Белки, их роль в питании человека - файл n1.doc

приобрести
Белки, их роль в питании человека
скачать (3880.4 kb.)
Доступные файлы (2):
n1.doc91kb.12.11.2011 21:29скачать
n2.ppt4260kb.16.05.2010 19:25скачать

n1.doc

Белки, их роль в питании человека.

СЛАЙД 2.

Белки или протеины – высокомолекулярные азотосодержащие органические соединения, молекулы которых построены из остатков аминокислот.

Термин «протеины», введенный Барцелиусом в 1838 г., происходит от греческого слова proteios, означающего «первостепенный». [3, с. 17]

Состав молекул белков: углерод (50 – 55%), кислород (21 – 24%), азот (15 – 18%), водород (6 – 7%), сера (0,3 – 2,5%).

Кроме того белки могут содержать небольшое количество фосфора, галогенов, металлов.

Белки составляют не менее 50% сухой масс организма человека. [4, с. 502]
СЛАЙД 3.

При гидролизе протеинов в кисло водном растворе получаю только ?-аминокислоты. Гидролиз протеидов дает кроме ?-аминокислот также дает другие неорганические или органические вещества. [3, с 626]

Альбумины хорошо растворяются в воде. Встречаются в молоке, яичном белке и крови.

Глобулины в воде не растворяются, но растворимы в разбавленных растворах солей к глобулинам принадлежит глобулины крови и мышечный белок миозин.

Глутелины растворяются только в разбавленных растворах щелочей. Встречаются в растениях.

Склеропротеины – нерастворимые белки. К склеротинам относятся кератины, белок кожи и соединительных тканей коллаген, белок натурального шелка феброин. [3, с 626]

Фосфопротеиды содержат молекулы фосфорной кислоты, связанные в виде сложного эфира у гидроксильной группы аминокислоты серина. К ним относится вителлин – белок, содержащийся в яичном желтке, белок молока казеин.

Гликопротеиды содержат остатки углеводов. Они входят в состав хрящей, рогов, слюны.

Хромопротеиды содержат молекулу окрашенного вещества, обычно типа порфина. Самым важным хромопротеидом является гемоглобин – переносчик кислорода, окрашивающий красные кровяные тельца.

Нуклепротеиды – протеины, связанные с нуклеиновыми кислотами. Они представляют собой очень важные с биологической точки зрения белки – составные части клеточных ядер. [3, с 626]
СЛАЙД 4.

Уровни организации белков.

Кроме последовательности аминокислот полипептида (первичной структуры), крайне важна трёхмерная структура белка, которая формируется в процессе фолдинга (от англ. folding, «сворачивание»). Трёхмерная структура формируется в результате взаимодействия структур более низких уровней. Выделяют четыре уровня структуры белка.

Первичная структура — последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы — сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков:

Третичная или трёхмерная структура — пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

Четверичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул. [5]
СЛАЙД 5.

Денатурация

Как правило, белки сохраняют структуру и, следовательно, физико-химические свойства, например, растворимость в условиях, таких как температура и рН, к которым приспособлен данный организм. Резкое изменение этих условий, например, нагревание или обработка белка кислотой или щёлочью приводит к потере четвертичной, третичной и вторичной структур белка, называемой денатурацией. Самый известный случай денатурации белка в быту — это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения (преципитации) водорастворимых белков с помощью солей аммония, и используется как способ их очистки. [5]
СЛАЙД 6.

Для идентификации белков и полипептидов используют специфические реакции на белки. Например:

а) биуретовая реакция (биурет в щелочной среде с ионами меди Cu(II) дает темно-синюю окраску [3, с. 645])

б) ксантопротеиновая реакция (появление желтого окрашивания при взаимодействии с концентрированной азотной кислотой, которое в присутствии аммиака становится оранжевым; реакция связана с нированием остатков фенилаланина и тирозина);

в) реакция Миллона (образование желто-коричневого окрашивания при взаимодействии с Hg(NO3)2+HNO3+HNO2;

г) нингидриновая реакция (в водном растворе при нагревании появляется сине-фиолетовая окраска, интенсивность которой пропорциональна концентрации ?-аминокислоты [3, с. 622]);

д) при нагревании белков со щелочью в присутствии солей свинца выпадает черный осадок PbS, что свидетельствует о присутствии серусодержащих аминокислот. [3, с. 627 – 628]


СЛАЙД 7.

Функции белков в организме

Каталитическая функция

Наиболее хорошо известная роль белков в организме — катализ различных химических реакций. Ферменты — группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов; среди них такие, как, например пепсин, расщепляют белки в процессе пищеварения. В процесс посттрансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками. Ускорение реакции в результате ферментативного катализа иногда огромно: например, реакция, катализируемая ферментом оротат-карбоксилазой протекает в 1017 быстрее некатализируемой (78 миллионов лет без фермента, 18 миллисекунд с участием фермента). Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами.

Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует с субстратом, и ещё меньшее количество — в среднем 3-4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности — напрямую участвуют в катализе. Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента.

Структурная функция

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Большинство структурных белков являются филаментозными белками: например, мономеры актина и тубулина — это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму[31]. Коллаген и эластин — основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная функция

Существуют несколько видов защитных функций белков:

  1. Физическая защита. В ней принимает участие коллаген — белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоев кожи – дермы); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных эпидермиса. Обычно такие белки рассматривают как белки со структурной функцией. Примерами этой группы белков служат фибриногены и тромбины, участвующие в свёртывании крови.

  2. Химическая защита. Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играют ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.

  3. Иммунная защита. Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Белки системы комплемента и антитела (иммуноглобулины) относятся к белкам второй группы; они нейтрализуют бактерии, вирусы или чужеродные белки. Антитела, входящие в состав адаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами. В то время как ферменты имеют ограниченное сродство к субстрату, поскольку слишком сильное присоединение к субстрату может мешать протеканию катализируемой реакции, стойкость присоединения антител к антигену ничем не ограничена .

Регуляторная функция

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируют транскрипцию, трансляцию, сплайсинг, а также активность других белков и др. Регуляторную функцию белки осуществляют либо за счет ферментативной активности (например, протеинкиназы), либо за счет специфического связывания с другими молекулами, как правило, влияющего на взаимодействие с этими молекулами ферментов.

Так, транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

Сигнальная функция

Сигнальная функция белков — способность белков служить сигнальными веществами, передавая сигналы между тканями, клетками или организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.

Гормоны переносятся кровью. Большинство гормонов животных — это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрацию глюкозы в крови

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины — небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и апоптоз, обеспечивают согласованность действий иммунной, эндокринной и нервной систем. Примером цитокинов может служить фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма.

Транспортная функция

Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (афинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.

Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость. Липидный компонент мембраны водонепроницаем (гидрофобен), что предотвращает диффузию полярных или заряженных (ионы) молекул. Мембранные транспортные белки принято подразделять на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние, заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться через мембрану. Многие ионные каналы специализируются на транспорте только одного иона; так, калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них. Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии АТФ. «Электростанция клетки» — АТФ-синтаза, которая осуществляет синтез АТФ за счёт протонного градиента, также может быть отнесена к мембранным транспортным белкам.

Запасная (резервная) функция белков

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Рецепторная функция

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях — свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определенный участок молекулы белок-рецептор происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты. Существует несколько механизмов передачи сигнала. Некоторые рецепторы катализируют определенную химическую реакцию; другие служат ионными каналами, которые при действии сигнала открываются или закрываются; третьи специфически связывают внутриклеточные молекулы-посредники. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, внутри.

Моторная (двигательная) функция

Целый класс моторных белков обеспечивает движения организма (например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт (кинезин, динеин). Динеины и кинезины проводят транспортировку молекул вдоль микротрубочек с использованием гидролиза АТФ в качестве источника энергии. Динеины переносят молекулы и органоиды из периферических частей клетки по направлению к центросоме, кинезины в противоположном направлении. Динеины также отвечают за движение ресничек и жгутиков эукариот. Цитоплазматические варианты миозина могут принимать участие в транспорте молекул и органоидов по микрофиламентам. [5]
СЛАЙД 8.

Аминокислоты (аминокарбоновые кислоты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.
СЛАЙД 9.

В основе классификации лежат свойства боковой группы – заместителя R. Этот заместитель может иметь нейтральную, полярную, основную или кислую природу. [4, с. 502]

Многие аминокислоты могут быть синтезированы в живых организмах (растительных и животных). Высшие животные, однако, не способны синтезировать все аминокислоты, которые они используют в белковом синтезе. Организм человека, например, не может синтезировать восемь аминокислот. Эти аминокислоты называются незаменимыми. Они должны поступать в организм человека с пищей. [4, с. 503]

Жизнедеятельность человека обеспечивается ежедневным потреблением с пищей сбалансированной смеси, содержащей восемь незаменимых аминокислот и две частично заменимые. Незаменимые представлены ароматическими (фенилаланин, триптофан), алифатическими (лейцин, валин, изолейцин, лизин), а также содержащими серу (метионин) и гидроксильную группу (треонин). Так как из метионина и фенилаланина в организме синтезируются цистеин и тирозин, соответственно, то наличие в пище в достаточном количестве этих двух заменимых аминокислот сокращает потребность в незаменимых предшественниках. [3, с. 40]

Отсутствие в пище хотя бы одной незаменимой аминокислоты вызывает отрицательный азотистый баланс, нарушение деятельности центральной нервной системы, остановку роста и тяжелые клинические последствия типа авитаминоза. Нехватка одной незаменимой аминокислоты приводит к неполному усвоению других. [3, с. 40]
СЛАЙД 11.

Валин – один из главных компонентов в росте и синтезе тканей тела. Основной источник - животные продукты. Опыты на лабораторных крысах показали, что валин повышает мышечную координацию и понижает чувствительность организма к боли, холоду и жаре.

Изолейцин – поставляется всеми продуктами, содержащими полноценый белок – мясом, птицей, рыбой, яйцами, молочными продуктами.

Лейцин – поставляется всеми продуктами, содержащими полноценый белок - мясом, птицей, рыбой, яйцами, молочными продуктами. Необходима не только для синтеза протеина организмом, но и для укрепления иммунной системы.

Треонин – важная составляющая в синтезе пуринов, которые, в свою очередь, разлагают мочевину, побочный продукт синтеза белка. Важная составляющая коллагена, эластина и протеина эмали; участвует в борьбе с отложением жира в печени; поддерживает более ровную работу пищеварительного и кишечного трактов; принимает общее участие в процессах метаболизма и усвоения.

Лизин – хорошие источники – сыр, рыба. Одна из важных составляющих в производстве карнитина. Обеспечивает должное усвоение кальция; участвует в образовании коллагена ( из которого затем формируются хрящи и соединительные ткани); активно участвует в выработке антител, гормонов и ферментов. Недавние исследования показали, что лизин, улучшая общий баланс питательных веществ, может быть полезен при борьбе с герпесом. Недостаток может выражаться в уставаемости, неспособности к концентрации, раздражительности, повреждению сосудов глаз, потере волос, анемии и проблем в репродуктивной сфере.

Метионин – хорошие источники – зерновые, орехи и злаковые. Важен в метаболизме жиров и белков, организм использует ее также для производства цистеина. Является основным поставщиком сульфура, который предотвращает расстройства в формировании волос, кожи и ногтей; способствует понижению уровня холестерина, усиливая выработку лецитина печенью; понижает уровень жиров в печени, защищает почки; участвует в выводе тяжелых металлов из организма; регулирует образование аммиака и очищает от него мочу, что понижает нагрузку на мочевой пузырь; воздействует на луковицы волос и поддерживает рост волос.

Триптофан – является первичным по отношению к ниацину (витамину В) и серотонину, который, участвуя в мозговых процессах управляет аппетитом, сном, настроением и болевым порогом. Естественный релаксант, помогает бороться с бессонницей, вызывая нормальный сон; помогает бороться с состоянием беспокойства и депрессии; помогает при лечении головных болей при мигренях; укрепляет иммунную систему; уменьшает риск спазмов артерий и сердечной мышцы; вместе с Лизином борется за понижение уровня холестерина. В Канаде и во многих странах Европы назначается в качестве антидепрессанта и снотворного. В Штатах к такому применению относятся с опаской.

Фенилаланин – одна из “существенных” аминокислот. Используется организмом для производства тирозина и трех важных гормонов – эпинэрфина, норэпинэрфина и тироксина. Используется головным мозгом для производства Норэпинэрфина, вещества, которое передает сигналы от нервных клеток к головному мозгу; поддерживает нас в состоянии бодрствования и восприимчивости; уменьшает чувство голода; работает как антидепрессант и помогает улучшить работу памяти.
СЛАЙД 12.

Валин содержится в зерновых, мясе, грибах, молочных продуктах, арахисе, сое

Изолейцин содержится в миндале, кешью, курином мясе, турецком горохе (нут), яйцах, рыбе, чечевице, печени, мясе, ржи, большинстве семян, сое.

Лейцин содержится в мясе, рыбе, буром рисе, чечевице, орехах, большинстве семян.

Лизин содержится в рыбе, мясе, молочных продуктах, пшенице, орехах.

Метионин содержится в молоке, мясе, рыбе, яйцах, бобах, фасоли, чечевице и сое.

Треонин содержится в молочных продуктах и яйцах, в умеренных количествах в орехах и бобах.

Триптофан содержится в овсе, бананах, сушёных финиках, арахисе, кунжуте, кедровых орехах, молоке, йогурте, твороге, рыбе, курице, индейке, мясе.

Фенилаланин содержится в говядине, курином мясе, рыбе, соевых бобах, яйцах, твороге, молоке. Также является составной частью синтетического сахарозаменителя — аспартама, активно используемого в пищевой промышленности. [6]

Животные и растительные белки заметно отличаются по биологической ценности. Аминокислотный состав животных белков близок к аминокислотному составу человека. Животные белки являются полноценными, тогда как растительные – из-за относительно низкого содержания в них лизина, триптофана, треонина и других по сравнению с мясом, молоком и яйцами – неполноценны.

Белки пшеницы, например, содержат недостаточное количество лизина и треонина, но эти аминокислоты в избытке присутствуют в казеине молока. С другой стороны, нехватка в казеине серосодержащих аминокислот компенсируются содержанием их в белках пшеницы. [3, с. 42]
СЛАЙД 13.

В желудке имеются все условия для переваривания белков. Во-первых, в желудочном соке содержится активный фермент пепсин. Во-вторых, благодаря наличию в желудочном соке свободной соляной кислоты для действия пепсина создается оптимальная среда (рН 1,5–2,5). Следует особо указать на существенную роль соляной кислоты в переваривании белков: она переводит неактивный пепсиноген в активный пепсин, создает оптимальную среду для действия пепсина; в присутствии соляной кислоты происходят набухание белков, частичная денатурация и, возможно, гидролиз сложных белков. Кроме того, соляная кислота стимулирует выработку секретина в двенадцатиперстной кишке, ускоряет всасывание железа и оказывает бактерицидное действие.

Пепсин, катализирующий гидролиз пептидных связей, образованных остатками ароматических аминокислот, расщепляет практически все природные белки. Исключение составляют некоторые кератины, протамины, гистоны и мукопротеины. При их гидролизе образуются различного размера пептиды и, возможно, небольшое число свободных аминокислот. [7]
СЛАЙД 14.

В соответствии с рекомендациями ВОЗ и ФАО величина оптимальной потребности в белке составляет 60 – 100 г в сутки или 12 – 15 % от общей калорийности пищи. В общем количестве энергии на долю белка животного и растительного происхождения приходится по 6 – 8 %. В пересчете на 1 кг массы тела потребность белка в сутки у взрослого человека в среднем равняется около 1 г, тогда как для детей, в зависимости от возраста, она колеблется от 1,05 до 4,00 г. [3, с. 21]

Рекомендуемые нормы потребления основных пищевых веществ для основных групп населения, выработанные российской научной школой питания, включают 73 – 120 г белка в сутки для мужчин и 60 – 90 г для женщин, в том числе белка животного происхождения 43 – 65 и 43 – 49 г, соответственно. [3, с. 22]

При поступлении белков (с пищей) ниже рекомендуемых норм, в организме начинают распадаться белки тканей (печени, плазмы крови и т.д.), а образующиеся аминокислоты – расходоваться на синтез ферментов, гормонов и других необходимых для поддерживания жизнедеятельности организма биологически активных соединений. [3, с. 20]
СЛАЙД 15.

  1. Артеменко А.И./ «Органическая химия»/ Учебное пособие, Высш. шк., 2003 г.

  2. Нейланд О.Я./ « Органическая химия», Учебн., Высш. шк., 1990 г.

  3. Нечаев А.П./ «Пищевая химия»/Учебное пособие, Высш. шк., 2004 г.

  4. Травень В.Ф./ «Органическая химия» Том 2/ Учебник для вузов, 2006 г.

  5. http://ru.wikipedia.org/wiki/Белки#

  6. http://ru.wikipedia.org/wiki/Незаменимые_аминокислоты

  7. http://www.xumuk.ru/biologhim/182.html








Белки, их роль в питании человека
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации