Учебное пособие по гидрогазодинамике - файл n1.doc

приобрести
Учебное пособие по гидрогазодинамике
скачать (674.6 kb.)
Доступные файлы (1):
n1.doc3078kb.16.05.2003 14:37скачать

n1.doc

  1   2   3   4   5   6   7   8   9   ...   25

1. МАТЕМАТИЧЕСКИЙ АППАРАТ, ИСПОЛЬЗУЕМЫЙ В гидрогазодинамике


В науке нет другого способа при­обретения, как в поте лица: ни порывы, ни фантазии, ни стремление всем сердцем не заменяет труда.

А.И.Герцен

Изучение гидрогазодинамики, понимание сущности рассматриваемых физических явлений и процессов тесно связано с усвоением достаточно развитого математического аппарата, которым эта наука оперирует. Принципиально гидрогазодинамика может излагаться как на базе векторного, так и координатного методов. Вопрос о том, какому из них отдать предпочтение, с давних пор служил источником дискуссий. Так, например, известный физик Уильям Том­сон (лорд Кельвин) считал, что «векторы сберегают мел и расходуют мозг». Противником использования аппарата векторного анализа являлся и академик А.Н.Крылов, приводивший достаточно веские аргументы против его применения. Тем не менее векторное построение курса находит широчайшее применение. Одной из причин этого является общая тенденция к сокращению времени, отводимого на изучение дисциплины. В настоящем пособии не отдается решающее предпочтение ни одному из этих методов, они используются по мере необходимости с учетом конкретной ситуации и стремления наиболее простым и доступным способом донести до изучающего содержание вопроса.

Ниже приводятся некоторые необходимые для понимания дальнейшего сведения из векторного анализа и теории поля, в ос­новном известные студентам из курса математики. Разумеется, что в рамках пособия они не могут претендовать на достаточную глубину и широту и носят рецептурный характер. Желающим основательно углубить свои знания в этой области можно рекомендовать книгу: Кальницкий Л.А., Добротин Д.А., Жевержеев В.Ф. Специальный курс высшей математики для втузов. М.:Высшая школа, 1976. - 389с.

Одной из важнейших особенностей механики жидкости является то, что в основу ее положена так называемая модель сплошной среды. Как известно, для описания среды, состоящей из большого числа молекул в сравнительно малом объеме (жидкости и газы) в физике широко используются два пути: феноменологический и статистический (иногда их называют корпускулярной и континуальной моделями). Феноменологический путь изучения основывается на простейших допущениях. Оставляя в стороне вопрос о строении вещества, он наделяет его такими свойствами, которые наилучшим образом устанавливают соответствие между наблюдаемыми явлениями и их описанием.

При таком подходе жидкости (газы) рассматриваются как непрерывная среда, способная делиться до бесконечности. Другими словами, жидкость (газ) представляется состоящими из достаточно малых частиц непрерывным образом заполняющих пространство. Эта среда обладает свойством инерции и наделена различными физическими свойствами. В соответствии с такой моделью все параметры жидкости (плотность, вязкость и др.) изменяются непрерывно от точки к точке, что позволяет при анализе движения среды применять математический аппарат дифференциального и интегрального исчислений, хорошо разработанный для непрерывных функций.

Понятие о частицах жидкости, которым широко оперирует гидрогазодинамика, неразрывно связано с понятием о физически бесконечно малом объеме. Это объем, размеры которого пренебрежимо малы по сравнению с характерными размерами объекта, но он содержит в себе настолько много молекул, что его средние характеристики (например, плотность) становятся устойчивыми по отношению к изменению объема. Поэтому, например, фраза «объем стягивается в точку» означает, что он стремится не к нулю, а к физически бесконечно малому объему. Следует твердо усвоить, что все законы механики жидкости справедливы до тех пор, пока справедлива модель сплошной среды. Количественно это можно оценить по величине числа Кнудсена, представляющего отношение длины свободного пробега молекул l к характерному размеру течения L, т.е.

(1.1)

Принято считать, что законы механики жидкости справедливы, если .

1.1. Векторы и операции над ними.


Полем какой-либо величины называется пространство, в каждой точке которого эта величина вполне определена. Если эта величина скаляр, т.е. характеризуется одним числом, то поле называют скалярным (поле плотности, поле температуры).

Векторным называется поле, которое характеризуется в каждой точке пространства величиной и направлением. К этому следует лишь добавить, что непременным условием, связанным с векторными величинами, является то, что они должны складываться по правилу параллелограмма. Поэтому, например, поток автомашин, движущихся по улице и характеризующийся как величиной, так и направлением не является вектором.

Единичные векторы (орты) в декартовой системе координат будем обозначать , , . Тогда вектор может быть представлен как

(1.2)

где , , - проекции (компоненты) вектора на соответствующие оси координат.

Скалярное произведение двух векторов дает скалярную величину

(1.3)

где a - угол между векторами.

Ясно, что скалярное произведение обращается в нуль, если векторы и взаимно перпендикулярны.

Векторное произведение двух векторов.

В противоположность скалярному произведению, здесь первое слово указывает на то, что результат действия есть вектор. Векторное произведение может быть записано в виде определителя третьего порядка

(1.4)

Раскрывая определитель по общим правилам, получаем:

(1.5)

1.2. Операции первого порядка (дифференциальные характеристики поля).


В теории поля рассматриваются три так называемые операции первого порядка. Эти операции позволяют, выполнив определенные математические действия, превратить:

- скалярную величину в векторную;

- векторную величину в скалярную;

- векторную - в другую векторную;

Эти операции соответственно называются - градиент, дивергенция и ротор (вихрь). Рассмотрим каждую из них.

Градиент какой-то скалярной функции есть вектор, образующийся в результате выполнения следующих действий:

(1.6)

Физически градиент есть вектор, в направлении которого функция в данной точке поля изменяется с максимальной скоростью.

Дивергенцией вектора называется выражение вида

(1.7)

Следовательно, любое векторное поле дает некоторое скалярное поле, а именно поле своей дивергенции (расходимости). Если , то поле называют соленоидальным.

Вихрь поля (ротор) - это вектор, образующийся при выполнении операции

(1.8)

Если , то поле называют безвихревым.

Каждая из трех операций имеет гидродинамическую интерпретацию, которая приводится в соответствующих разделах курса.
  1   2   3   4   5   6   7   8   9   ...   25


1. МАТЕМАТИЧЕСКИЙ АППАРАТ, ИСПОЛЬЗУЕМЫЙ В гидрогазодинамике
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации