Сваривание и склеивание изделий из пластмасс - файл n1.doc

приобрести
Сваривание и склеивание изделий из пластмасс
скачать (180.7 kb.)
Доступные файлы (1):
n1.doc391kb.19.10.2011 15:53скачать

n1.doc


- -

Министерство образования и науки, молодежи и спорта Украины

ГВУЗ «Украинский государственный химико-технологический университет»

Кафедра

Переработки пластмасс и фото-, нано-

и полиграфических материалов



по дисциплине: «Спецтехнология переработки пластмасс»

Сваривание и склеивание изделий из пластмасс

Выполнила:

Студентка гр.4-ПП-34

Игнатьева Н.И.

Проверил:

Доцент кафедры ПП-ФНПМ

Баштанник П.И.

Днепропетровск, 2011

Содержание

1. Сварка

1.1. Механизм сварки

1.1.1. Диффузионная сварка

1.1.2. Химическая сварка

1.2. Технология сварки

1.2.1. Сварка нагретым газом

1.2.2. Сварка нагретым инструментом

1.2.3. Сварка нагретым прессадочным материалом

1.2.4. Высокочастотная сварка

1.2.5. сварка излучением

1.2.6. Сварка трением

1.2.7. Ультразвуковая сварка

1.2.8. Сварка при помощи растворителей

1.3. Специальные способы сварки

1.3.1. Сварка пластмасс с примением флюса

1.3.2. Ядерная сварка

1.4. Контроль качества сварных соединений

1.5. Техника безопасности при сварке изделий из пластмасс

2.Склеивание

2.1. Факторы,влияющие на прочность клеевого соединения

2.2. Выбор клеев

2.3. Технология склеивания

3. Литература

МЕХАНИЗМ СВАРКИ

Процесс сварки термопластов заключается в образовании соединений за счет контакта активированных нагревом соединяемых поверхностей. Последовательность операций может быть различной: в одних случаях вначале материалы приводят в плотный контакт, а затем соединяемые поверхности нагревают; в других – наоборот, - вначале соединяемые поверхности подвергают нагреву, а затем обеспечивают их контакт друг с другом; в-третьих – контактирование соединяемых поверхностей и нагрев их осуществляют одновременно.

Введение энергии, необходимой для активации соединяемых поверхностей, и приложение давления, необходимого для достижения между ними контакта, возможно с помощью одних и тех же инструментов либо различных. Независимо от этого при сварке термопластов, тех же, как и при сварке металлов, в сварочной зоне протекают следующие процессы: развод и преобразование энергии, обеспечивающей активацию свариваемых поверхностей; взаимодействие активированных свариваемых поверхностей при контакте их друг с другом; формирование структуры материала в зоне контакта.

Активация свариваемых поверхностей может достигаться за счет контакта их с теплоносителями – нагретыми инструментами, газами либо присадочными материалами, а также за счет поглощения и преобразования энергии высокочастотных электрических колебаний, механической энергии трения, лучистой энергии либо энергии высокочастотных механических колебаний.

Активация состоит в нагреве свариваемых поверхностей и проявляется в повышении энергии теплового движения макромолекул: вблизи температуры стеклования (в случае стеклообразных полимеров) возникает возможность движения отдельных сегментов макромолекул; при температурах, близких к температурам текучести, макромолекулы путем последовательного перемещения сегментов могут перемещаться относительно друг друга.

Следующая стадия процесса сварки – взаимодействие активированных свариваемых поверхностей при контакте друг с другом. Эта стадия наиболее ответственна за свойства образовавшегося сварного соединения, так как только при реализации в зоне контакта взаимодействия между макромолекулами полимера, характерного для исходного материала, возможно получение соединения, близкого к нему по свойствам.

Сущность процессов сварки состоит в сближении макромолекул соединяемых поверхностей на такие расстояния, чтобы между ними появились силы межмолекулярного взаимодействия.

По вопросу явлений, протекающих при контакте активированных свариваемых поверхностей и предшествующих проявлению этих сил, существует ряд представлений. Наибольшее признание получили представления, основанные на диффузной теории адгезии и аутогезии полимеров, разработанной С.С. Воющким. В соответствии с этими представлениями в основе процессов сваривания термопластов лежит явление диффузии макромолекул полимера и их сегментов через границу раздела соединяемых поверхностей. Диффузия макромолекул в целом особенно легко может происходить в том случае, если контакт слоев полимера осуществляется при температурах выше температуры, текучести.

Принято считать, что факторы, способствующие диффузии (повышение температуры и продолжительность сварки, введение пластификаторов и др.) увеличивают прочность сварных соединений, и, наоборот, факторы, замедляющие диффузию, ухудшают свариваемость.

Сваривание термопластов при температурах выше температуры их текучести происходит быстро, продолжительность процесса в ряде случаев исчисляется секундами (особенно при ультразвуковой и высокочастотной сварке).

Диффузионная сварка

Сущность процесса:Диффузионная сварка материалов в твердом состоянии - это способ получения монолитного соединения, что образуется вследствие возникновения связей на атомарном уровне, которые появляются в результате приближения контактных поверхностей за счет локальной пластической деформации при повышенной температуре, что обеспечивает взаимную диффузию в поверхностных слоях соединяемых материалов. 
Диффузионная сварка происходит за счет взаимной диффузии атомов контактирующих частей при относительно продолжительном воздействии повышенной температуры и незначительной пластической деформации. 
Процесс взаимодействия материалов при диффузионной сварке условно делят на три последовательно существующих процесса: 
- образование физического контакта, которое происходит в результате пластической де формации микронеровностей на поверхности деталей при их сближении до расстояния молекулярного взаимодействия (физическая адсорбция); 
- активизация соединяемых поверхностей, которая приводит к химическому (валентному) взаимодействию, которую еще называют схватыванием; 
- объемное взаимодействие соединяемых материалов, которое приводит к соединению в результате диффузии физических и химических дефектов строения металла в зоне стыка, образованию общих зерен в контакте, релаксации внутренних напряжений. 

Схема сварочной установки:
В своем составе установка для диффузионной сварки имеет вакуумную камеру 1 (рис. 1), в которой размещают свариваемые детали 2. Детали разогреваются системой нагревания 3 с рабочим элементом 4. Нагревание осуществляют энергией высокочастотного поля, тлеющим разрядом, или другим способом. В камере создается разряжение с помощью вакуумной системы 5. Необходимое давление в зоне контакта деталей создается системой сжатия 6, например гидравлической. 


 
Рис. 1 Принципиальная схема установки для диффузионной сварки.

Основные параметры процесса диффузионной сварки
Качество сварного соединения при диффузионной сварке обеспечивает относительно большое количество параметров. Основные такие: 
- чистота соединяемых поверхностей деталей, которую обеспечивают механическим и химическим, или другими способами очистки; 
- жесткость поверхности, которую определяют способы механической обработки: резка, шлифование, полирование и т.д.; 
- состав газовой среды в камере для сварки (вакуум, аргон, гелий, азот, водород, углеводороды, углекислый газ); 
- термический цикл сварки, который определяет скорость нагревания и охлаждения, максимальные температуры и т.д.; 
- давление на поверхности контакта деталей; 
- время сварки, которое определяет в основном ступень диффузионного массообмена на поверхностях деталей. 
Особенности процесса диффузионной сварки и сферы его применения:
Диффузионной сваркой соединяют различные материалы с поверхностями различной формы, площадью до 1м2. К наиболее распространенным типам сварных соединений относят плоское, цилиндрическое, коническое, сферическое и криволинейное. 
Преимущества диффузионной сварки:
В сравнении с обычными способами сварки и пайки соединения, сделанные диффузионным способом, имеют такие преимущества: 
- высокое качество соединения и сохранение им свойств, характерных для исходных мате риалов деталей; 
- стабильность качества соединения, благодаря автоматизации процесса, и малой зависимости от внешних воздействий; 
- низкий энергорасход и экологическая чистота; 
- возможность соединения деталей из материалов, что резко отличаются своими свойствами. 

Химическая сварка


Тепло, необходимое для химической сварки, наиболее целесообразно генерировать высокочастотным полем или ультразвуком. Благодаря высокой скорости и локальности нагрева сварка может быть закончена до того, как в материале начнутся нежелательные побочные процессы, например деструкция. Технология сварки не отличается принципиально от технологии высокочастотной или ультразвуковой диффузионной сварки. Выбор условий сварки определяется химической природой полимера. 

Сварка отвержденных реактопластов возможна с участием функциональных групп, оставшихся в материале после его формования. Таким способом соединяют, например, детали из феноло-анилино-форм-альдегидных смол. При отсутствии в свариваемых материалах функциональных групп (например, отвержденные полиэфирные смолы) или при сварке деталей сложной конфигурации на соединяемые поверхности наносят присадочный материал, например пленку реактопласта на основе связующего, аналогичного связующему свариваемого материала, но с меньшей глубиной отверждения. Оптимальная напряженность поля при высокочастотной сварке реактопластов составляет 0,2—0,6 Мв/м, или кв/мм (такая напряженность обеспечивает температуру в зоне сварки в пределах 150—200 °С), продолжительность процесса — от десятков секунд до нескольких минут. 

Химическая сварка резин осуществляется с помощью сшивающих (присадочных) агентов — перекисей, диаминов, диазосоединений и др., способных быстро реагировать с функциональными группами макромолекул каучука (двойными связями, водородом а-метиленовых групп и п,р.). На соединяемые поверхности наносят обычно растворы этих агентов в инертных (ацетон, хлороформ) или активных (например, стирол) растворителях. Благодаря этому достигается более равномерное распределение сшивающего агента и упрощается его дозирование. Резины из хлоропренового каучука, содержащего в макромолекуле подвижные атомы хлора, могут свариваться без применения сшивающих агентов. Важное значение при сварке резин имеет подготовка соединяемых поверхностей, в частности очистка их от ингибиторов и др. ингредиентов, мигрирующих на поверхность резины при ее хранении. Температура химической сварки резин определяется реакционной способностью сшивающих агентов. Давление сварки, зависящее от упруго-релаксационных свойств материала и от количества летучих продуктов в зоне соединения, составляет 1,0—2,5 Мн/м2 (10—25 кгс см2). Продолжительность процесса изменяется в тех же пределах, что и при сварке реактопластов.  

Химическая сварка термопластов, сшитых, например, под действием ионизирующего излучения, осуществляется с помощью присадочных агентов, способных образовать переходный слой, структура которого аналогична структуре остального объема материала. Так, при сварке трехмерного полиэтилена в качестве присадочного агента используют инициаторы радикального типа (перекиси, пербораты, персульфаты, азосоединения и др.), которые предварительно вводят в термопласт (полипропилен, необлученный или облученный малыми дозами радиации полиэтилен) или наносят на одну или обе соединяемые поверхности из раствора в подходящем растворителе. 

Трехмерный поливинилхлорид, поперечные связи в котором образованы с участием триаллилцианурата, может свариваться в результате только теплового воздействия высокой интенсивности или с помощью диаминов.

Химическая сварка особенно целесообразна при соединении ориентированных пленок термопластов, сварные швы которых должны сохранять физико-механические свойства материала. Наиболее пригодные присадочные агенты для сварки полиамидных пленок — многоосновные органические компоненты и их хлорангидриды, полиэтилентерефталатных пленок — диизоцианаты или органические перекиси. Пленки и ткани из лестничных полимеров, например полипиромеллитимида можно сваривать с помощью диаминов или диазоцианатов. Выбор присадочных агентов и условий химической сварки термопластов (особенно ориентированных и кристаллических) определяется следующими требованиями:

Сварка нагретым газом.

Сварка пластмасс нагретым газом горячий воздух нагревает поверхности свариваемого материала и присадочного прутка и, после приложения давления и остывания, получается монолитное соединение. Отличительной характеристикой способа является подвод тепла непосредственно к соединяемым поверхностям и последовательно от одного участка шва к другому. Наряду с последовательной сваркой возможна также сварка по всей поверхности шва за один прием. Сварку с помощью нагретого газа можно осуществлять с применением присадочного материала и без присадочного материала.

Данной сваркой можно соединять детали практически любых размеров и конфигураций из поливинилхлорида, полиолефинов, полиметилметакрилата, полистирола, полиамидов в любых условиях сварочного производства.

Недостаток этого способа – низкая производительность, высокая стоимость.

Положение шва при сварке: нижнее, горизонтальное, вертикальное (снизу вверх), вертикальное (сверху вниз), горизонтальное на вертикальной поверхности, потолочное; горелка с быстросвариваемым соплом; предпочтительное нижнее и горизонтальное положение шва.

Изделия: толщина 1,5-20 (30)мм, панели, трубы, гидроизоляционные детали, покрытия для полов, фасонные детали.

Материалы: твердый, мягкий поливинилхлорид, твердый, мягкий полиэтилен, полипропилен, полиоксиметилен, полиметилметакрилат, полиамиды, полиизобутилен, поликарбонат.



Рис. 2. Схема сварки пластмасс нагретым газом с применением присадочного материала:

1- свариваемые изделия; 2- сварочный шов;

3- присадочный материал; 4- наконечник нагревателя;

5- струя нагретого газа

Прочность соединений, получаемых без применения присадочного материала, выше, чем с его применением, и достигает 80- 90 % прочности основного материала, при этом удельная вязкость материала почти не снижается. Данный способ сварки используется главным образом для соединения плоских изделий прямолинейным швом.



Рис. 3. Схема сварки нагретым газом листов термопласта без присадочного материала:

1-сварной шов; 2- прижимные ролики; 3- свариваемые листы; 4- наконечник нагревателя



Рис. 4. Схема сварки нагретым газом пленочных материалов:

1- свариваемые пленки; 2- ограничительые ленты; 3- струя газа; 4- наконечник нагревателя; 5- упругая подложка; 6- жесткое основание



Рис. 5. Схема сварки пленок оплавлением кромок с подготовкой свариваемых кромок (а) и без подготовки свариваемых кромок (б):

1- свариваемые пленки; 2- струя газа; 3- наконечник нагревателя; 4- сварной шов; 5- зажимные губки.

Сварка нагретым инструментом

Сварка нагретым инструментом является наиболее универсальной для соединения различных изделий из термопластов ( пленок, листов, труб, лент, профилей и др.). Обычно при сварке этим способом присадочный материал не применяется.

Для нагрева соединяемых поверхностей используются металлические инструменты различной формы, а нагрев может осуществляться путем непосредственного соприкосновения с соединяемыми поверхностями (прямой нагрев, применяется в основном для сварки толстостенных изделий) или подводом тепла с внешней стороны через всю толщину детали( косвенный нагрев, используется для сварки пленок и тонких листов). Нагретые детали спрессовывают, а затем охлаждают.

При подводке тепла с внешней стороны изделий нагревательный инструменты одновременно служат и для спрессовывания соединяемых деталей. Нагрев изделий может быть односторонним или двусторонним. Последний применяется только в тех случаях, кода конструкция свариваемого изделия позволяет подводить нагреватели с вух сторон

А) Сварка встык

Положение шва при сварке: любые пространственные положения.

Изделия: толщина s>2мм, ручная сварка, трубы, профили, панели, слитки, фасонные детали.



Рис. 6. Последовательность процессов стыковой сварки нагретым инструментом:

а- исходное положение изделий и нагревательного инструмента; б- оплавление свариваемых поверхностей; в- готовое сварное соединение; 1- свариваемые детали; 2- электронагревательный инструмент

Материал: твердый суспензионный, ударно-вязкий, мягкий поливинилхлорид, твердый полиэтилен, полипропилен, полиамиды.

Общая продолжительность сварки: t>60с.

Источник нагрева: электрический ток (нагрев электросопротивлением) или пламя горячего газа (пропан). Сварочные материалы, регуляторы температуры, теплообменники.

Б) Сварка враструб, сварка в выточку

В любых пространственных положениях

Изделия: толщина s>2мм, ручная сварка враструб, трубы D<50мм, машинная сварка враструб, сварка в выточку труб, панелей, фасонных деталей.

Материал: твердый, мягкий полиэтилен, полипропилен.

Источник нагрева: электрический ток (нагрев электросопротивлением) или пламя горючего газа (пропан).

Сварочные аппараты, машины и принадлежности: Нагревающий элемент с инструментами для формирования шва (сварочный дорн или сварочная линза).

В) сварка тавровых и угловых соединений

Положение шва при сварке: нижнее

Изделия: толщина 2-10мм, панели.

Материал: твердый, мягкий полиэтилен, полипропилен.

Продолжительность сварки 60с.

Источник нагрева: электрический ток (нагрев электросопротивлением)

Сварка выполняется без присадочных материалов.

Г) сварка нагретой проволокой

Положение шва при сварке: любые пространственные положения

Изделия: толщина s>1,5мм, панели, трубы.

Материал: твердый, мягкий полиэтилен, полипропилен, полиметилакрилат.

Продолжительность сварки: t>30с

Источник нагрева: электрический ток (нагрев электросопротивлением)

Сварочный аппарат: регулировочный трансформатор или регулировочный выпрямитель (при отсутствии регулировочного трансформатора)

Д) сварка нагретым клином



Рис. 7. Схема сварки нагретым клином нахлесточных соединений пленок:

1- свариваемые пленки; 2– клиновидный нагревательный элемент; 3- прижимной ролик; 4- сварной шов; 5- транспортирующий ролик
Изделие: толщина 0,5-10,0мм (ручная сварка), толщина 0,1-2,0мм (машинная сварка), фольга, гидроизоляционный материал, ткани с покрытием, панели.

Материал: мягкий поливинилхлорид, мягкий, твердый полиэтилен, полипропилен, полиамиды.

Источник питания: электрический ток (нагрев электросопротивлением)

Е) сварка термоимпульсом





Рис. 8. Схема термоимпульсной сварки полимерных пленок:

1- пленки; 2- нагреватель; 3- тепло и электроизоляция; 4- антиадгезионная прокладка; 5- подвижная губка; 6- эластичная подложка; 7- неподвижная губка; 8- сварной шов

Изделия: толщина 0,01-0,2мм (односторонний импульс), толщина 0,01-0,4(0,5) (двусторонний импульс), фольга, тонкая бумага, алюминиевая фольга с покрытием, оклеечная бумага.

Материал: твердый, мягкий полиэтилен, полипропилен, твердый суспензионный поливинилхлорид.

Источник нагрева: электрический ток (нагрев электросопротивлением).

Рис. 9 Схема прессовой сварки с нагревательным инструментом без охлаждения (а) и с охлаждением (б) боковых зон шва:

1- нагреватель; 2-теплоизоляционная пластина; 3- разделительная прокладка; 4-свариваемые изделия; 5- охлаждаемый элемент

Сварочные аппараты: ручные и механические устройства для сварки термоимпульсом.

Ж) сварка контактно-тепловая прессованием

Изделия: толщина 0,01-0,2мм (односторонний нагрев), толщина 0,01-0,4мм (двусторонний нагрев), фольга, тонкая бумага и алюминиевая фольга с покрытием, оклеечный материал.

Материал: твердый, мягкий полиэтилен, полипропилен, оклеечный материал из различных пластмасс.

Источник нагрева: электрический ток (нагрев электросопротивлением)

Сварочные аппараты: Разделительная фольга из политетрафторэтилена, разделительная ткань с покрытие из политетрафторэтилена или силикокаучука (толщ. 0,13-0,15).

З) сварка ленточная

Применение нагревательного инструмента в форме лент дает возможность охлаждать свариваемое изделие в процессе сварки перед снятием давления, для этого последняя зона, через которую проходит материал, снабжается охлаждающим устройством. Что значительно повышает качество и производительность сварочных работ.




Рис. 10. Схема ленточной сварки полимерных пленок с двусторонним подогревом:

1- свариваемые пленки; 2- стальная лента; 3- нагреватель; 4- охлаждающее устройство; 5- сварной шов


И) роликовая сварка

Роликовая сварка применяется для соединения полимерных пленок при необходимости получения непрерывного шва значительной протяженности.



Рис. 11. Схема роликовой сварки с односторонним нагревом:

1- свариваемые пленки; 2- прижимной ролик; 3- сварной шов; 4- нагретый ролик

Сварка нагретым присадочным материалом


Сварка нагретым присадочным материалом основана на использовании тепла, передаваемого материалом соединяемым изделиям, что ведет к их плавлению и получению неразъемного соединения

Склеивание пластмассовых трубопроводов — процесс создания неразъемного соединения с помощью специальных клеев, образующих прослойку, между ней и соединяемыми поверхностями сохраняется граница раздела Клеевая прослойка определяет свойства соединения

Основными видами разъемных соединений пластмассовых трубопроводов являются фланцевые, соединения с накидными гайками и раструбные Свободные металлические фланцы опираются на утолщенный бурт полиэтиленовых и поли пропиленовых труб и на отбортовку труб из поливинилхлорида. Соединения с накидными гайками при монтаже трубопроводов с наружным диаметром до 63 мм применяются редко чз-за чувствительности пластмассовых труб к надрезу, ослабления сечения стенки трубы и концентрации напряжений. Раструбное соединение с резиновым уплотнительным кольцом используют для получения компенсационных соединений трубопроводов санитарно-технических систем из полиэтилена внутри зданий и наружных трубопроводов нз полнвинилхлорида Эти соединения допускают взаимное перемещение соединяемых деталей, возникающее при температурных деформациях.

Стеклянные трубопроводы в отличие от металлических и пластмассовых собираются только на разъемных соединениях. Трубы с гладкими концами соединяют одну с другой уплотнением концов в радиальном направлении. На концы стеклянных труб надевают муфту из резины или пластмассы, которую с помощью металлических хомутов прижимают к наружной поверхности трубы. Недостатком такого муфтового соединения является возникновение на узком участке трубы опасных радиальных напряжений, которые могут разрушить трубу. Такое соединение применяют для безнапорных трубопроводов. Напорные трубопроводы с гладкими концами труб собирают с использованием натяжных резиновых колец. При избыточном давлении Ру до 0,1 МПа применяют соединения с двумя натяжными кольцами — фланцевые, муфторезьбовые и муфтовые. При Ру выше 0,1 МПа используют соединения с тремя натяжными кольцами — фланцевые, безболтовые алюминиевые, замковые муфтовые.

Высокочастотная сварка

Отличительными особенностями высокочастотной сварки пластмасс являются:

Широкое использование для соединения внахлест пленочных полимерных материалов, синтетических швейных материалов.



Рис. 12. Схема высокочастотной сварки:

1, 5- плиты пресса;

2,4 – электроды;

3- свариваемые материалы

При индукционной сварке нагрев закладного элемента осуществляется в электромагнитном высокочастотном поле с использованием индуктора, подключенного к генератору высокой частоты


Рис. 13. Схема индукционной сварки:

1, 3- свариваемые изделия; 2- закладной нагревательный элемент в виде проволоки; 4- индуктор; 5- генератор высокой частоты

Сварка излучением

Отличительными особенностями сварки излучением являются отсутствие при нагреве прямого контакта между поверхностью излучателя и нагреваемо поверхностью4 возможность в широких пределах управлять режимами нагрева, изменяя мощность излучения и поглощающую способность облучаемого материала.



Рис. 14. Схема сварки световым излучением листового термопласта с применением присадочного материала:

1- присадочный пруток; 2- подогреватель; 3- точечный излучатель; 4- стержневой излучатель; 5, 7- ролики; 6- листовой термопласт; 8- пружина


Рис. 15. Схема сварки полимерных пленок лазерным излучением:

1- отклоняющее зеркало; 2-луч лазера; 3- лазер; 4- свариваемые пленки; 5- транспортирующий ролик; 6- прижимной ролик; 7- фокусирующая линза

СВАРКА ТРЕНИЕМ


Способ сварки трением - двухэтапный процесс. Первый этап- нагрев, второй-осадка. В процессе нагрева деталей в зоне контакта при трении различают три периода. Первый - это притирка (сухое трение), сопровождаемая незначительным выделением теплоты. Под воздействием давления и высоких скоростей перемещения трущихся поверхностей относительно друг друга в начальный момент (при недостатке теплоты) происходит разрушение неровностей в зоне контакта, а не течение расплава, как это имеет место при уже развившемся и перешедшим в квазистационарную фазу процессе. Выделяющая при трении теплота ведет к снижению вязкости поверхностного слоя и коэффициента трения, поэтому необходимо повышать давление прижима свариваемых деталей с целью увеличения количества теплоты, выделяющийся в единицу времени.

Второй период соответствует разрушению поверхностных пленок и взаимодействию чистых поверхностей, что сопровождается явлением адгезии трущейся пары. При этом происходит заметное выделение теплоты. Третий переход сопровождается адгезионным процессом по всей трущейся поверхности. Этот установившийся процесс нагрева и оплавления является наиболее важным периодом и фактически он определяет длительность нагрева свариваемых деталей.

При сварке трением механическая энергия в зоне контакта свариваемых деталей превращается в тепловую. За счет выделяющейся на трущихся поверхностей теплоты происходит переход термопластичного материала в вязкотекучее состояние. После достижения необходимого нагрева процесс трения прекращают и детали соединяют путем осадки.

Трением можно сваривать подавляющее большинство термопластов, имеющих стабильную вязкость в широком диапазоне температур: полиолефины, полиамиды, органические стекла (полиметилметакрилат), полиформальдегиды, полистирол, поликарбонаты. При помощи трения можно получить неразъемные соединения деталей из разнородных пластмасс, а также обеспечивать надежные сварные соединения деталей, выполненных из непластифицированного пластифицированного ПВХ.

Обычно при сварке ПВХ, полиолефинов, ПА время сварки при трении вращением составляет 3-25с. Средние скорости вращения должны быть не менее 1,5-3 м/с, что для деталей небольших диаметров (прутков) соответствует 9-10 об/с. При сварке прутков из оргстекла число оборотов должно быть увеличено до 13 об/с и более. Для стыковки прудков диаметром 25мм необходимо 100 об/с. При сварке кристаллических полимеров с узким интервалом вязкотекучего состояния требуется строгое ограничение времени торможения шпинделя станка по окончании оплавления.

Перед сваркой трением детали из ПА, ПК необходимо подвергать нагреву. Этим полимерам свойственно повышенная гигроскопичность, они поглощают влагу из воздуха. Сварка влажных деталей не позволяет получить сварные швы высокой прочности.

Лучше подвергаются сварке трение детали из жестких пластмасс, в частности, сваркой трением можно соединять трубы при строительстве трубопроводов малых и средних диаметров.

Ультразвуковая сварка

Мощные ультразвуковые колебания находят широкое применение в промышленности, а также в науке для исследования некоторых физических явлений и свойств веществ. В технике ультразвук используют для обработки металлов и в дефектоскопии. Широко применяется в медицине. В сварочной технике ультразвук может быть использован в различных целях. Воздействуя им на сварочную ванну в процессе кристаллизации, можно улучшить механические свойства сварного соединения, благодаря измельчению структуры металла шва и удалению газов. Ультразвук снижает или снимает собственные напряжения и деформации, возникающие при сварке. Одним из наиболее перспективных применений ультразвука является ультразвуковая сварка (УЗС), получившая в последние годы большое развитие, как в нашей стране, так и за рубежом.

Способ разработан в 1958 г. учеными МВТУ им.Н.Э.Баумана под руководством академика Николаева Г.А.

Основными отличительными чертами УЗС пластмасс является:

1) возможность сварки по поверхностям, загрязненным различными продуктами;

2) локальное выделение теплоты в зоне сварки, что исключает перегрев пластмассы, как это имеет место при сварке нагретым инструментом, нагретыми газами и т.д.;

3) возможность получения неразъемного соединения при сварке жестких пластмасс на большом удалении от точки ввода УЗ энергии;

4) возможность выполнения соединений в труднодоступных местах;

5) при УЗС нагрев материала до температуры сварки осуществляется быстро; время нагрева исчисляется секундами и долями секунды.

Способ УЗС пластмасс заключается в том, что электрические колебания УЗ частоты (18-50 Кгц), вырабатываемые генератором, преобразуются в механические колебания сварочного инструмента - волновода и вводится в свариваемый материал. Здесь часть энергии механических колебаний переходит в тепловую, что приводит к нагреву зоны контакта соединяемых деталей до температур вязкотекучего состояния. Для обеспечения надлежащих условий ввода механических колебаний и создание тесного контакта свариваемых поверхностей прикладывается давление между волноводом и опорой. 6. Такой контакт обеспечивается статическим давлением Рст. рабочего торца волновода на свариваемые детали.

Это давление способствует также концентрации энергии в зоне соединений. Динамическое усилие, возникающее в результате колеблющегося волновода, приводит к нагрузку свариваемого материала, а действие статического давления обеспечивает получение прочного сварного соединения. Механические колебания и давление в этом случае действуют по одной линии перпендикулярно к свариваемым поверхностям. Такая схема ввода энергии применяется для УЗС пластмасс в отличие от "металлической схемы, когда механические колебания действуют в плоскости соединяемых поверхностей, а давление перпендикулярно к ним. Подвод энергии от волновода может быть односторонним и двусторонним.

Различают сварку ультразвуком в ближнем и дальнем поле. Первая позволяет сваривать поверхности на расстоянии до 5 мм от места ввода в материал ультразвуковых колебаний. Вторая – до 250 мм. При сварке в ближнем поле для равномерного распределения энергии по всей площади контакта свариваемых деталей необходимо. Чтобы площадь и форма рабочего торца инструмента-волновода и плоскости контакта свариваемых деталей были идентичны. Этот способ сварки наиболее часто применяется для сварки внахлестку.


Рис. 13. Схемы ультразвуковой сварки в ближнем поле:

а- прессовая сварка; б- роликовая сварка; 1- волновод; 2- свариваемые детали; 3- опора


Рис. 14. Схемы ультразвуковой сварки в дальнем поле:

1- волновой инструмент; 2- свариваемое изделие

Оптимальные параметры режима сварки зависят от свойств свариваемого материала, толщины и формы изделий и других факторов и устанавливаются в каждом конкретном случае экспериментально к реальным изделиям. Оценка режима обычно проводится по показателям прочности сварного соединения. Кроме того, проверяют его на герметичность, деформацию и другие характеристики.

Сварка с помощью растворителей


Способ применяют в тех случаях, когда тепловая сварка может нарушить форму и изменить размеры деталей, а также в мелкосерийном производстве и при необходимости соединения прозрачных термопластов (полиакрилатов, поликарбоната, полистирола), сварные швы которых должны иметь не только достаточно высокую прочность, но и хороший внешний вид. При выборе растворителя исходят из того, чтобы разность между параметрами растворимости полимера и растворителя не превышала 2,5 (Мдж/мз)1/2[1,2(кал/смз) 1/2]. 

Основные операции технологического процесса сварки:


Помимо растворителя, применяют составы двух типов: раствор полимера в инертном растворителе (лаковая композиция) или раствор полимера в мономере (полимеризующаяся композиция), обеспечивающий наилучшее качество соединения.

Применение сварки под флюсом


Широкое применение этого способа в промышленности при производстве конструкций из сталей, цветных металлов и сплавов объясняется высокой производительностью процесса и высоким качеством и стабильностью свойств сварного соединения, улучшенными условиями работы, более низким, чем при ручной сварке, расходом сварочных материалов и электроэнергии. К недостаткам способа сварки под флюсом  относится возможность сварки только в нижнем положении ввиду возможного стекания расплавленных флюса и металла при отклонении плоскости шва от горизонтали более чем на 10— 15°. 

Сущность способа сварки под флюсом


Наиболее широко распространен процесс при использовании одного электрода — однодуговая сварка. Сварочная дуга горит между голой электродной проволокой и изделием, находящимся под слоем флюса. В расплавленном флюсе газами и парами флюса и расплавленного металла образуется полость — газовый пузырь, в котором существует сварочная дуга. Давление газов в газовом пузыре составляет 7— 9 г/см2, но в сочетании с механическим давлением, создаваемым дугой, его достаточно для оттеснения жидкого металла из-под дуги, что улучшает теплопередачу от нее к основному металлу. При сварке под флюсом, повышение силы сварочного тока увеличивает механическое давление дуги и глубину проплавления основного металла. Кристаллизация расплавленного металла сварочной ванны приводит к образованию сварного шва. Затвердевший флюс образует шлаковую корку на поверхности шва. Расплавленный флюс, образуя пузырь и покрывая поверхность сварочной ванны, эффективно защищает расплавленный металл от взаимодействий с воздухом. Металлургические взаимодействия между расплавленным металлом и шлаком способствуют получению металла шва с требуемым химическим составом. В отличие от ручной дуговой сварки металлическим электродом при сварке под флюсом, так же как и при сварке в защитных газах токоподвод к электродной проволоке осуществляется на небольшом расстоянии (вылет электрода) от дуги (до 70 мм). Это позволяет без перегрева электрода использовать повышенные сварочные токи (до 2000 А). Плотность сварочного тока достигает 200—250 А/мм2, в то время как при ручной дуговой сварке не превышает 15 А/мм2. В результате повышается глубина проплавления основного металла и скорость расплавления электродной проволоки, т. е. достигается высокая производительность процесса. Сварку под флюсом можно осуществлять переменным и постоянным током. В зависимости от способа перемещения дуги относительно изделия сварка выполняется автоматически и полуавтоматически. При автоматической сварке подача электродной проволоки в дугу и перемещение ее осуществляется специальными механизмами. При полуавтоматической сварке дугу перемещает сварщик вручную.

Виды сварки под флюсом


Существуют разновидности сварки под флюсом, когда в некоторых случаях целесообразно применение двухдуговой или многодуговой сварки. При этом дуги питаются от одного источника или от отдельного источника для каждой дуги. При сварке сдвоенным (расщепленным) электродом дуги, горящие в общую ванну, питаются от одного источника. Это несколько повышает производительность сварки за счет повышения количества расплавленного электродного металла.

Электроды по отношению к направлению сварки могут быть расположены последовательно или перпендикулярно. При последовательном расположении глубина проплавления шва несколько увеличивается, а при перпендикулярном уменьшается. Второй вариант расположения электродов позволяет выполнять сварку под флюсом при повышенных зазорах между кромками. Изменяя расстояние между электродами, можно регулировать форму и размеры шва. Удобно применение этого способа при наплавочных работах. Однако недостатком способа является некоторая нестабильность горения дуги. При двухдуговой сварке используют два электрода (при многодуговой несколько). Дуги могут гореть в общую или раздельные сварочные ванны (когда металл шва после первой дуги уже полностью закристаллизовался). При горении дуги в раздельные сварочные ванны оба электрода обычно перпендикулярны плоскости изделия. Изменяя расстояние между дугами, можно регулировать термический цикл сварки, что важно при сварке закаливающихся сталей.

Эта схема позволяет вести сварку под флюсом на высоких скоростях, в то время как применение повышенного тока при однодуговой сварке приводит к несплавлениям — подрезам по кромкам шва. При двухдуговой сварке вторая дуга, горящая в отдельную ванну, электродом, наклоненным углом вперед, частично переплавляет шов, образованный первой дугой, и образует уширенный валик без подрезов. Для питания дуг с целью уменьшения магнитного дутья лучше использовать разнородный ток (для одной дуги — переменный, для другой — постоянный). При сварке на переменном токе возникает трехфазная дуга: одна дуга горит между электродами (независимая дуга) и две другие — между каждым электродом и изделием. Все дуги горят в одном плавильном пространстве. Регулируя ток в каждой дуге, можно изменять количество расплавляемого электродного металла или проплавление основного металла. В первом случае способ удобен при наплавочных работах и для сварки швов, требующих большого количества наплавленного металла. Недостаток способа — необходимость точного согласования скоростей подачи электродов. Сварку под флюсом сдвоенным электродом, двумя и большим числом электродов выполняют на автоматах. Влияние параметров режима сварки на форму и размеры шва.

Влияние режимов сварки под флюсом


Форма и размеры шва зависят от многих параметров режима сварки: величины сварочного тока, напряжения дуги, диаметра электродной проволоки, скорости сварки и др. Такие параметры, как наклон электрода или изделия, величина вылета электрода, грануляция флюса, род тока и полярность и т. п. оказывают меньшее влияние на форму и размеры шва. Необходимое условие сварки — поддержание дуги. Для этого скорость подачи электрода должна соответствовать скорости его плавления теплотой дуги. С увеличением силы сварочного тока скорость подачи электрода должна увеличиваться. Электродные проволоки меньшего диаметра при равной силе сварочного тока следует подавать с большей скоростью, Условно это можно представить как расплавление одинакового количества электродного металла при равном количестве теплоты, выделяемой и дуге (в действительности количество расплавляемого электродного металла несколько увеличивается с ростом плотности сварочного тока). При некотором уменьшении скорости подачи длина дуги и ее напряжение увеличиваются. В результате уменьшаются доля теплоты, идущая на расплавление электрода, и количество расплавляемого электродного металла.Влияние параметров режима на форму и размеры шва обычно рассматривают при изменении одного из них и сохранении остальных постоянными. Приводимые ниже закономерности относятся к случаю наплавки на пластину, когда глубина проплавления не превышает 0,7 ее толщины (при большей глубине проплавления ухудшение теплоотвода от нижней части сварочной ванны резко увеличивает глубину проплавления и изменяет форму и размеры шва).

С увеличением силы сварочного тока глубина проплавления возрастает почти линейно до некоторой величины. Это объясняется ростом давления дуги на поверхность сварочной манны, которым оттесняется расплавленный металл из-под дуги (улучшаются условия теплопередачи от дуги к основному металлу), и увеличением погонной энергии. Ввиду того, что повышается количество расплавляемого электродного металла, увеличивается и высота усиления шва. Ширина шва возрастает незначительно, так как дуга заглубляется в основной металл (находится ниже плоскости основного металла). Увеличение плотности сварочного тока (уменьшение диаметра электрода при постоянном токе) позволяет резко увеличить глубину проплавления. Это объясняется уменьшением подвижности дуги. Ширина шва при этом уменьшается. Путем уменьшения диаметра электродной проволоки можно получить шов с требуемой глубиной проплавления в случае, если величина максимального сварочного тока, обеспечиваемая источником питания дуги, ограничена. Однако при этом уменьшается коэффициент формы провара шва и интенсифицируется зональная ликвация в металле шва, располагающаяся в его рабочем сечении. Род и полярность тока оказывают значительное влияние на форму и размеры шва, что объясняется различным количеством теплоты, выделяющимся на катоде и аноде дуги. При сварке на постоянном токе прямой полярности глубина проплавления на 40—50%, а на переменном — на 15—20% меньше, чем при сварке на постоянном токе обратной полярности. Поэтому швы, в которых требуется небольшое количество электродного металла и большая глубина проплавления (стыковые и угловые без разделки кромок), целесообразно выполнять на постоянном токе обратной полярности. При увеличении напряжения дуги (длины дуги) увеличивается ее подвижность и возрастает доля теплоты дуги, расходуемая на расплавление флюса (количество расплавленного флюса). При этом растет ширина шва а глубина его проплавления ,остается практически постоянной. Этот параметр режима широко используют в практике для регулирования ширины шва. Увеличение скорости сварки уменьшает погонную энергию. Зональная ликвация в металэнергию и изменяет толщину прослойки расплавленного металла под дугой. В результате этого основные размеры шва уменьшаются. Однако в некоторых случаях (сварка тонкими проволоками на повышенной плотности сварочного тока) увеличение скорости сварки до некоторой величины, уменьшая прослойку расплавленного металла под дугой и теплопередачу от нее к основному металлу, может привести к росту глубины проплавления. При чрезмерно больших скоростях сварки и силе сварочного тока в швах могут образовываться подрезы. С увеличением вылета электрода возрастает интенсивность его подогрева, а значит, и скорость его плавления. В результате толщина прослойки расплавленного металла под дугой увеличивается и, как следствие этого, уменьшается глубина проплавления. Этот эффект иногда используют при сварке электродными проволоками диаметром 1—3 мм для увеличения количества расплавляемого электродного металла при сварке швов, образуемых в основном за счет добавочного металла (способ сварки с увеличенным вылетом электрода).

В некоторых случаях, особенно при автоматической наплавке, электроду сообщают колебания поперек направления шва с различной амплитудой и частотой, что позволяет в широких пределах изменять форму и размеры шва. При сварке под флюсом с поперечными колебаниями электрода глубина проплавления и высота усиления уменьшаются, а ширина шва увеличивается и обычно несколько больше амплитуды колебаний. Этот способ удобен для предупреждения прожогов при сварке стыковых соединений с повышенным зазором в стыке или уменьшенным притуплением кромок. Подобный же эффект наблюдается при сварке сдвоенным электродом, когда электроды расположены поперек направления сварки. При их последовательном расположении глубина проплавления, наоборот, возрастает. Состав и строение частиц флюса оказывают заметное влияние на форму и размеры шва. При уменьшении насыпной массы флюса (пемзовидные флюсы) повышается газопроницаемость слоя флюса над сварочной ванной и, как результат этого, уменьшается давление в газовом пузыре дуги. Это приводит к увеличению толщины прослойки расплавленного металла под дугой, а значит, и к уменьшению глубины проплавления. Флюсы с низкими стабилизирующими свойствами, как правило, способствуют более глубокому проплавлению.

Пространственное положение электрода и изделия при сварке под флюсом оказывает такое же влияние на форму и размеры шва, как и при ручной сварке. Для предупреждения стекания расплавленного флюса, ввиду его высокой жидкотекучести, сварка этим способом возможна только в нижнем положении при наклоне изделия на угол не более 10—15°. Изменение формы и размеров шва наклоном изделия находит практическое применение только при сварке кольцевых стыков труб ввиду сложности установки листовых конструкций в наклонное положение. Сварка под флюсом с наклоном электрода находит применение для повышения скорости многодуговой сварки. Подогрев основного металла до температуры 100 °С и выше приводит к увеличению глубины провара и ширины шва.





Ядерная сварка

Сущность метода состоит в облучении пластмасс потоком нейтронов. Для сварки на поверхность пластмасс предварительно наносят тонкий слой соединений лития или бора. При облучении нейтронами в этих элементах возникают ядерные реакции, сопровождающиеся выделением энергии. В пограничном слое пластмассы нагреваются до вязкотекучего состояния и свариваются. В зоне соединения протекают не только диффузионные процессы, но и рекомбинация химических связей на границе контакта, ведущая к образованию неразъемного соединения. Этот способ применим для сварки пластмасс с низкой вязкостью при повышенных температурах (фторопласта, разнородных материалов). Эксперименты показывают, что этим методом удается сварить тефлон (фторопласт-4) с полиэтиленом, полистиролом, кварцем, керамикой, алюминием, медью и некоторыми другими материалами.

Недостаток метода ядерной сварки – неприменимость к некоторым материалам, которые под действием нейтронного облучения приобретают значительную радиоактивность.

Контроль качества сварных соединений
Дефекты в сварных соединениях могут быть вызваны плохим качеством сварных материалов, неточной сборкой и подготовкой стыков под сварку, нарушением технологии сварки, низкой квалификацией сварщика и другими причинами. Задача контроля качества соединений - выявление возможных причин появления брака и его предупреждения.

Работы по контролю качества сварочных работ проводят в три этапа:

- Предварительный контроль, проводимый до начала работ:

- Контроль в процессе сборки и сварки ( по операционный ).

- Контроль качества готовых сварных соединений.

Предварительный контроль включает в себя: проверку квалификации сварщиков, дефектоокопистов и итр, руководящих работами по сборке, сварке и контролю.

В процессе изготовления (пооперационной контроль) проверяют качество подготовки кромок и сборки, Режимы сварки, порядок выполнении швов, внешний вид шва, его геометрические размеры, за исправностью сварочной аппаратуры.

Последнее контрольная операция - проверка качества сварки в готовом изделии: внешний осмотр и измерения сварных соединений, испытания на плотность, контроль ультразвуком, магнитные методы контроля.

Проверка квалификации сварщика: квалификация сварщиков проверяют при установлении разряда. Разряд присваивают согласно требованиям, предусмотренным тарифно - квалификационными справочниками, испытания сварщиков перед допускам к ответственным работам производят по правилам оттистации сварщиков и специалистов сварочного производства.

Контроль качества основного металла. Качество основного металла должно соответствовать требованиям сертификата, который посылают заводы - поставщики вместе с партией металла необходимо произвести наружный осмотр установить механические свойства и химический состав металла.

При наружном осмотре проверяют отсутствие на металле окалины, ржавчины, трещин и прочих дефектов.

Предварительная проверка металла с целью обнаружения дефектов поверхности - необходимое и обязательная операция, благодаря которой можно предупредить применение некачественного металла при сварке изделия.

Механическое свойства основного металла определяют испытаниями стандартных образцов на машинах для растяжения, пессах и копрах в соответствии с ГОСТ 1497 - 73 металла методы испытания на растяжения.

Контроль качества сварочной проволоки: на проволоку стальную наплавочную устанавливают марку и диаметр сварочной проволоки, химический состав правило приемки и методы испытания, требования к упаковке, маркировки, транспортированию и хранению.

Каждая бухта сварочной проволоки должна иметь металлическую бирку на которой указано наименование и товарный знак предприятия - изготовителя сварочную проволоку, на которой нет документации подвергают тщательному контролю.

Контроль качества электрода. При сварке конструкции, в чертежах которых указан тип электрода, нельзя применять электрод, не имеющий сертификата. Электрод без сертификата проверяют на прочность покрытия и сварочные свойства определяют так же механические свойства металла шва и сварочного соединения выполненного электрода из проверяемой партией.

Контроль качества флюсов. Флюс проверяют на однородность по внешнему виду, определяют его механический состав, размер зерна, объем массу и влажность.

Контроль заготовок. Перед поступлением заготовок на сборку проверяют чистоту поверхности металла, и габариты качества подготовки кромок.

Контроль сборки: собранному контролируют: зазор между кромками, притупление и угол раскрытия для стыковых соединений: ширину нахлестки и зазор между местами для нахлесточных соединений.

Контроль качества сварочного оборудования и приборов. Проверяют исправность контрольно - измерительных приборов, надежность контактов и изоляции правильность подключения сварочной дуги, исправность замкнутых устройств, электрододержателя, сварочных горелок, редукторов, проводов.

Контроль технологического процесса сварки: перед тем как преступить к сварке, сварщик знакомится с технологическими картами, в которых указаны последовательность операций, диаметр и марка применяемых электродов, режимы сварки и требуемые размеры сварных швов. Не соблюдения порядка наложение швов может вызвать значительную деформацию.

Техника безопасности при саврке изделий из пластмасс
К сварочным работам допускаются лица не моложе 18 лет после сдачи техминимума по правилам техники безопасности.

Организация каждого рабочего места должна обеспечивать безопасное выполнение робот.

Рабочее места должны быть оборудованы различного рода ограждениями, защитными и предохранительными устройствами и приспособленными.

Для создания безопасных условий робот сварщиков необходимо учитывать кроме общих положений техники безопасности на производстве и особенности выполнение различных сварочных работ. Такими особенностями являются возможные поражения электрическим током, отравления вредными газами и парами, ожоги излучением сварочной дуги и расплавленным металлом, поражения от взрывов баллонов со сжатыми и сжиженными газами.

Электрическая сварочная дуга излучает яркие видимые световые лучи и невидимые ультрафиолетовые и инфракрасные. Световые лучи оказывают ослепляющие действия. Ультрафиолетовые лучи вызывают заболевания глаз, а при продолжительном действии приводят ожогам кожи.

Для защиты зрения и кожи лица применяют щитки, маски или шлемы, в смотровые отверстия вставляют светофильтры, задерживающие и поглощающие лучи. Для предохранения рук сварщиков от ожогов и брызг расплавленного металла необходимо использовать защитные рукавицы, а на тело надевать брезентовую спец. одежду.

В процессе сварки выделяется значительное количество аэрозоля, которое приводит к отравлению организма. Наиболее высока концентрация пыли и вредных газов в облаке дыма, поднимающегося из зоны сварки, поэтому сварщик должен следить за тем, чтобы поток не падал за щиток. Для удаления вредных газов пыли из зоны сварки необходимо устройство местной вентиляции, вытяжной и общеобъемной приточной - вытяжкой. В зимнее время приточная вентиляция должна подавать в помещение подогретый воздух. При отравлении пострадавшего необходимо вынести на свежей воздух, освободить от стесненной одежды и предоставить ему покой до прибытия врача, а при необходимости следует применить искусственное дыхание.

Электробезопасность

Поражение электрическим током происходит при соприкосновении человека с токоведущими частями оборудования. Сопротивление человеческого организма в зависимости от его состояния ( утомляемость, влажность кожи, состояния здоровья ) меняется в широких приделах от 1000 до 20000 Ом. Напряжение холостого хода источников питания дуги достигает 90В, а сжатой дуги - 200В в соответствии с законом Ома при неблагоприятном состоянии сварщика через него может пройти ток, близкий к предельному: I = r

Для предупреждения возможного поражения электрическим током при выполнении электросварочных работ необходимо соблюдать основные правила:

Корпуса оборудования и аппаратуры, к которым подведен электрический ток, должны быть заземлены;

Все электрические провода, идущие от распределительных щитков и на рабочие места должны быть надежно изолированы и защищены от механических повреждений;

Запрещается использовать контур заземления, металлоконструкции зданий, а также трубы водяной и отопительной систем в качестве обратного провода сварочной цепи;

При выполнении сварочных работ в нутрии замкнутых сосудов (котлов, емкостей, резервуаров, ит.п.) следует применять деревянные щиты, резиновые коврики, перчатки, галоши: Сварку необходимо проводить с подручным, находящимися вне сосуда. Следует помнить, что для осветительных целей внутри сосудов, а также в сырых помещениях применяют электрический ток напряжением не выше 12В, а в сухих помещениях - не выше 36В, в сосудах без вентиляции сварщик должен работать не более 30 минут с перерывами для отдыха на свежем воздухе.

Монтаж, ремонт электрооборудования и наблюдение за ним должны выполнять электромонтеры.

Сварщикам категорически запрещается исправлять силовые электрические цепи. При поражении электрическим током необходимо выключить ток первичной цепи освободить от его воздействия пострадавшего, обеспечить к нему доступ свежего воздуха, вызвать врача, а при необходимости до прихода врача сделать искусственное дыхание.

Пожарная безопасность

Причинами пожара при сварочных работах могут быть искры или капли расплавленного металла и шлака, неосторожное обращение с пламенем горелки при наличии горючих материалов в близи рабочего места сварщика. Опасность пожара особенно следует учитывать на строительно-монтажных площадках и при ремонтных работах в не приспособленных для сварки помещениях.

Для предупреждения пожаров необходимо соблюдать следующие противопожарные меры:

- нельзя хранить вблизи от места сварки огнеопасные или легковоспламеняющиеся материалы, а также производить сварочные работы в помещениях, загрязненных ветошью, бумагой, отходами дерева ит.п;

- запрещается пользоваться одеждой и рукавицами со следами масел, жиров, бензина, керосина и других горючих жидкостей;

- выполнять сварку и резку свежевыкрашенными маслеными красками конструкций до полного их высыхания

- запрещается выполнять сварку аппаратов, находящихся под электрическим напряжением, и сосудов находящихся под давлением;

- нельзя проводить без специальной подготовки сварку и резку емкостей из-под жидкого топлива;

При выполнении в помещениях временных сварочных работ деревянные полы, настилы и помосты должны быть защищены от воспламенения листами асбеста или железа;

Нужно постоянно иметь и следить за исправным состоянием противопожарных средств --- огнетушителей, ящиков с песком, лопат, ведер, пожарных рукавов ит.п., а также содержать в исправности пожарную сигнализации;

После окончания сварочных работ необходимо выключить сварочный аппарат, а также убедиться в отсутствии горящих предметов. Средствами пожаротушениями являются вода, пена, газы, пар, порошковые составы и др.

Для подачи воды в установки пожаротушения используют специальные водопроводы. Пена представляет собой концентрированную эмульсию диоксида углерода в водном растворе минеральных солей, содержащих пенообразующие вещества.

При тушении пожара газами и паром используют диоксид углерода, азот, дымовые газы и др.

При тушении керосина, бензина, нефти, горящих электрических проводов запрещается применять воду и пенные огнетушители. В этих случаях следует пользоваться, углекислотными или сухим огнетушителями.


ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПРОЧНОСТЬ КЛЕЕВОГО СОЕДИНЕНИЯ
Прочность клеевого соединения обусловлена адгезионным взаимодействием соединяемых поверхностей с клеевой прослойкой, а также негезионной прочностью этой прослойки и соединяемого материала к конструкцией соединительного шва.

Прочность клеевого соединения, его качество зависит от ряда факторов, многие из которых являются взаимоисключающими или одновременно изменяющими несколько характеристик клеевого соединения. К этим факторам относятся: свойства склеиваемого материала (структура и полярность его макромолекул, растворимость и смачиваемость, состояние поверхности и др.), а также форма соединяемых деталей и площадь контакта, режим склеивания.

Адгезионное взаимодействие

Молекулярная теория адгезии, согласно которой, сцепление между разнородными телами обусловлено действием межатомных (химических) и (или) межмолекулярных (физических) сил, имеющих электрическую природу. В соответствии с этой теорией, для обеспечения высокой адгезионной прочности необходимо присутствие в клее и на склеиваемых поверхностях химически активных, полярных или способных поляризоваться групп. В этом случае между соединяемыми поверхностями возникают соответственно химические, ориентационные связи.

Положительное влияние полярности на прочность склеивания подтверждается тем, что хорошими клеящими свойствами по отношению к полярным полимерам и пластмассам на их основе обладают полимеры, макромолекулы, которых содержат уретановые, изоцинатные, гидроксильные, эпоксидные, карбоксильные, и другие полярные группы (полиуретаны, карбоксилсодержащие каучуки и др.)

Повышение полярности клея приводит к росту его адгезии, но повышение полярности клея при неполярном или слабополярном склеиваемом материале приводит к снижению прочности соединения. Основной путь повышения адгезии к таким неполярным полимерам, как полиэтилен, полиизобутилен, политетрафторэтилен, - применение клеев менее полярных, чем склеиваемые материалы.

Высокая прочность сцепления клея со склеиваемым материалом, различающихся полярностью, достигается, если поверхностная энергия первого равна или меньше поверхностной энергии второго. При соединении материалов различной полярности высокая прочность достигается при использовании клея на основе полимера, макромолекулы которого содержат различные по полярности и реакционной способности группы.

Одной из причин снижения прочности после достижения максимального значения можно считать повышение хрупкости клеевой прослойки. Таким образом, усиление внутри и межмолекулярного взаимодействия в пределах одной фазы препятствует взаимодействию на границе раздела фаз. Следовательно, применение клея, в состав которого входят соединения с оптимальным содержанием активных групп, - один из эффективных способов регулирования прочности клеевых соединений.

Клеевые соединения в большинстве случаев эксплуатируются в условиях действия высоких температур, а межмолекулярные связи в этих условиях оказываются недостаточно устойчивыми. Наиболее высокую прочность соединения достигают с помощью такого клея, который обеспечивает образование межатомных связей между ним и склеиваемым материалом.

Если скорость растекания клея оказывается ниже, чем скорость его отверждения, то на склеиваемых поверхностях остаются незаполненные клеем полости.

При склеивании, например, отвержденных реактопластов желательно, чтобы поверхность была по возможности более гладкой.

Адгезия, которая была достигнута на стадии формирования клеевого шва, может изменяться в процессе отверждения и (или) затвердевания клеевой прослойки. Усадка полимера в этом случае может привести к увеличению расстояния между взаимодействующими молекулами или атомными группами и снижению в результате этого адгезионной прочности или к возникновению остаточных напряжений.

В процессе эксплуатации соединения адгезионная прочность может изменяться под влиянием окружающей среды (агрессивные среды, температура, постоянно действующие нагрузки и др.), а также в результате различия деформационных теплофизических и других характеристик клеевой прослойки и соединяемых материалов или химических и физических процессов, протекающих внутри клеевого шва и на поверхности его контакта с соединяемыми материалами.

Кагезионная прочность соединяемых материалов

Прочность клеевого соединения, зависит от состояния склеиваемых поверхностей. В общем случае свойства поверхности полимеров корригирует с их когезионной прочностью. Однако возможны и отклонения в случае соединения полимеров, поверхность которых либо покрыта веществами с низкой поверхностной энергией и (или) низкой кагезионной прочностью.

Существенное влияние на прочность клеевых соединений деталей из термопластов оказывает морфология их поверхности, которая, в свою очередь, определяется технологией изготовления деталей.

Прочность склеивания полимерных материалов, считающихся плохо склеивающимися – таких, как полиамид, можно в десятки раз увеличить, если пленки этих полимеров получать на подножках из материалов с высокой поверхностной энергией(например, на алюминии), а затем металл удалять не механически, а растворением, поскольку при этом образуется пленка с высокой прочностью поверхностного слоя.

Аморфные не ориентированные термопластичные полимеры склеиваются легче, чем частично ил полностью кристаллические, так как у последних остается больше функциональных групп, способных взаимодействовать с функциональными группами клея. Кроме, того поскольку диффузия компонентов клея возможна только в более разрыхленные аморфные участки, повышение степени кристалличности снижает суммарную эффективную площадь контакта клея со склеиваемым материалом.

Прочность склеивания полимеров с низкой адгезией и поверхности полимерных материалов возрастает в десятки и сотни раз при увеличении степени шероховатости последней.

Если полимер набухает в растворителе или пластификаторе клея, то их действие на склеиваемую поверхность может привести к ее растрескиванию. В свою очередь, пластификатор из пластика может мигрировать и границе раздела, следовательно, влиять на процесс.

ВЫБОР КЛЕЕВ
Для склеивания пластмасс существует очень большое число клеев на основе почти всех промышленных полимеров. При выборе клея учитывают, прежде всего, химическую природу соединяемых материалов, полярность, растворимость, реакционную способность, структуру поверхности. Не меньшую роль играют условия работы соединения, термический коэффициент линейного расширения соединяемых материалов, конструктивные особенности изделия и требования к технологическим свойствам клея. Существуют и универсальные клеи, которыми можно склеивать материалы любой химической природы. Это – клеи на основе эпоксидных полимеров, полиуретановых форполимеров, полиарилатов, каучуков и др. Как правило, рекомендуется использовать клеи, одинаковые или близкие по химической природе к полимерной основе материала. В этом случае физические и химические свойства клеевой прослойки (вода- и термостойкость, диэлектрические показатели, коррозионная стойкость и т.д.) будут близки к соответствующим свойствам соединяемого материала, а условия образования шва будут мало отличаться от условий формования деталей и не будут сказываться на свойствах пластмассы.


ТЕХНОЛОГИЯ СКЛЕИВАНИЯ ПОЛИМЕРОВ
Технология склеивания пластмасс включает следующие операции: приготовление клея, подготовку соединяемых поверхностей, нанесение клея, открытую выдержку, приведение соединяемых поверхностей в контакт, отверждения или затвердевание клея, контроль качества клеевого шва. Расчет каких-либо технологических параметров процесса склеивание в настоящее время невозможно.

Приготовление клея заключается в смешение его отдельных компонентов в соотношение и последовательности, определяемых рецептурой. Основное правило при смешении - введение отвердителя или ускорителя непосредственно перед применения клея. В ряде случаев потребитель получает уже готовый клей, так что необходимость в этой операции отпадает.

Подготовка соединяемых поверхностей является одной из важнейшим операций в технологии склеивания. Она заключается в подготовке их друг к другу к специальной обработке или очистки. Ровные, хорошо подогнанные поверхности склеиваемых материалов необходимы для получения тонкой равномерной по толщине клеевой прослойки. Особенно тщательная подгонка поверхности должна быть при склеивании клеями, в момент запрессовки обладают как малые, так и слишком большой текучестью.

Способ обработки поверхности зависит от типа пластмассы и природы клея. Композиционные пластики и пластмассы на основе отвержденных реактопластов через склеиванием обрабатывают преимущественно механическим способом. При этом не только увеличивается истинная площадь склеивания и на поверхности материала обнажаются частицы, более легко склеивающиеся наполнители, но и удаляются различные загрязнения, смазки и т.д.

Перед нанесением слоя обработанные поверхности промывают растворителем (кетоны, бензин) или протирают тампоном, смоченным в растворителе и сушат при 293-238 К, в течении нескольких минут.

Наряду с механической обработкой для некоторых типов отвержденных реактопластов применяют химическую обработку. Например, фенопласты обрабатывают ацетоновым раствором оксипроизводных бензола и других ароматических соединений.

Эффективный способ повышения прочности склеивания – нанесение подслоев (грунтов) из разбавленных растворов полимеров.

Одним из современных способов подготовки поверхности пластиков, упрочненных волокнистым наполнителем, служит нанесение перед формованием детали на участки, подлежащие склеиванию, слоя ткани из термопластов или стеклянной ткани, покрытой фторопластом или кремнийорганическим полимером, и удаление этого слоя непосредственно перед нанесением клея. Эти защитные слои, называемые иногда «жертвенными», защищают пластик на стадиях переработки, предшествующих склеиванию, и способствуют созданию шероховатого рельефа поверхности.

Применение клеев, которые адсорбируют жировые и масляные загрязнения, исключает из технологического процесса операции очистки.

Обработку поверхностей термопластов также производят механическим, химическим, физическим или комбинированными способами.

К физическим методам обработки поверхностей через склеивание относятся: электрическая обработка, в том числе наиболее эффективная ее разновидность - обработка. Электронно-возбужденным инертным газом ультрафиолетовое и радиоактивное облучение.

Приложенные давление (запрессовка) во время приведения соединяемых поверхностей в контакт обеспечивает фиксирование деталей, достижение более полного контакта между клеем и склеиваемым материалом и созданием клеевой прослойки оптимальной толщины. Чем меньше толщина клеевой прослойки, тем выше прочность соединения при равномерном отрыве или сдвиге.

Давление при склеивании создают различными способами, зависящими от конструкции изделия, формы и размеров шва, типа клея, серийности производства: с помощью груза, а пневматических или гидравлических прессах, с помощью вакуумного мешка, в прессах с винтовыми или экстрентиловыми зажимами, стягивающими лентами, в сборочных стапелях, дополнительно оборудованных различными зажимами, устройствами.

Отверждение клеев на основе реактопластов является наряду с подготовки поверхности важнейшей операцией в технологии склеивании. Выбор режимов (температуры, продолжительности, давлении) отверждения клея зависти не только от его природы, но и от типа соединяемого материала и условий эксплуатаций изделий.

Нагрев склеиваемых участков производят в термошкафу, контактными нагревателями высокочастотным способом или с помощью ультразвука.

Давление во время отверждения необходимо увеличить по сравнению с давлением в момент запрессовки, если повышается противодавление летучих продуктов в клеевом шве.

Затвердевание термопластичных клеев происходит в результате испарения растворителя или охлаждения зоны шва.
Список литературы

1. Комаров, Г.В. Способы соединения деталей из пластических масс [текст]/ Г.В. Комаров. – М.: химия, 1979. – 288 с.

2. Ольшанский, Н.А. Специальные методы сварки [текст]/Н. А. Ольшанский, Г.А. Николаев. – М.: Машиностоение, 1975. – 232 с .

3.Троянская, Е.Б. Сварка пластических масс [текст]/Е.Б. Троянская, Г.В. Комаров, В.А. Шишкин. – М.:Машиностроение, 1967. – 231 с. 

Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации