Необратимый термодинамический процесс – это процесс, при котором система не возвращается в исходное состояние после обратного процесса. Все необратимые процессы протекают в направлении достижения в термодинамической системе равновесия, то есть выравнивания в ней давлений, температур, концентраций.

20. Цикл Карно и его КПД

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Описание цикла Карно


Пусть тепловая машина состоит из нагревателя с температурой TH, холодильника с температурой TX и рабочего тела.

Цикл Карно состоит из четырёх стадий:

Изотермическое расширение (на рисунке — процесс A?Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.

Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б?В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

Изотермическое сжатие (на рисунке — процесс В?Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.

Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г?А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия:

при ?Q = 0.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

КПД тепловой машины Карно


Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно



Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику



Отсюда коэффициент полезного действия тепловой машины Карно равен

.

Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Поэтому максимальный КПД любой тепловой машины, будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно.

22. Энтропия как количественная мера хаотичности

Существует мнение, что мы можем смотреть на ? и как на меру беспорядка в системе. В определённом смысле это может быть оправдано, потому что мы думаем об «упорядоченных» системах как о системах, имеющих очень малую возможность конфигурирования, а о «беспорядочных» системах как об имеющих очень много возможных состояний. Собственно, это просто переформулированное определение энтропии как числа микросостояний на данное макросостояние.

Рассмотрим, например, распределение молекул идеального газа. В случае идеального газа наиболее вероятным состоянием, соответствующим максимуму энтропии, будет равномерное распределение молекул. При этом реализуется и максимальный «беспорядок», так как при этом будут максимальные возможности конфигурирования.

Границы применимости понимания энтропии как меры беспорядка


Подобное определение беспорядка термодинамической системы как количества возможностей конфигурирования системы фактически дословно соответствует определению энтропии как числа микросостояний на данное макросостояние. Проблемы начинаются в двух случаях:

В обоих этих случаях применение понятия термодинамической энтропии совершенно неправомерно.

Рассмотрим оба пункта подробнее.

Рассмотрим пример термодинамической системы — распределение молекул в поле тяготения. В этом случае наиболее вероятным распределением молекул будет распределение согласно барометрической формуле Больцмана. Другой пример — учёт электромагнитных сил взаимодействия между ионами. В этом случае наиболее вероятным состоянием, соответствующим максимуму энтропии, будет упорядоченное кристаллическое состояние, а совсем не «хаос». (Термин «хаос» здесь понимается в смысле беспорядка — в наивном смысле. К хаосу в математическом смысле как сильно неустойчивой нелинейной системе это не имеет отношения, конечно.)

Рассмотрим случай с кристаллической решёткой более подробно. Кристаллическая решётка может быть и в равновесном, и в неравновесном состоянии, как и любая термодинамическая система. Скажем, возьмём следующую модель — совокупность взаимодействующих осцилляторов. Рассмотрим некоторое неравновесное состояние: все осцилляторы имеют одинаковое отклонение от положения равновесия. С течением времени эта система перейдёт в состояние ТД равновесия, в котором отклонения (в каждый момент времени) будут подчинены некоторому распределению типа Максвелла (только это распределение будет для отклонений, и оно будет зависеть от типа взаимодействия осцилляторов). В таком случае максимум энтропии будет действительно реализовывать максимум возможностей конфигурирования, то есть — беспорядок согласно вышеуказанному определению. Но данный «беспорядок» вовсе не соответствует «беспорядку» в каком-либо другом понимании, например, информационному. Такая же ситуация возникает и в примере с кристаллизацией переохлаждённой жидкости, в которой образование структур из «хаотичной» жидкости идёт параллельно с увеличением энтропии.

Это неверное понимание энтропии появилось во время развития теории информации, в связи с парадоксом термодинамики, связанным с мысленным экспериментом т. н. «демона Максвелла». Суть парадокса заключалась в том, что рассматривалось два сосуда с разными температурами, соединённых узкой трубкой с затворками, которыми управлял т. н. «демон». «Демон» мог измерять скорость отдельных летящих молекул, и таким образом избирательно пропускать более быстрые в сосуд с высокой температурой, а более медленные — в сосуд с низкой. Из этого мысленного эксперимента вытекало кажущееся противоречие со вторым началом термодинамики.

Парадокс может быть разрешён при помощи теории информации. Для измерения скорости молекулы «демон» должен был бы получить информацию о её скорости. Но всякое получение информации — материальный процесс, сопровождающийся возрастанием энтропии. Количественный анализ показал, что приращение энтропии при измерении превосходит по абсолютной величине уменьшение энтропии, вызванное перераспределением молекул «демоном».
24. Теорема Нернста

Теорема Нернста (тепловая теорема Нернста) - утверждение, являющееся одной из формулировок третьего начала термодинамики, сформулированное Вальтером Нернстом в 1906 году как обобщение экспериментальных данных по термодинамике гальванических элементов.

Теорема Нернста утверждает, что всякий термодинамический процесс, протекающий при фиксированной температуре T в сколь угодно близкой к нулю, , не должен сопровождаться изменением энтропии S, то есть изотерма T = 0 совпадает с предельной адиабатой S0.

Макс Планк в 1910 году сформулировал более жесткое утверждение: величина S0 была конечной и S0 = 0. В формулировке Планка теорема Нернста имеет вид начального (граничного или предельного) условия для системы дифференциальных уравнений определяющих энтропию: При выключении температуры, , энтропия термодинамической системы также стремится к нулю:


1.Пространство и время в механике Ньютона
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации