Физика 1 курс 2 семестр - файл n1.doc

приобрести
Физика 1 курс 2 семестр
скачать (1846.5 kb.)
Доступные файлы (1):
n1.doc1847kb.14.09.2012 23:28скачать

n1.doc

  1   2   3   4   5   6   7   8   9
§ 77. Закон сохранения электрического заряда

Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягива­ет легкие предметы. Английский врач Джильберт (конец XVI в.) назвал тела, способные после натирания притягивать легкие предметы, наэлектризованными. Сейчас мы говорим, что тела при этом приобретают электрические заряды. Не­смотря на огромное разнообразие веществ в природе, существует только два типа электрических зарядов: заряды, подобные возникающим на стекле, потертом о кожу (их назвали положительными), и заряды, подобные возникающим на эбоните, по­тертом о мех (их назвали отрицательны­ми); одноименные заряды друг от друга отталкиваются, разноименные — притяги­ваются.

Опытным путем (1910—1914) амери­канский физик Р. Милликен (1868 — 1953) показал, что электрический заряд дискре­тен, т. е. заряд любого тела составляет целое кратное от элементарного электриче­ского заряда е (e= 1,6•10-19 Кл). Элек­трон е = 9,11•10-31 кг) и протон р=1,67•10-27 кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.

Все тела в природе способны электри­зоваться, т. е. приобретать электрический заряд. Электризация тел может осуще­ствляться различными способами: сопри­косновением (трением), электростатической индукцией и т.д. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положи­тельного заряда, а на другом (или другой части тела) — избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменя­ется: эти заряды только перераспределя­ются между телами.

Из обобщения опытных данных был установлен фундаментальный закон при­роды, экспериментально подтвержденный в 1843 г. английским физиком М. Фараде­ем (1791 —1867),— закон сохранения за­ряда: алгебраическая сумма электриче­ских зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.

Электрический заряд — величина ре­лятивистски инвариантная, т. е. не за­висит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.

В зависимости от концентрации сво­бодных зарядов тела делятся на проводни­ки, диэлектрики и полупроводники. Про­водники — тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две груп­пы: 1) проводники первого рода (метал­лы) — перенесение в них зарядов (свобод­ных электронов) не сопровождается хими­ческими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот) — перенесение в них зарядов (положительных и отрица­тельных ионов) ведет к химическим изме­нениям. Диэлектрики (например, стекло, пластмассы) — тела, в которых практиче­ски отсутствуют свободные заряды. Полу­проводники (например, германий, крем­ний) занимают промежуточное положение между проводниками и диэлектриками. Указанное деление тел является весьма условным, однако большое различие в них концентраций свободных зарядов обуслов­ливает огромные качественные различия в их поведении и оправдывает поэтому деление тел на проводники, диэлектрики и полупроводники.

Единица электрического заряда (про­изводная единица, так как определяется через единицу силы тока) — кулон (Кл) — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с.
§ 78. Закон Кулона

Закон взаимодействия неподвижных то­чечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутиль­ных весов, подобных тем, которые (см. §22) использовались Г.Кавендишем для определения гравитационной постоян­ной (ранее этот закон был открыт Г. Ка­вендишем, однако его работа оставалась неизвестной более 100 лет). Точечным на­зывается заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до дру­гих заряженных тел, с которыми он взаи­модействует. Понятие точечного заряда, как и материальной точки, является физи­ческой абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, про­порциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:



где k — коэффициент пропорционально­сти, зависящий от выбора системы единиц.

Сила F направлена по прямой, соеди­няющей взаимодействующие заряды, т. е. является центральной, и соответству­ет притяжению (F<0) в случае разно­именных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой.

В векторной форме закон Кулона име­ет вид

где F12— сила, действующая на заряд Q1 со стороны заряда Q2, r12радиус-век­тор, соединяющий заряд Q2 с зарядом Q1, r= |r12| (рис. 117). На заряд Q2 со сторо­ны заряда Q1 действует сила F21=-F12, т. е. взаимодействие электрических точеч­ных зарядов удовлетворяет третьему за­кону Ньютона.

В СИ коэффициент пропорционально­сти равен

k=1/(40).

Тогда закон Кулона запишется в оконча­тельном виде:



Величина 0 называется электрической постоянной; она относится к числу фунда­ментальных физических постоянных и равна

0=8,85•10-12Кл2/(Н•м2),

или

0=8,85•10-12Ф/м, (78.3)

где фарад (Ф) — единица электрической емкости (см. §93). Тогда

1/(40) = 9•109м/Ф.
§ 79. Электростатическое поле. Напряженность электростатического поля

Если в пространство, окружающее элек­трический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружаю­щем электрические заряды, существует силовое поле. Согласно представлениям современной физики, поле реально су­ществует и наряду с веществом является одной из форм существования материи, посредством которого осуществляются оп­ределенные взаимодействия между макро­скопическими телами или частицами, вхо­дящими в состав вещества. В данном слу­чае говорят об электрическом поле — поле, посредством которого взаимодей­ствуют электрические заряды. Мы будем рассматривать электрические поля, кото­рые создаются неподвижными электриче­скими зарядами и называются электроста­тическими.

Для обнаружения и опытного исследо­вания электростатического поля использу­ется пробный точечный положительный заряд — такой заряд, который не искажа­ет исследуемое поле (не вызывает пере­распределения зарядов, создающих поле). Если в поле, создаваемое зарядом Q, по­местить пробный заряд Q0, то на него действует сила F, различная в разных точках поля, которая, согласно закону Ку­лона (78.2), пропорциональна пробному заряду Q0. Поэтому отношение F/Q0 не зависит от Q0 и характеризует электриче­ское поле в той точке, где пробный заряд находится. Эта величина называется на­пряженностью и является силовой харак­теристикой электростатического поля.

Напряженность электростатического поля в данной точке есть физическая вели­чина, определяемая силой, действующей на единичный положительный заряд, по­мещенный в эту точку поля:

E=F/Q0. (79.1)

Как следует из формул (79.1) и (78.1), напряженность поля точечного заряда в вакууме



или в скалярной форме



Направление вектора Е совпадает с на­правлением силы, действующей на поло­жительный заряд. Если поле создается положительным зарядом, то вектор Е на­правлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положительного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду (рис. 118).

Из формулы (79.1) следует, что единица напряженности электростати­ческого поля — ньютон на кулон (Н/Кл): 1 Н/Кл — напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл=1 В/м, где В (вольт) — единица потенциала электростатического поля.

Графически электростатическое поле изображают с помощью линий напряжен­ности — линий, касательные к которым в каждой точке совпадают с направлением вектора Е (рис. 119). Линиям напряжен­ности приписывается направление, со­впадающее с направлением вектора на­пряженности. Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Для однородного поля (когда вектор на­пряженности в любой точке постоянен по величине и направлению) линии напря­женности параллельны вектору напряжен­ности. Если поле создается точечным за­рядом, то линии напряженности — ради­альные прямые, выходящие из заряда, если он положителен (рис. 120, а), и вхо­дящие в него, если заряд отрицателен (рис. 120, б). Вследствие большой нагляд­ности графический способ представления электрического поля широко применяется в электротехнике.

Чтобы с помощью линий напряженно­сти можно было характеризовать не толь­ко направление, но и значение напряжен­ности электростатического поля, услови­лись проводить их с определенной густо­той (см. рис. 119): число линий напряжен­ности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно моду­лю вектора Е. Тогда число линий напря­женности, пронизывающих элементарную площадку dS, нормаль n которой образует угол  с вектором Е, равно ЕdScos= Еп dS, где Еnпроекция вектора Е на нормаль n к площадке dS (рис. 121). Ве­личина

E=EndS = EdS

называется потоком вектора напряженно­сти через площадку dS. Здесь dS == dSn — вектор, модуль которого равен dS, а направление совпадает с направ­лением нормали n к площадке.

Выбор направления вектора n (а следовательно, и dS) условен, так как его можно на­править в любую сторону.

Единица потока вектора напряженно­сти электростатического поля— 1 В•м..

Для произвольной замкнутой повер­хности S поток вектора Е через эту по­верхность



где интеграл берется по замкнутой по­верхности S. Поток вектора Е является алгебраической величиной: зависит не только от конфигурации поля Е, но и от выбора направления п. Для замкнутых поверхностей за положительное направле­ние нормали принимается внешняя нор­маль, т. е. нормаль, направленная наружу области, охватываемой поверхностью.

В истории развития физики имела место борьба двух теорий: дальнодействия и близкодействия. В теории дальнодейст­вия принимается, что электрические явле­ния определяются мгновенным взаимодей­ствием зарядов на любых расстояниях. Согласно теории близкодействия, все электрические явления определяются из­менениями полей зарядов, причем эти из­менения распространяются в пространстве от точки к точке с конечной скоростью. Применительно к электростатическим по­лям обе теории дают одинаковые резуль­таты, хорошо согласующиеся с опытом. Переход же к явлениям, обусловленным движением электрических зарядов, приво­дит к несостоятельности теории дально­действия, поэтому современной теорией взаимодействия заряженных частиц явля­ется теория близкодействия.

§ 80. Принцип суперпозиции электростатических полей

Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвиж­ных зарядов q1, q2, ..., Qn.

Опыт показывает, что к кулоновским силам применим рассмотренный в механи­ке принцип независимости действия сил (см. §6), т.е. результирующая сила F, действующая со стороны поля на пробный заряд Q0, равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Qi:

Согласно (79.1), F=Q0E и Fi,=Q0Ei, где Е—напряженность результирующего по­ля, а Еi — напряженность поля, создавае­мого зарядом Qi. Подставляя последние выражения в (80.1), получим




Формула (80.2) выражает принцип су­перпозиции (наложения) электростатиче­ских полей, согласно которому напряжен­ность Е результирующего поля, создавае­мого системой зарядов, равна геометриче­ской сумме напряженностей полей, со­здаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рас­считать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Принцип суперпозиции применим для расчета электростатического поля элек­трического диполя.

Электрический диполь. Электрический ди­поль — система двух равных по модулю разноименных точечных зарядов ( + Q, -Q), расстояние l между которыми зна­чительно меньше расстояния до рассмат­риваемых точек поля. Вектор, направлен­ный по оси диполя (прямой, проходящей через оба заряда) от отрицательного за­ряда к положительному и равный расстоя­нию между ними, называется плечом дипо­ля l. Вектор

совпадающий по направлению с плечом диполя и равный произведению заряда

|Q| на плечо l, называется электрическим моментом диполя р или дипольным мо­ментом (рис. 122).

Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произвольной точке

Е=Е+ + Е-,

где Е+ и Е- — напряженности полей, со­здаваемых соответственно положительным и отрицательным зарядами. Воспользо­вавшись этой формулой, рассчитаем на­пряженность поля на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолже­нии оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси дипо­ля и по модулю равна

ЕA+-.

Обозначив расстояние от точки А до середины оси диполя через л, на основании формулы (79.2) для вакуума можно за­писать



Согласно определению диполя, l/2<


2. Напряженность поля на перпенди­куляре, восставленном к оси из его середи­ны, в точке В (рис. 123). Точка В равноу­далена от зарядов, поэтому

где r'— расстояние от точки В до середи­ны плеча диполя. Из подобия равнобед-




ренных треугольников, опирающихся плечо диполя и вектор ев, получим



откуда

ЕB+l/r'. (80.5)

Подставив в выражение (80.5) значение (80.4), получим



Вектор ЕB имеет направление, противопо­ложное электрическому моменту диполя (вектор р направлен от отрицательного заряда к положительному).
§81. Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью при­нципа суперпозиции электростатических полей можно значительно упростить, ис­пользуя выведенную немецким ученым К. Гауссом (1777—1855) теорему, опреде­ляющую поток вектора напряженности электрического поля через произвольную замкнутую поверхность.

В соответствии с формулой (79.3) по­ток вектора напряженности сквозь сфери­ческую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124),



Этот результат справедлив для замкнутой поверхности любой формы. Действитель­но, если окружить сферу (рис. 124) про­извольной замкнутой поверхностью, то каждая линия напряженности, пронизыва­ющая сферу, пройдет и сквозь эту по­верхность.

Если замкнутая поверхность произ­вольной формы охватывает заряд (рис. 125), то при пересечении любой вы­бранной линии напряженности с поверхно­стью она то входит в нее, то выходит из нее. Нечетное число пересечений при вы­числении потока в конечном счете сводит­ся к одному пересечению, так как поток считается положительным, если линии на­пряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Если замкнутая поверх­ность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в повер­хность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности лю­бой формы, если она замкнута и заключа­ет в себя точечный заряд Q, поток вектора Е будет равен Q/0, т. е.



Знак потока совпадает со знаком заряда Q. Рассмотрим общий случай произволь­ной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемо­го всеми зарядами, равна сумме напря-женностей Еi, создаваемых каждым за­рядом в отдельности:;. Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi/0. Следовательно,



Формула (81.2) выражает теорему Га­усса для электростатического поля в ваку­уме: поток вектора напряженности элек­тростатического поля в вакууме сквозь произвольную замкнутую поверхность ра­вен алгебраической сумме заключенных внутри этой поверхности зарядов, делен­ной на 0. Эта теорема выведена матема­тически для векторного поля любой при­роды русским математиком М. В. Остро­градским (1801 —1862), а затем неза­висимо от него применительно к электро­статическому полю — К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой

объемной плотностью =dQ/dV, различной

в разных местах пространства. Тогда сум­марный заряд, заключенный внутри замкнутой поверхности S, охватывающей не­который объем V,



Используя формулу (81.3), теорему Гаус­са (81.2) можно записать так:


§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотно­стью +  (=dQ/dS—заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим ци­линдр, основания которого параллельны заря­женной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cos=0), то поток вектора напряженности сквозь боковую повер­хность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с Е), т.е. равен 2ES. Заряд, заключенный внутри построенной цилин­дрической поверхности, равен S. Согласно теореме Гаусса (81.2), 2ES = S/0, откуда

E=/(20). (82.1)

Из формулы (82.1) вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно.

2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разнои­менными зарядами с поверхностными плотно­стями + и -. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верх­ние стрелки соответствуют полю от положитель­но заряженной плоскости, нижние — от отрица­тельной плоскости. Слева и справа от плоско­стей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E=0. В области между плоскостями E=E++E- (E+ и E-определяются по формуле (82.1)), поэтому ре­зультирующая напряженность

E=/0. (82.2)

Таким образом, результирующая напряжен­ность поля в области между плоскостями описы­вается формулой (82.2), а вне объема, ограни­ченного плоскостями, равна нулю.

3. Поле равномерно заряженной сфериче­ской поверхности. Сферическая поверхность ра­диуса R с общим зарядом Q заряжена равно­мерно с поверхностной плотностью +0. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией.

Поэтому линии напря­женности направлены радиально (рис. 128). Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R, то внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса (81.2), 4r2E=Q/0, откуда



При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. Гра­фик зависимости E от r приведен на рис. 129. Если r'<R, то замкнутая поверхность не со­держит внутри зарядов, поэтому внутри равно­мерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).

4. Поле объемно заряженного шара. Шар

радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью  (=dQ/dVзаряд, приходящийся на единицу объема). Учиты­вая соображения симметрии (см.п.3), можно показать, что для напряженности поля вне ша­ра получится тот же результат, что и в предыду­щем случае (см. (82.3)). Внутри же шара на­пряженность поля будет другая. Сфера радиуса r'<R охватывает заряд Q'=4/3r'3. Поэтому, согласно теореме Гаусса (81.2), 4r'2E=Q'/0=4/3r3/0. Учитывая, что =Q/(4/3R3), получим

Таким образом, напряженность ноля вне равно­мерно заряженного шара описывается форму­лой (82.3), а внутри его изменяется линейно с расстоянием r' согласно выражению (82.4). График зависимости E от r приведен на рис. 130.

5. Поле равномерно заряженного бесконеч­ного цилиндра (нити). Бесконечный цилиндр радиуса R (рис. 131) заряжен равномерно с линейной плотностью  (=dQ/dt — заряд, приходящийся на единицу длины). Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сече­ний цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим ко­аксиальный с заряженным цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность -2rlЕ. По теореме Гаусса (81.2), при r>R 2rlE = l/0, от­куда



Если r<R, то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E=0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилинд­ра определяется выражением (82.5), внутри же его поле отсутствует.
§ 83. Работа электрического поля. Циркуляция вектора напряженности электростатического поля

Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль про­извольной траектории (рис. 132) переме­щается другой точечный заряд Q0, то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном переме­щении dl равна



Работа при перемещении заряда Q0 из точки 1 в точку 2

не зависит от траектории перемещения, а определяется только положениями на­чальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциаль­ным, а электростатические силы — консер­вативными.

Из формулы (83.1) следует, что рабо­та, совершаемая при перемещении элек­трического заряда во внешнем электроста­тическом поле по любому замкнутому пути L, равна нулю, т. е.



Если в качестве заряда, переносимого в электростатическом поле, взять единич­ный точечный положительный заряд, то элементарная работа сил поля на пути dl равна Еdl=Eldl, где El=Ecos — про­екция вектора Е на направление элемен­тарного перемещения. Тогда формулу (83.2) можно записать в виде



Интеграл




называется циркуляцией вектора напряженности. Следо­вательно, циркуляция вектора напряжен­ности электростатического поля вдоль лю­бого замкнутого контура равна нулю. Силовое поле, обладающее свойством (83.3), называется потенциальным. Из об­ращения в нуль циркуляции вектора Е следует, что линии напряженности элек­тростатического поля не могут быть за­мкнутыми, они начинаются и кончаются на зарядах (соответственно на положи­тельных или отрицательных) или же ухо­дят в бесконечность.

Формула (83.3) справедлива только для электростатического поля. В дальней­шем будет показано, что для поля движу­щихся зарядов условие (83.3) не выпол­няется (для него циркуляция вектора на­пряженности отлична от нуля).
§ 84. Потенциал электростатического поля. Разность потенциалов.

Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. §12). Как из­вестно (см. (12.2)), работа консерватив­ных сил совершается за счет убыли по­тенциальной энергии. Поэтому работу

(83.1) сил электростатического поля мож­но представить как разность потенциаль­ных энергий, которыми обладает точечный заряд Q0 в начальной и конечной точках поля заряда Q:



откуда следует, что потенциальная энер­гия заряда Q0 в поле заряда Q равна



Она, как и в механике, определяется не однозначно, а с точностью до произволь­ной постоянной С. Если считать, что при удалении заряда в бесконечность (r->) потенциальная энергия обращается в нуль (U=0), то С=0 и потенциальная энергия заряда Q0, находящегося в поле заряда Q на расстоянии r от него, равна



Для одноименных зарядов Q0Q>0 и по­тенциальная энергия их взаимодействия (отталкивания) положительна, для разно­именных зарядов Q0Q<0 и потенциаль­ная энергия их взаимодействия (притяже­ния) отрицательна.

Если поле создается системой n точеч­ных зарядов Q1, Q2, ..., Qn, то работа электростатических сил, совершаемая над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым

из за­рядов в отдельности. Поэтому потенциаль­ная энергия U заряда Q0, находящегося в этом поле, равна сумме его потенциаль­ных энергий Ui, создаваемых каждым из зарядов в отдельности:



Из формул (84.2) и (84.3) вытекает, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической харак­теристикой электростатического поля, на­зываемой потенциалом:

=U/Q0. (84.4)

Потенциал  в какой-либо точке элек­тростатического поля есть физическая ве­личина, определяемая потенциальной энергией единичного положительного за­ряда, помещенного в эту точку.

Из формул (84.4) и (84.2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен



Работа, совершаемая силами элек­тростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (84.1), (84.4), (84.5)), может быть представлена как

A12==U1-U2=Q0(1-2), (84.6) т. е. равна произведению перемещаемого заряда на разность потенциалов в началь­ной и конечной точках. Разность потенци­алов двух точек 1 и 2 в электростатиче­ском поле определяется работой, соверша­емой силами поля, при перемещении единичного положительного заряда из точки 1 в точку 2.

Работа сил поля при перемещении за­ряда Q0 из точки 1 в точку 2 может быть записана также в виде



Приравняв (84.6) и (84.7), придем к вы­ражению для разности потенциалов:



где интегрирование можно производить вдоль любой линии, соединяющей началь­ную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.

Если перемещать заряд Q0 из произ­вольной точки за пределы поля, т. е. в бес­конечность, где по условию потенциал ра­вен нулю, то работа сил электростатиче­ского поля, согласно (84.6),

A=Q0,

Таким образом, потенциал — физическая величина, определяемая работой по пере­мещению единичного положительного за­ряда при удалении его из данной точки в бесконечность. Эта работа численно рав­на работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Из выражения (84.4) следует, что еди­ница потенциала — вольт (В): 1В есть потенциал такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1В=1Дж/Кл). Учиты­вая размерность вольта, можно показать, что введенная в § 79 единица напряжен­ности электростатического поля дейст­вительно равна 1 В/м: 1Н/Кл=1Н• м/(Кл•м)=1 Дж/(Кл•м)=1 В/м.

Из формул (84.3) и (84.4) вытекает, что если поле создается несколькими за­рядами, то потенциал поля системы за­рядов равен алгебраической сумме потен­циалов полей всех этих зарядов:




  1   2   3   4   5   6   7   8   9


§ 77. Закон сохранения электрического заряда
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации