Хадыкин А.М. Радиоматериалы и радиокомпоненты - файл n1.doc

приобрести
Хадыкин А.М. Радиоматериалы и радиокомпоненты
скачать (897.1 kb.)
Доступные файлы (1):
n1.doc1609kb.17.10.2008 18:42скачать

n1.doc

  1   2   3   4   5   6


Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Омский государственный технический университет»

А. М. Хадыкин


РАДИОМАТЕРИАЛЫ И РАДИОКОМПОНЕНТЫ


Конспект лекций


Омск

Издательство ОмГТУ

2008

УДК 621.396.002 (075)

ББК 31.23я73

Р15
Рецензенты:
В. С. Щербаков, д-р техн. наук, профессор, Сибирская государственная автодорожная академия;

Ю. Н. Стенькин, канд. хим. наук, доцент, Омский филиал института физики полупроводников СО РАН

Р 15 Радиоматериалы и радиокомпоненты: конспект лекций /
Авт. сост. А. М. Хадыкин. – Омск: Изд-во ОмГТУ, 2008. – 92 с.

В краткой конспективной форме изложен материал по радиоматериалам и радиокомпонентам в объеме, предусмотренном ныне действующей программой дисциплины и государственным образовательным стандартом по специальностям 210302 и 210402.

Пособие предназначено для студентов заочной формы обучения.

Печатается по решению редакционно-издательского совета
Омского государственного технического университета.



УДК 621.396.002 (075)

ББК 31.23 я73


© Омский государственный

технический университет, 2008





СОДЕРЖАНИЕ

Введение 4

1. Свойства материалов 6

1.1. Классификация материалов 6

1.2. Виды химических связей в материалах 7

1.3. Структура твердых тел. Дефекты структуры 9

1.4. Элементы зонной теории твердого тела 16

2. Проводниковые материалы 23

2.1. Электропроводность проводниковых материалов 24

2.2. Сверхпроводимость проводниковых материалов 26

2.3. Контактная разность материалов.

Термоэлектродвижущая сила 28

2.4. Контакты 30

2.5. Классификация проводниковых материалов 33

3. Полупроводниковые материалы 34

3.1. Особенности полупроводников 35

3.2. Электропроводность полупроводников 36

3.3. Термоэлектрические свойства 40

3.4. Электронно-дырочный переход 43

3.5. Фотоэлектрические свойства полупроводников 46

3.6. Классификация полупроводниковых материалов 49

4. Магнитные материалы 51

4.1. Природа ферромагнетизма 53

4.2. Основные характеристики ферромагнетиков 54

4.3. Потери в ферромагнитных материалах 58

4.4. Энергия в зазоре ферромагнетика 58

4.5. Классификация ферромагнитных материалов 59

5. Диэлектрические материалы 62

5.1. Поляризация диэлектриков 63

5.2. Электропроводность диэлектриков 68

5.3. Диэлектрические потери 73

5.4. Пробой диэлектриков 77

5.5. Классификация диэлектрических материалов 85

Библиографический список 88

ВВЕДЕНИЕ
Данное пособие предусматривает изучение свойств радиотехнических материалов, которые проявляются в электромагнитных полях, но в то же время зависят от состава материалов, их структуры и внешних воздействий.

Под составом материала здесь понимается только основной химический состав: органический, неорганический или элементоорга-нический.

Под структурой – кристаллическая, аморфная, жидкокристаллическая и доменная структуры.

Под внешней средой – различные виды воздействующих на материал полей (локальных или общих): электромагнитного, теплового, механического, светового, радиационного и др.

Поведение материалов в электромагнитных полях характеризуется параметрами:

  1. величиной запрещенной зоны;

  2. удельным электрическим сопротивлением;

  3. диэлектрической проницаемостью;

  4. концентрацией носителей заряда;

  5. магнитной проницаемостью и целым рядом других.


Все радиотехнические материалы можно разделить по их поведению в электромагнитном поле на основные четыре группы (класса):

  1. Диэлектрики – материалы, имеющие большое удельное электрическое сопротивление:   103…1016 Омм и большую запрещенную зону Wg  3 эВ.

  2. Полупроводники – материалы, диапазон удельных электрических сопротивлений которых очень велик и перекрывает собой значения сопротивлений диэлектриков и проводников:   10-3…108 Омм, ширина запрещенной зоны Wg  3 эВ.

  3. Проводники – материалы, имеющие очень маленькое удельное сопротивление:   10-8…10-4 Омм, запрещенная зона практически отсутст-вует.

  4. Магнитные материалы – материалы, у которых диапазон сопротивлений большой, но для них главное – концентрирование магнитных силовых линий в материале и высокая магнитная проницаемость – .



Ниже представлена структурная схема дисциплины.



Структурная схема дисциплины
Каждая группа материалов имеет свои основные электрические, магнитные, тепловые, механические и другие характеристики; для каждого конкретного материала они приводятся в справочниках. Когда нужно выбрать материал для изготовления того или иного изделия, берут справочник и подбирают по требуемым характеристикам материал. За каждым числовым значением каждого параметра стоит явление, свойство, поведение материала, которое проявляется в условиях, требуемых при эксплуатации данного элемента, прибора, устройства.

В основу конспекта лекций положен материал, представленный в работах [1; 43].

1. Свойства материалов

1.1. Классификация материалов

Материалы, используемые в радиотехнике и электронике, подразделяют на конструкционные и радиотехнические.

Из конструкционных материалов изготавливают вспомогательные элементы конструкций РЭС, такие как несущие конструкции, различные механизмы корпуса.

Радиотехнические материалы (радиоматериалы) – это класс материалов, характеризуемых определенными свойствами по отношению к электромагнитному полю и применяемых в радиотехнике с учетом этих свойств. Радиоматериалы необходимы для изготовления проводов, кабелей, волноводов, антенн, изоляторов, конденсаторов, резисторов, катушек индуктивности, трансформаторов, постоянных магнитов, полупроводниковых приборов, электронных ламп, устройств функциональной электроники. От свойств радиоматериалов зависит работа электрической схемы радиотехнического устройства.

Основными физическими параметрами радиоматериалов являются электропроводность, диэлектрическая и магнитная проницаемость. По физическим (электрическим и магнитным) свойствам все радиоматериалы принято подразделять на четыре класса. По электрическим свойствам выделяют проводниковые, диэлектрические и полупроводниковые материалы, а по магнитным – магнитные материалы.

Проводниковые материалы характеризуются относительно низким электросопротивлением. Такие материалы применяют для изготовления монтажных проводов, кабелей, в качестве контактных материалов. Высокоомные проводниковые материалы с заданной величиной электросопротивления используют для изготовления резистивных элементов таких радиокомпонентов, как резисторы.

Диэлектрические материалы, напротив, характеризуются очень высоким удельным электросопротивлением и обычно применяются в качестве электроизоляционных материалов, таких как различные установочные изделия, электроизоляционные подложки и печатные платы, каркасы катушек индуктивности и трансформаторов, пропиточные материалы. Диэлектрические материалы с заданной величиной диэлектрической проницаемости широко применяются в качестве электроизоляционных прокладок при изготовлении электрических конденсаторов.

Активные диэлектрики – сегнетоэлектрики – отличаются от электроизоляционных материалов заметной зависимостью диэлектрической проницаемости от напряженности электрического поля и температуры. В активных диэлектриках, как правило, наблюдается пьезоэффект, заключающийся в проявлении механических напряжений в диэлектриках под действием электрического поля. Такие диэлектрики называют пьезоэлектриками.

Полупроводниковые материалы используют в радиотехнике и электронике, когда необходимо получить электрическое сопротивление материала, управляемое электрическим или магнитным полем, а также температурой или освещенностью. Из полупроводниковых материалов изготавливают диоды, транзисторы, термисторы, фоторезисторы и другие полупроводниковые приборы.

Магнитные материалы обладают способностью намагничиваться под действием магнитного поля. Из магнитных материалов делают сердечники катушек индуктивности, магнитопроводы трансформаторов, магнитные элементы памяти. Некоторые разновидности магнитных материалов сохраняют свою намагниченность после воздействия магнитного поля и применяются для изготовления постоянных магнитов.

В радиотехнике и электронной технике применяют разнообразные материалы, количество наименований которых превышает несколько тысяч.
1.2. Виды химических связей в материалах

При сближении атомов до расстояния нескольких долей нанометра (1нм = 10-9 м), между ними появляются силы взаимодействия. Если эти силы являются силами притяжения, то атомы могут соединяться с выделением энергии, образуя химические соединения. При этом электроны внутренних и внешних оболочек атомов ведут себя по-разному. Электроны внутренних, полностью заполненных оболочек прочно связаны с ядром и не участвуют в образовании химических связей. Строение внешней, не полностью заполненной электронами оболочки определяет химические свойства атомов в образовавшемся соединении.

Электроны, находящиеся на внешних оболочках, являются валентными. Валентность атома определяется числом этих электронов. Все многообразие существующих в природе материалов характеризуется несколькими видами химической связи.

Ковалентная (гомеополярная) связь. При наличии такой связи объединение атомов в молекулу достигается за счет электронов, которые становятся общими для пар атомов (рис. 1.1). Плотность отрицательно заряженного электронного облака между положительно заряженными ионами получается наибольшей. Появление состояния с повышенной плотностью электронного заряда в межионном пространстве приводит к возникновению сил притяжения между атомами.


Рис. 1.1. Условное изображение ковалентной связи
Ковалентная связь характерна как для органических, так и для неорганических соединений. К неорганическим веществам с ковалентной связью относятся алмаз, кремний, германий, арсенид галлия (GaAs), карбид кремния (SiС) и другие, являющиеся полупроводниками. Многие полупроводники кристаллизируются в структуре алмаза, в которой каждый атом образует четыре связи со своими ближайшими соседями. Ковалентная связь в неорганических материалах характеризуется высокой прочностью. Подтверждением этому является высокая твердость и температура плавления алмаза, кремния и др.

Ионная (гетерополярная) связь наблюдается в химических соединениях атомов металла с металлоидными атомами (типа NaCl). Ионная связь возникает вследствие перехода валентных электронов от металлоидного атома к металлоидному и возникновения электростатического притяжения разноименно заряженных атомов друг другу. На рис. 1.2 схематически представлена трехмерная решетка гипотетического ионного кристалла, где атомы металла изображены в виде точек (положительно заряженные ионы-катионы), а атомы металлоида – в виде кружочков (отрицательные ионы-анионы). В решетке ионого кристалла чередуются ионы различного сорта. Способность атома захватывать электрон при образовании ионной химической связи называется электроотрицательностью. Чем больше разность электроотрицательностей атомов, участвующих в образовании химической связи, тем больше степень ионности соединения.

Металлическая связь существует в системах, построенных из положительных атомных островов, находящихся в среде свободных коллективизированных электронов (рис. 1.3). Притяжение между положительными ионами и электронами обусловливает существование металлов как химических соединений. Металлическую связь можно рассматривать до некоторой степени как ковалентную связь, поскольку в ее основе лежит обобществление внешних валентных электронов. Специфика металлической связи состоит в том, что обобществленные электроны свободно перемещаются внутри всей решетки, образуя «электронный газ». Поэтому металлическим материалам свойственны пластичность, высокая электро- и теплопроводность.


Рис. 1.2. Расположение ионов Рис. 1.3. Схематическое

в кристаллической решетке изображение возникновения

при наличии ионной связи металлической связи
Молекулярная связь (связь Ван-дер-Ваальса). Этот вид химичечкой связи наблюдается у ряда веществ (парафин, жидкие кристаллы) между молекулами с ковалентным характером внутримолекулярного взаимодействия. Вещества с молекулярной связью характеризуются сравнительно низкой температурой плавления и невысокой мехиничской прочностью.
1.3. Структура твердых тел. Дефекты структуры

Структура твердых тел. Твердые тела характеризуются, как правило, регулярным расположением атомов и молекул. Различают аморфную и кристаллическую структуру твердых тел.

Аморфные структуры – это структуры, не имеющие явно выраженного дальнего порядка в расположении атомов. К таким материалам относятся, например, стекла, многие органические материалы и т. д.


Рис. 1.4. Трехмерная кристаллическая структура
Кристаллические структуры – это структуры, представляющие периодическую решетку, в узлах которой расположены атомы (рис. 1.4). Трехмерная кристаллическая структура представляет собой решетку, построенную на трех координатных осях x, y, z, расположенных в общем случае под углами ?, ?, ?. Периоды трансляции атомов по осям (параметрам решетки) равны соответственно a, b, c. Элементарная ячейка кристалла – это параллелепипед, построенный на векторах трансляции a, b, c. В результате трансляции элементарной ячейки в пространстве получается пространственная простая ячейка – так называемая решетка Браве. Существует четырнадцать типов решеток Браве. Кроме того, в природе существует четыре типа сложных элементарных ячеек.


Рис. 1.5. Сложные элементарные ячейки:

а – объемоцентрированная;

б – гранецентрированная;

в – базоцентрированная;

г – гексацентрированная
Объемоцентрированная (ОЦ) ячейка (рис. 1.5,а) – содержит дополнительно один атом на пересечении диагоналей куба (или, в общем случае, параллелепипеда). В ОЦ кубической структуре кристаллизируются такие металлы, как (индекс обозначает номер элемента в периодической системе элементов Д. И. Менделеева).

Гранецентрированная (ГЦ) ячейка (рис. 1.5,б) – содержит дополнительно по одному атому в плоскости каждой грани. В ГЦ кубической структуре кристаллизируются металлы
и др.

Базоцентрированная (БЦ) ячейка (рис. 1.5,в) – содержит дополнительно по одному атому в центрах противоположных граней.

Гексацентрированная ячейка (рис. 1.5,г), как и БЦ ячейка, содержит по одному атому в центре противоположных граней. В гексогональной структуре кристаллизируются многие кристаллы –

На основе первых трех типов сложных элементарных ячеек (ОЦ, ГЦ, БЦ) путем трансляции элементарной ячейки на расстояние А, меньше периода трансляции, получаются так называемые решетки с базисом (рис. 1.6). Например, кристаллическая решетка алмаза, Si, Ge, GaAs получаются путем трансляции ГЦК ячейки на расстояние, равное ј пространственной диагонали.


Рис. 1.6. Двумерная решетка с базисом
Для обозначения узлов, направлений и плоскостей используют индексы Миллера. В этом случае координаты любого узла можно выразить как где параметры решетки, целые или дробные числа. Если за единицы измерения длин принять параметры решетки, то координатами узла будут просто целые или дробные числа . Эти числа называются индексами узла и записывают следующим образом: (рис. 1.7,а).

Для описания направления в кристалле выбирается прямая, проходящая через начало координат. Ее направление однозначно определяется индексами первого узла, через который она проходит
(рис. 1.7,а). Поэтому индексы узла одновременно являются и индексами направления. Индексы направления обозначаются . Строго говоря, указанные индексы определяют целое семейство физически эквивалентных направлений в кристалле, получаемых циклической перестановкой значений индексов т, n, p. Индексы эквивалентных направлений обозначают . Отметим, что если в символах узлов могут применяться дробные индексы, то для символов направлений и плоскостей используются только целочисленные индексы.


Рис. 1.7. Обозначение узлов, направлений (а)

и плоскостей (б) к кристаллической решетке

Индексы плоскости находятся следующим образом: выражают отрезки Н, K, L, которые плоскость отсекает на осях решетки (рис. 1. 7, б), в осевых единицах Н = m, K = n, L = p, где m, n, pцелые числа (координаты узлов), не равные нулю. Записывают величины, обратные этим отрезкам, Находят наименьшее целое общее кратное (НОК) чисел m, n, p. Пусть НОК = d. В этом случае индексы Миллера плоскости будут являться целые числа h = d/m, k = d/n, l = d/p, которые записываются так: . Индексы Миллера для значений m, n или p, равных бесконечности (случай, когда плоскость параллельна одной или двум осям координат), принимаются равными нулю. Например, для значений , индексы Миллера данной плоскости равны (100).

Так же, как и индексы направлений, индексы Миллера определяют не одну плоскость, а целое семейство плоскостей. Совокупность физически эквивалентных плоскостей, например всех шести граней куба, обозначают {hkl}. В качестве примера на рис. 1.8 приведены обозначения основных плоскостей и направлений в кубической и гексогональной решетке ках. В кубической решетке (рис. 1.8а,б,в) индексы плоскости совпадают с индексами направления, перпендикулярного этой плоскости.


Рис. 1.8. Индексы плоскостей в кристаллических решетках:

а, б, в – плоскости (100), (110) и (111) в кубической решетке;

г – плоскость (0001) и направления координатных осей

в гексагональной решетке (вид со стороны оси z)
Для удобства описания гексагональной решетки часто к трехосной системе координат добавляют четвертую координатную ось u, которая составляет равные углы (120°) с осями х и у и перпендикулярна гексагональной оси z (рис. 1.8,г). В получившейся четырехосной системе коор­динат (х, у, и, z) каждая из граней элементарной гексагональной ячейки пересекает по две координатные оси, отсекая от них одинаковые отре­зки. Проекции узловых точек на оси координат х, у, и, z могут представлять собой дробные или отрицательные числа. После приведения к общему знаменателю числители полученных дробей являются индексами направления. В качестве примера на рис. 1.8,г приведены индексы координатных осей х, у, и. Значения индекса, меньше щзя, отмечены знаком инверсии над соответствующим индексом. Например, координаты узла В, лежащего на оси у (рис. 1.8, г), равны [[-1/2, 1, -1/2, 0]]. Следовательно, индексы направления, совпадающего с осью у, равны [1210]. Индексы направлений координатных осей х и и равны [2110] и [1120], соответственно.

Структурные дефекты твердых тел. Реальные кристаллы всегда содержат некоторое число дефектов кристаллической структуры. Появление дефектов в кристаллах неизбежно, поскольку они образуются уже в процессе выращивания монокристалла вещества. Их концентрация быстро возрастает с температурой, а также при деформировании кристалла. Различают два основных вида дефектов кристаллической решетки.

Точечные дефекты создаются при внедрении в узлы и междуузлия идеальной кристаллической структуры «чужеродных» атомов, например при приготовлении сплава (рис. 1.9,а,б). Кроме того, к точечным дефектам относятся вакансии, то есть незаполненные атомами основного материала узлы кристаллической решетки. При этом атом основного материала может находиться рядом, в междуузлии кристаллической решетки (дефекты по Френкелю, рис.1.9,в). Возможен случай, когда атом вообще может испариться из объема материала и ва­кансия является одиночной (дефекты по Шоттки, рис. 1.9, г).


Рис. 1.9. Условное изображение точечных дефектов кристаллической решетки: а – дефекты типа внедрения;
б – дефекты типа замещения;

в – дефекты по Френкелю; г – дефекты по Шоттки


Точечные дефекты кристаллической решетки могут образовываться при бомбардировке поверхности кристалла ускоренными заряженными ионами различных веществ. Дефекты такого происхождения называют радиационными дефектами.

Дислокация – это линейный дефект, заключающийся в смещении плоскостей кристаллической решетки относительно друг друга. Различают два основных типа дислокаций:

линейная (краевая) дислокация представляет результат неполного сдвига кристаллической решетки. В итоге появляется незаконченная плоскость атомов (рис. 1.10, а);

винтовая дислокация возникает вследствие полного сдвига некоторого участка решетки (рис. 1.10, б).


Рис. 1.10. Условное изображение линейных дефектов

кристаллической решетки: а – линейная дислокация;

б – винтовая дислокация
Выходы дислокаций на поверхность кристалла можно обнаружить по результатам травления кристалла в специальном травителе. В результате травления на поверхности кристалла появляются ямки травления, хорошо видимые под микроскопом. Плотность дислокаций оценивают визуально, подсчитывая под микроскопом число ямок травления на единице площади поверхности кристалла. Например, кристалл полупроводникового материала пригоден к дальнейшему использованию, если плотность дислокаций в нем не превышает 106…107 м-2.

Хотя относительная концентрация атомных дефектов может быть небольшой, но изменения физических свойств кристалла, вызываемые ими, могут быть огромными. Например, тысячные доли атомного процента некоторых примесей могут изменять электрическое сопротивление чистых полупроводниковых кристаллов в 105–106 раз. Протяженные дефекты структуры оказывают сильное влияние на механические свойства кристаллов.

Полиморфизм. Некоторые твердые вещества обладают способностью образовывать не одну, а две и более кристаллические структуры, устойчивые при различных температурах и давлениях. Такое свойство материалов называют полиморфизмом, а отвечающие им кристаллические структуры называют полиморфными формами или аллотропными модификациями вещества. Модификацию, устойчивую при нормальной и более низкой температуре, принято обозначать буквой ?; модификации, устойчивые при более высоких температурах, обозначают соответственно буквами ?, ? и т. д.

Полиморфизм широко распространен среди технических материалов и имеет важное значение для их обработки и эксплуатации. Классическим примером полиморфизма является низкотемпературное преращение белого олова (?-Sn) в серое (?-Sn), известное в технике как «оловянная чума».

Практический интерес представляет полиморфизм углерода – сущетвование его в виде алмаза или графита. В обычных условиях графит является более устойчивой модификацией, чем алмаз. Однако при повышении давления устойчивость алмаза растет, а графита падает, и при достаточно высоких давлениях алмаз становится более устойчивым. Если при этом повысить температуру, чтобы увеличить подвижность атомов, то графит можно перевести в алмаз.

Стекла и другие аморфные тела. Не все твердые тела имеют кристаллическую структуру, хотя кристаллическое состояние большинства твердых тел является естественным, потому что энергия при упорядоченном расположении атомов меньше, чем в случае их нерегулярного расположения, а любая система стремится перейти в состояние с минимальной свободной энергией. Однако атомы не всегда имеют благоприятную возможность располагаться упорядоченно в процессе затвердевания. Препятствием этому может быть резкое уменьшение скорости диффузии атомов при охлаждении среды. Твердые тела, которые характеризуются случайным хаотичным расположением частиц, называют аморфными. В отличие от кристаллов аморфные тела изотропны по свойствам, не имеют определенной температуры плавления и характеризуются достаточно широким температурным интервалом размягчения. Наглядным примером аморфных веществ могут служить стекла и многие пластинки. В стеклах при отсутствии периодичности в строении можно наблюдать определенный ближний порядок, т. е. закономерное расположение ближайших соседей относительно каждого атома. Стеклообразное состояние можно рассматривать как состояние сильно переохлажденной жидкости, т. е. жидкости с очень высокой вязкостью. Именно высокая вязкость ограничивает диффузионную активность атомов и препятствует образованию кристаллической фазы. Однако такое состояние термодинамически неустойчиво. Поэтому при отжиге может происходить «расстекловывание» материала, т. е. переход в более устойчивое кристаллическое состояние.

1.4. Элементы зонной теории твердого тела

Зонная теория является основой современных представлений о механизмах различных физических явлений, происходящих в твердом кристаллическом веществе при воздействии на него электромагнитного поля. Зонная теория твердого тела – это теория валентных электронов, движущихся в периодическом потенциальном поле, кристаллической решетки.

Как отмечалось, отдельные атомы имеют дискретный энергетический спектр, т. е. электроны могут занимать лишь вполне определенные энергетические уровни.

Часть этих уровней заполнена при нормальном, невозбужденном состоянии атома, на других уровнях электроны могут находиться толь­ко тогда, когда атом подвергнется внешнему энергетическому воздей­ствию, т. е. когда он возбужден. Стремясь к устойчивому состоянию, атом излучает избыток энергии в момент перехода электронов с возбужденных уровней на уровни, на которых его энергия минимальна. Сказанное характеризуется энергетической диаграммой атома, приведенной на рис. 1.11,а.


Рис. 1.11. Схема расположения энергетических уровней:

а – уединенного атома; б – неметаллического твердого тела
Если имеется система из N одинаковых атомов, достаточно удаленных друг от друга (например, газообразное вещество), то взаимодействие между атомами практически отсутствует и энергетические уровни электронов остаются без изменений.

Обменное взаимодействие. При конденсации газообразного вещества в жидкость, а затем при образовании кристаллической решетки твердого тела все имеющиеся у атомов данного типа электронные уровни (как заполненные электронами, так и незаполненные) несколько смещаются вследствие действия соседних атомов друг на друга. В частности, притяжение электронов одного атома ядром соседнего снижает высоту потенциального барьера, разделяющего электроны в уединенных атомах. Главное состоит в том, что при сближении атомов происходит перекрытие электронных оболочек, а это, в свою очередь, существенно изменяет характер движения электронов. Благодаря перекрытию оболочек, электроны могут без изменения энергии посредством обмена переходить от одного атома к другому, т. е. перемещаться по кристаллу. Обменное взаимодействие имеет чисто квантовую природу и является следствием неразличимости электронов. В этом случае уже нельзя говорить о принадлежности того или иного электрона определенному атому – каждый валентный электрон принадлежит всем атомам кристаллической решетки одновременно. Иными словами, при перекрытии электронных оболочек происходит обобществление электронов.

Энергетические зоны. Вследствие обменного взаимодействия дискретные энергетические уровни изолированного атома расщепляются в энергетические зоны, как это показано для неметаллического твердого тела на рис. 1.11, б. Размещенные энергетические зоны разделены запрещенными интервалами энергии. Ширина разрешенных энергетических зон не зависит от размеров кристалла, а определяется лишь природой атомов, образующих твердое тело, и симметрией кристаллической решетки. Обозначим через ЭА энергию обменного взаимодействия между двумя соседними атомами. Тогда для кристаллов с простой кубической решеткой, где каждый атом имеет 6 ближайших соседей, расщепление уровней в зоны составит 12 ЭА; для гранецентрированной решетки (первая координационная сфера состоит из 12 атомов) ширина энергетической разрешенной зоны составит 24 ЭА, а в объемноцентрированной (у каждого атома 8 соседей) – 16 ЭА. Поскольку обменная энергия ЭА зависит от степени перекрытия электронных оболочек, то уровни энергии внутренних оболочек, которые сильнее локализованы вблизи ядра, расщепляются меньше, чем уровни валентных электронов. Расщеплению в зону подвержены не только нормальные (стационарные), но и возбужденные энергетические уровни. Ширина разрешенных зон при перемещении вверх по энергетической шкале возрастает, а величина запрещенных энергетических зазоров соответственно уменьшается.

Каждая зона состоит из множества энергетических уровней. Очевидно, их количество определяется числом атомов, составляющих твердое тело. Это значит, что в кристалле конечных размеров расстояние между уровнями обратно пропорционально числу атомов. В кристалле объемом в 1 см3 содержится 1022 – 1023 атомов. Экспериментальные данные показывают, что энергетическая протяженность зоны валентных электронов не превышает единиц электронвольт. Отсюда можно сделать вывод, что уровни в зоне отстоят друг от друга по энергии на
10-22 – 10-23 эВ, т. е. энергетическая зона характеризуется квазинепрерывным спектром. Достаточно ничтожно малого энергетического воздействия, чтобы вызвать переход электронов с одного уровня на другой, если там имеются свободные состояния.

Распределение электронов. В соответствии с принципом Паули на каждом энергетическом уровне может находиться не более двух электронов, причем с противоположным направлением спинового магнитного момента. Поэтому число электронных состояний в зоне оказывается конечным и равным числу соответствующих атомных состояний. Конечным оказывается и число электронов, заполняющих данную энергетическую зону, что играет важную роль в формировании энергетического спектра кристалла.

Подобно энергетическим уровням в изолированных атомах энергетические зоны могут быть полностью заполненными, частично заполненными и свободными. Внутренние оболочки в изолированных атомах заполнены, поэтому соответствующие им зоны также оказываются заполненными.

Самую верхнюю из заполненных электронами зон называют валентной. Эта зона соответствует энергетическим уровням электронов внешней оболочки в изолированных атомах. Ближайшую к ней свободную, незаполненную электронами зону называют зоной проводимости. Взаимное положение этих двух зон определяет большинство процессов, происходящих в твердом теле.

Выводы зонной теории. Характер энергетического спектра у металлических проводников, полупроводников и диэлектриков существенно различен. В металлических проводниках валентная зона заполнена не полностью или перекрывается с зоной проводимости. В полупроводниках и диэлектриках зона проводимости и валентная зона разделены некоторым энергетическим зазором, называемым запрещенной зоной. Формально к полупроводникам относят вещества, у которых запрещенная зона меньше 3 эВ. Вещества с более широкой запрещенной зоной относят к диэлектрикам. У реальных диэлектриков ширина запрещенной зоны может достигать 10 эВ. Различие в положении энергетических зон у диэлектриков, полупроводников и металлических проводников показано на рис. 1.12.



Рис. 1.12. Энергетическое отличие диэлектриков от полупроводников

и металлических проводников с точки зрения зонной теории твердого

тела: 1 – заполненная электронами зона; 2 – зона свободных

энергетических уровней; 3 – запрещенная зона шириной ?Э
Согласно зонной теории, электроны валентной зоны имеют практически одинаковую свободу движения во всех твердых телах независимо от того, являются ли они металлами или диэлектриками. Движение осуществляется путем туннельного перехода электронов от атома к атому. Для объяснения различий в электрических свойствах материалов надо принять во внимание различную реакцию на внешнее электрическое поле электронов заполненной и незаполненной зон. Внешнее электрическое поле стремится нарушить симметрию в распределении электронов по скоростям, ускоряя электроны, движущиеся в направлении действующих электрических сил, и замедляя частицы с противоположно направленным импульсом. Однако подобное ускорение и замедление связано с изменением энергии электронов, что должно сопровождаться переходом их в новые квантовые состояния. Очевидно, такие переходы могут осуществляться лишь в том случае, если в энергетической зоне имеются свободные уровни. В типичных случаях добавочная энергия, приобретаемая электронами на длине свободного пробега под действием электрического поля, составляет 10-3 – 10-4 эВ, т. е. намного превосходит расстояние между подуровнями в зоне.

В металлах, где зона не полностью укомплектована электронами, даже слабое поле способно сообщить электронам достаточный импульс, чтобы вызвать их переход на близлежащие свободные уровни. По этой причине металлы являются хорошими проводниками электрического тока.

В полупроводниках и диэлектриках при температуре 0 К все электроны находятся в валентной зоне, а зона проводимости абсолютно свободна. Электроны полностью заполненной зоны не могут принимать участия в создании электрического тока. Для появления электропроводности необходимо часть электронов перевести из валентной зоны в зону проводимости. Энергии электрического поля недостаточно для осуществления такого перехода, требуется более сильное энергетическое воздействие, например нагревание твердого тела.

Cредняя кинетическая энергия тепловых колебаний атомов в кристаллической решетке приблизительно равна (3/2)kT. При комнатной температуре эта величина составляет приблизительно 0,04 эВ, что в общем случае существенно меньше ширины запрещенной зоны ?Э. Однако следует иметь в виду, что тепловая энергия неравномерно распределяется между частицами. В каждый момент времени имеется небольшое число атомов, у которых амплитуда и энергия тепловых колебаний значительно превышают среднее значение. В процессе тепловых колебаний атомы взаимодействуют не только друг с другом, но и с электронами, передавая им часть тепловой энергии. Именно за счет таких тепловых флуктуаций некоторые из электронов могут перейти из валентной зоны в зону проводимости. Очевидно, чем выше температура и меньше запрещенная зона, тем выше интенсивность межзонных переходов. У диэлектриков запрещенная зона может быть настолько велика, что электронная электропроводность не играет определенной роли.

При каждом акте возбуждения и перехода электронов в зону проводимости появляются энергетические вакансии в распределении электронов по состояниям валентной зоны, называемые «дырками». При наличии дырок электроны валентной зоны могут совершать эстафетные переходы с уровня на уровень. Во внешнем электрическом поле дырка движется противоположно движению электрона, т. е. ведет себя как некоторый положительный заряд с отрицательной эффективной массой. Таким образом, дырки обеспечивают участие валентных электронов в процессе электропроводности.

Процесс перехода электронов в свободное состояние сопровождается и обратным явлением, т. е. возвратом электронов в нормальное состояние. В результате в веществе при любой температуре наступает динамическое равновесие т. е количество электронов, переходящих в свободную зону, становится равным количеству электронов, возвращающихся обратно в нормальное состояние. С повышением температуры число свободных электронов в полупроводнике возрастает, а с понижением температуры до абсолютного нуля – убывает вплоть до нуля.

Значит, вещество, представляющее собой при одних температурах диэлектрик, при других более высоких приобретает проводимость, т. е. наступает новое качественное состояние вещества. Различие между проводимостями двух типов материалов – металлов и неметаллов – наиболее значительно при температурах, приближающихся к абсолютному нулю; различие же между двумя классами неметаллов – полупроводниками и диэлектриками – исчезает по мере приближения температуры к абсолютному нулю.



Рис. 1.13. Распределение плотности состояний в энергетической зоне
Электроны, находящиеся в зоне проводимости, нельзя считать абсолютно свободными. Такие электроны неизбежно будут взаимодействовать с периодическим потенциальным полем кристаллической решетки. При математическом описании поведения электронов в зоне проводимости пользуются понятием эффективной массы. Эффективная масса не определяет ни инерционных, ни гравитационных свойств электрона, однако вводя понятие эффективной массы, можно движение реального электрона в кристалле с массой т0 описывать как движение абсолютно свободного электрона, т. е. эффективная масса учитывает сложный характер взаимодействия электрона с кристаллической решеткой при его движении под действием силы внешнего электрического поля. Эффективная масса может во много раз отличаться от массы свободного электрона.

Упрощенная диаграмма, изображенная на рис. 1.11,б, не учитывает то обстоятельство, что состояния внутри энергетической зоны распределены неравномерно. С помощью квантовой механики можно показать, что плотность состояний N(Э) будет наибольшей в середине энергетической зоны (рис. 1.13). Кроме того, плотность состояний, т. е. их число на единичный интервал энергии, вблизи краев зоны с увеличением энергии возрастает по параболическому закону:

, (1.1)

где — эффективная масса электрона.

Ширина запрещенной зоны меняется с изменением температуры. Это происходит по двум основным причинам: из-за изменения амплитуды тепловых колебаний атомов решетки и из-за изменения междуатомных расстояний, т. е. объема тела. С ростом температуры возрастает амплитуда тепловых колебаний атомов, увеличивается степень их взаимодействия и степень расщепления энергетических уровней. Поэтому разрешенные зоны становятся шире, а запрещенные – соответственно уже.

При изменении межатомных расстояний в зависимости от характе­ра расщепления уровней ширина запрещенной зоны может как увеличиваться, так и уменьшаться (рис. 1.11). Аналогичные изменения ширины зоны происходят под действием давления на кристалл, поскольку при этом изменяются межатомные расстояния.

Энергию, необходимую для перевода электрона в свободное состоя­ние или для образования дырки, может дать не только тепловое движение, но и другие источники энергии, например поглощенная ма­териалом энергия света, энергия потока электронов и ядерных частиц, энергия электрических и магнитных полей, механическая энергия т. д. Увеличение же числа свободных электронов или дырок под воздействием какого-либо вида энергии способствует повышению электропроводности, увеличению тока, появлению электродвижущих сил.

Электрические свойства определяются условиями взаимодействия и расстояниями между атомами вещества и не являются непременной особенностью данного атома. Как было показано, углерод в виде алмаза является диэлектриком, а в виде графита он обладает большой проводимостью.

Примеси и точечные дефекты, нарушающие строгую периодичность структуры, создают особые энергетические уровни, которые располагаются в запрещенной зоне идеального кристалла. Если примесные атомы или дефекты расположены достаточно далеко друг от друга, то взаимодействие между ними отсутствует, а соответствующие им энергетические уровни оказываются дискретными. Поскольку туннельные переходы электронов между удаленными примесными атомами практически невозможны, то дополнительные электронные состояния локализованы в определенном месте решетки, т. е. на дефекте структуры. При достаточно высокой концентрации примесных атомов расстояния между ними сравнимы с размерами атомов, благодаря чему возможно перекрытие электронных оболочек ближайших атомов примеси. В этом случае дискретные энергетические уровни примесей расщепляются в энергетическую зону примесных состояний, способную обеспечить проводимость, если не все уровни в этой зоне заполнены электронами. Таким образом, электрические свойства всех твердых тел определяют теоретически с единой точки зрения – энергия возбуждения носителей заряда или энергия активации электропроводности равна нулю у металлов и непрерывно возрастает в ряду полупроводников, условно переходящих при увеличении этой энергии в ряд диэлектриков; хорошо проводящие металлы и хорошо изолирующие диэлектрики представляют собой крайние члены того непрерывного ряда, в котором можно расположить твердые тела по этому признаку. Подводя итог сказанному, следует подчеркнуть, что зонная теория строго применима к твердым телам с ковалентными и металлическими связями.

Разделение твердых тел на полупроводники и диэлектрики носит в значительной мере условный характер. По мере того как в качестве полупроводников начинают использоваться материалы со все более широкой запрещенной зоной, деление тел на полупроводники и диэлектрики постепенно утрачивает свой изначальный смысл.
Вопросы для самопроверки

1. Приведите общую классификацию материалов, используемых в электронной технике.

2. Каковы основные виды химической связи в материалах и чем они обусловлены?

3. В чем различия между монокристаллами, поликристаллическими и аморфными веществами?

4. Приведите примеры точечных и протяженных дефектов структуры в реальных кристаллах.

5. Охарактеризуйте явление полиморфизма. Приведите примеры полиморфных веществ.

6. Почему при образовании твердого тела энергетические уровни атомов расщепляются в энергетические зоны?

7. От чего зависит ширина разрешенной зоны и число уровней в ней?

8. Чем различаются зонные структуры проводника, полупроводника и диэлектрика?

9. В чем различие между электронами проводимости и свободными электронами?
  1   2   3   4   5   6


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации