Штриплинг Л.О., Туренко Ф.П. Основы очистки сточных вод и переработки твердых отходов - файл n1.doc

приобрести
Штриплинг Л.О., Туренко Ф.П. Основы очистки сточных вод и переработки твердых отходов
скачать (1101.6 kb.)
Доступные файлы (7):
n1.doc493kb.08.07.2005 14:51скачать
n2.doc613kb.07.07.2005 22:03скачать
n3.doc916kb.07.07.2005 22:21скачать
n4.doc574kb.08.07.2005 16:35скачать
n5.doc590kb.07.07.2005 22:56скачать
n6.doc352kb.08.07.2005 16:23скачать
n7.doc67kb.14.05.2005 15:34скачать

n1.doc



ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Л.О. Штриплинг, Ф.П. Туренко




Основы очистки сточных вод

и переработки твердых отходов


Учебное пособие

Допущено учебно-методическим объединение вузов по университетскому

политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению

656600 (280200) – «Защита окружающей среды»

(специальности 330200 (280202) – Инженерная защита окружающей среды)

Омск-2005


УДК 502 (075)

ББК 20. 18я 73

Ш 93

Рецензенты:

А.И. Григорьев, д-р биол. наук, проф. ОмГПУ ;

А.А. Файков, канд. геол.-минер.наук, начальник Отдела природопользования Министерства промышленной политики, транспорта и связи Омской области.

Штриплинг Л.О., Туренко Ф.П.

Ш 93 Основы очистки сточных вод и переработки твердых отходов: Учеб. посо-

бие.– Омск: Изд-во ОмГТУ, 2005. – 192 с.

ISBN


Учебное пособие составлено в соответствии с Государственным образовательным стандартом для очной и заочной форм обучения по специальности 280202 – «Инженерная защита окружающей среды» при изучении курса «Теоретические основы защиты окружающей среды».

В пособии изложены физико-химические процессы способов и технологий переработки промышленных отходов: твердых, сточных вод, газообразных выбросов и их воздействие на окружающую среду.

УДК 502 (075)

ББК 20. 18я 73


Печатается по решению редакционно-издательского совета Омского государственного технического университета
© Штриплинг Л.О.
Туренко Ф.П., 2005

© Омский государственный

ISBN технический университет, 2005

ВВЕДЕНИЕ



С ростом благосостояния и общего материально-технического потенциала общества усиливается тенденция глобальной деградации окружающей природной среды за счет нерегулируемого, неупорядоченного ресурсопотребления.

Истощение природных ресурсов составляет главный количественный критерий глобального экологического ущерба, резко ухудшающий условия жизни всех объектов биосферы. Изменения окружающей природной среды в результате глобального техногенеза породили проблему выживания общества.

Рост концентрации диоксида углерода приводит не только к росту средних температур, но и к изменению структуры атмосферной циркуляции, глобальному перераспределению осадков, а, следовательно, и изменению продуктивности биоты.

Загрязнение Мирового океана меняет характер энергообмена «океан – атмосфера» и уменьшает испарение с водной поверхности, являющейся основным источником влаги на Земле.

Вырубка лесов, увеличение площади пустынь, замена естественных ценозов узкоспециализированными агроценозами, осушение болот, создание искусственных водохранилищ меняют альбедо земной поверхности и структуру естественного круговорота химических элементов.

Кислотные дожди отравляют почву, губят урожаи, разрушают памятники старины, попадая в почву, они выщелачивают ее и уносят из нее такие питательные вещества, как кальций, магний, калий и натрий, убивая микроорганизмы. Проникая в тонкую структуру листьев и ветвей, кислотный дождь отравляет растения, опасно снижает интенсивность фотосинтеза и всхожесть семян.

Кислотные дожди загрязняют пищу и питьевую воду кислотными и ядовитыми металлами (ртуть, медь, свинец и др.), образующимися при разложении металлических и других предметов под действием на них кислотных дождей.

Реальная опасность погубить жизненную среду обитания на планете побудила промышленно развитые страны повернуться лицом к экологическим проблемам, выделяются огромные средства, призванные компенсировать ущерб, причиняемый природе, но это всего лишь полумеры, поскольку не изменяется ни в качественном, ни в количественном выражении сама поступь научно-технического «прогресса», оказывающего все возрастающее негативное влияние своим промышленным, индустриальным воздействием на все природные объекты.

Интеллектуальные истоки современного научно-технического прогресса не одухотворены той необходимой культурой знаний, которая позволяет использовать опыт всех времен и поколений во имя процветания живого организма планеты, гармонии природы и общества.

Приходится развертывать деятельность по ликвидации результатов деятельности. Необходимо воздействовать на биосферу, адаптируя ее к нашим целям и потребностям, а сами эти цели и потребности адаптировать к возможностям биосферы, меняя многие привычные для нас стандарты. Комплексное понимание системы «Человек – Природа» и ее изменений как гармонического развития человеческой деятельности и природы составляет интеллектуальный базис экологизации современного научно-технического прогресса, который должен опираться на следующие принципы:

1. Духовное начало жизни является основой экологической морали, способствующей выживанию природы и общества.

2. Образование и воспитание будущего специалиста должно строиться на принципах экологического мышления.

3. Главная заповедь инженера – «не повреди биосферу».

4. Мыслить глобально, действовать – локально.

5. Реализация экологически репрезентативных моделей управления техносферой в масштабах отдельных территорий и планеты в целом.

6. Развитие норм хозяйствования на основе коэволюции человека и биосферы.

7. Комплексная унификация экологических критериев защиты природы на основе единых норм рационального использования природных ресурсов.

8. Единство действий вытекает из единства природы.

9. Наука, техника, производство должны оцениваться и развиваться только в ключе экологической состоятельности на текущий момент и перспективу.

10. Экологическая когерентность всех направлений научно-технической деятельности.

Ни одно инженерное обоснование не обходится без расчета. Но в лабиринте математических формул и обозначений необходимо видеть живую душу Природы, которой предстоит принять на себя творение рук человеческих. Расчет – весьма ответственный инструмент в арсенале инженера. Он может вывести нас на такие цифры, которые будут одних устраивать, а других нет. Любая расчетная модель строится на тех или иных допущениях, ограничениях и прочих условностях, по которой затем предстоит работать конструктору, технологу, производственнику. Результат расчета зависит также от достоверности исходных данных, которые используют для получения конечных выводов.

До сих пор в задачах оптимизации преобладают прагматические тенденции, когда в качестве приоритетов выдвигаются потребительские интересы («всего побольше и подешевле»). Зачастую стремление к снижению себестоимости проекта вступает в противоречие с логикой сохранения качества окружающей среды, с логикой выживания.

Экологические ошибки и промахи отнюдь не всегда объективно неизбежны. И природа нередко становится заложницей тех псевдоэкологических обоснований, которые были воплощены в смертельные для нее технические проекты, облеченные сиюминутными хозяйственными интересами.

Современный инженер-эколог, это прежде всего человек, наделенный экологической культурой в своей профессиональной деятельности.

Это специалист, который:

• осознавая объективную неизбежность негативного влияния создаваемого им проекта, изыщет все возможные резервы для минимизации экологического риска и ущерба природной среде;

• в каждом конкретном случае выявит экологически оптимальный механизм сосуществования и поддержания устойчивого динамического равновесия естественного и искусственного;

• воспринимает принцип «не убий» в глубоко осознанном его значении, пронизывающем все аспекты инженерной деятельности.

Глава I. ОСНОВЫ ОЧИСТКИ СТОЧНЫХ ВОД




1. Показатели качества природных вод



Природные воды бывают поверхностные, подземные и биосферные. Поверхностные природные водные объекты разделяются на водоемы, водотоки, моря и океаны.

Качество природных и сточных вод определяется их составом и свойствами.

Нормирование качества воды рек, озер, водохранилищ проводят в соответствии с «Санитарными правилами и нормами охраны поверхностных вод от загрязнений». «Санитарные правила и правила охраны поверхностных вод от загрязнений» устанавливают две категории водоемов:

1 категория – водоемы питьевого и культурно-бытового назначения;

2 категория – водоемы рыбохозяйственного назначения.

Нормы качества воды устанавливаются с учетом вида водопользования.

Качество воды водных объектов определяется следующими основными показателями:

Предельно допустимая концентрация загрязняющего вещества (ПДК) – максимальная концентрация загрязняющих веществ в воде, при которой вещество не оказывает прямого или опосредованного влияния на здоровье человека (при воздействии на организм в течение всей жизни) и не ухудшает гигиенические условия водопользования.

ПДК вредных веществ, как показатель качества воды, устанавливается с учетом лимитирующего показателя вредности (ЛПВ) вредного вещества, под которым понимают наиболее вероятное неблагоприятное воздействие каждого вещества.

При нормировании качества воды в водных объектах 1-ой категории используют три вида ЛПВ: санитарно-токсикологический, общесанитарный, органолептический. Для водоемов 2-ой категории, наряду с указанными, используют еще два вида ЛПВ: токсикологический и рыбохозяйственный.

При оценке опасности загрязнения водных объектов используется соотношение:

С/ПДК<1,

где С – концентрация вредного вещества в водоеме, г/м3; ПДК – предельно допустимая концентрация вещества, г/м3.

Если значение соотношения больше единицы, то опасность загрязнения существует.

При поступлении в водные объекты нескольких веществ с одинаковыми ЛПВ, их концентрация должна удовлетворять условию:

С1/ПДК1 + С2/ПДК2 + …+ С n ПДКn<1,

где C1,n – фактические концентрации вредных веществ, г/м3; ПДК1,n – предельно допустимые концентрации этих веществ, г/м3.

Предельно допустимые сбросы (ПДС) в водный объект – это масса загрязняющего вещества в сточных водах, максимально допустимая к отведению в данном пункте водного объекта в единицу времени с целью обеспечения качества воды.

ПДС устанавливаются для предприятий, имеющих самостоятельные выпуски сточных вод.

ПДС для всех категорий водопользования определяется по формуле

ПДС = Q∙С,

где Q – расход сточных вод; С – концентрация веществ в сточных водах.

ПДС устанавливается по каждому веществу, в том числе и по веществам, относящимся к одной группе ЛПВ.

2. Классификация сточных вод



Сточная вода – это вода бывшая в употреблении, а также вода, прошедшая какую-либо загрязненную территорию.

В зависимости от условий образования сточные воды делятся на производственные, хозяйственно-бытовые, и атмосферные (или поверхностные).

Загрязняющие вещества по физическому состоянию можно разделить

По биохимическому составу загрязнения делятся на минеральные, органические и биологические.

К минеральным относятся – песок, глина (глинистые частицы), частицы руды, шлака, минеральных солей и другие.

Органические подразделяются по своему происхождению на растительные и животные. Растительные – это остатки растений, плодов, овощей, злаков, растительного масла и т.п. Органические загрязнения животного происхождения – это физиологические выделения людей и животных, остатки тканей животных, клеевые вещества и другие.

Бактериальные и биологические вносятся, главным образом, бытовыми сточными водами и стоками некоторых промышленных предприятий (кожевенные заводы, фабрики первичной обработки шерсти, предприятия микробиологической промышленности и т.п.). По степени агрессивности производственные сточные воды разделяют на слабоагрессивные (слабокислые и слабощелочные), сильноагрессивные (сильнокислые и сильнощелочные) и неагрессивные.

Производственные сточные воды образуются в результате использования воды в технологических процессах. Их количество и состав определяются типом предприятия, его мощностью, видами используемых технологических процессов, от состава исходной свежей воды и от местных условий, схемы водообеспечения водоотведения промышленных предприятий.

Производственные сточные воды содержат различные примеси и подразделяются на три группы:

1) Загрязненные преимущественно минеральными примесями (металлургическая, машиностроительная, рудо- и угледобывающая промышленность, заводы по производству минеральных удобрений, кислот, строительных материалов).

2) Загрязненные преимущественно органическими примесями (предприятия мясной, рыбной, молочной, пищевой, целлюлозно-бумажной, химической, микробиологической промышленности, заводы по производству пластмасс, каучука).

3) Загрязненные минеральными и органическими примесями (предприятия нефтедобывающей, нефтеперерабатывающей, нефтехимической, текстильной, легкой, фармацевтической промышленности, заводы по производству сахара, продуктов органического синтеза, витаминов, консервов).

Хозяйственно-бытовые – это стоки столовых, бань, прачечных, туалетов и другие. В бытовых сточных водах органические вещества в загрязнениях составляют примерно 58 % и минеральные – 42 %.

Атмосферные сточные воды образуются в результате выпадения атмосферных осадков и стекающие с территорий предприятий. Они загрязняются органическими и минеральными веществами.

На территории промышленных предприятий образуются сточные воды трех видов: бытовые, поверхностные и производственные.

Например, машиностроительные предприятия используют воду:

- на охлаждение (подогрев) исходных материалов и продукции, деталей и узлов технологического оборудования;

- приготовление различных технологических растворов;

- промывку, обогащение, очистку исходных материалов или продукции;

- хозяйственно-бытовое обслуживание.

Бытовые сточные воды предприятий образуются при эксплуатации на его территории душевых, туалетов, прачечных и столовых.

Поверхностные сточные воды промышленных предприятий образуются в результате смывания дождевой, талой и поливочной водой примесей скапливающихся на крышах и стенах производственных зданий и на территории предприятия. Основными примесями этих вод являются твердые частицы (песок, камень, стружки и опилки, пыль, сажа, остатки растений и деревьев и т.п.), нефтепродукты (масла, бензин, керосин), используемые в двигателях транспортных средств, а также органические и минеральные удобрения, используемые в заводских скверах, цветниках и теплицах.

Большое количество забираемой для обеспечения промышленных предприятий воды возвращается в водоемы с различной степенью загрязнения.

3. Методы очистки сточных вод



Существует большое количество способов очистки сточных вод и различные виды их классификации. Выбор способа очистки обычно определяется видом и концентрацией преобладающих примесей сточных вод: механических (взвешенных), растворенных и органических.

Существующие методы очистки сточных вод от примесей можно разделить на механические, физико-химические, химические, биологические и др. (рис. 1.1).

Механические методы очистки применяются для очистки сточных вод от взвешенных частиц путем процеживания, отстаивания, отделения взвешенных частиц с использованием центробежных сил, фильтрования.

Физико-химические методы используются для очистки сточных вод от растворенных примесей, также в некоторых случаях и от взвешенных частиц. Основными методами являются флотация, экстракция, нейтрализация, сорбция, ионообменная очистка, гиперфильтрация, электрохимическая очистка, озонирование, электрокоагуляция, эвапорация.

К химическим методам очистки сточных вод относятся нейтрализация, окисление и восстановление. Химическая очистка может применяться как самостоятельный вид очистки перед подачей производственных сточных вод в систему оборотного водоснабжения, а также в качестве предварительной очистки перед биологической или физико-химической очисткой. Ее применяют для извлечения различных компонентов, растворенных в сточных водах, а также для дизенфекции и обесцвечивания.

Биологическая (биотехнологическая) очистка применяется для очистки сточных вод от растворенных органических веществ. Она основана на способности микроорганизмов использовать для питания содержащиеся в сточных водах органические вещества (углеводы, спирты, белки и т.п.). Используется для очистки бытовых и производственных сточных вод. Очистка осуществляется на полях фильтрации, полях орошения, в биологических прудах, а также в специальных установках – биологических фильтрах, аэротенках и окситенках.
4. Механическая очистка сточных вод
Механическая очистка применяется для выделения из сточной воды нерастворенных минеральных и органических примесей. Она предназначена для подготовки производственных сточных вод к биологическому, физико-химическому или другому методу более глубокой очистки воды.

Механическая очистка состоит из процеживания через решетки, пескоулавливания, отстаивания и фильтрования. Типы и размеры этих сооружений зависят в основном от состава, свойств и расхода производственных сточных вод, а также от методов их дальнейшей обработки.

Обычно, механическая очистка является предварительным этапом очистки производственных сточных вод. Она обеспечивает выделение из сточных вод до 90 – 95 % взвешенных веществ и снижение органических загрязнений (по показателю БПКполн) до 20 – 25 %.




Высокий эффект очистки сточных вод достигается различными способами интенсификации гравитационного отстаивания – преаэрацией, биокоагуляцией, осветлением во взвешенном слое (отстойники-осветлители) или в тонком слое (тонкослойные отстойники), а также с помощью гидроциклонов.

Процесс более полного осветления сточных вод осуществляется фильтрованием – пропуском воды через слой различного зернистого материала (кварцевого песка, гранитного щебня, дробленого антрацита и керамзита, горелых пород, чугунолитейного шлака и других материалов) или через сетчатые барабанные фильтры и микрофильтры, через высокопроизводительные напорные фильтры и фильтры с плавающей загрузкой – пенополиуретановой или пенополистирольной.

Преимущество этих процессов заключается в возможности их применения без добавления химических реагентов.

Выбор метода очистки сточных вод зависит от размера взвешенных частиц. Размеры взвешенных частиц, содержащихся в производственных сточных водах изменяются в широких пределах (от 5·10 –9 до 5·10 –4 м), для частиц размером до 10 мкм конечная скорость осаждения составляет менее 10 –2 см/с. Если частицы достаточно велики (диаметром более 30 – 50 мкм), то они могут легко выделяться отстаиванием или процеживанием. Коллоидальные частицы (диаметром 0,1–1 мкм) могут быть удалены фильтрованием, однако из-за ограниченной емкости фильтрующего слоя более подходящим методом при концентрациях взвешенных частиц более 50 мг/л является коагуляция с последующим осаждением или осветлением во взвешенном слое.

Повышение технологической эффективности сооружений механической очистки очень важно при создании замкнутых систем водного хозяйства промышленных предприятий. Этому требованию удовлетворяют различные конструкции многополочных отстойников, сетчатых фильтров, фильтров с новыми видами зернистых и синтетических загрузок, гидроциклонов (напорных, безнапорных, многоярусных).

Очистные сооружения рассчитываются по максимальному расходу сточных вод или же по какому-либо среднему их расходу. Иногда следует проверять их объемы по минимальному расходу. На рис. 1.2. показана схема механической очистки производственных сточных вод. В состав очистных сооружений входят: решетки для задержания крупных загрязнений органического и минерального происхождения, песколовки для выделения тяжелых минеральных примесей (главным образом песка), усреднители расхода сточных вод и концентрации их загрязнений, отстойники или отстойники-осветлители для выделения нерастворимых примесей, фильтры для более полного осветления воды и сооружения для обработки осадка.

С целью обеспечения надежной работы сооружений механической очистки производственных сточных вод обычно применяют не менее двух рабочих единиц основного технологического назначения – решеток, песколовок, усреднителей, отстойников или фильтров.

В ряде случаев механическая очистка является единственным и достаточным способом для извлечения из производственных сточных вод механических загрязнений и подготовки их к повторному использованию в системах оборотного водоснабжения. При необходимости предусматривается охлаждение механически очищенной сточной воды в градирнях.
О
днако для некоторых производств требуется вода с меньшим содержанием взвешенных веществ, чем содержание, обеспечиваемое механической очисткой, поэтому необходима дополнительная физико-химическая и биологическая очистка. При повторном использовании биологически очищенной сточной воды в соответствии с санитарными нормами требуется применять хлорирование.

4.1. Процеживание



Процеживание предназначено для выделения из сточных вод крупных нерастворимых примесей размером до 25 мм, а также более мелких волокнистых загрязнений, которые в процессе дальнейшей обработки стоков препятствуют нормальной работе очистного оборудования. Процеживание сточных вод осуществляется пропусканием воды через решетки и волокноуловители.

Р
ешетки могут быть неподвижными, подвижными, а также совмещенными с дробилками (комминуторы). Наибольшее распространение имеют неподвижные решетки. Решетки, изготовленные из металлических стержней с зазором между ними 5 – 25 мм, устанавливают в коллекторах сточных вод вертикально или под углом 60 – 70° к горизонту. Стержни могут иметь круглое или прямоугольное сечение. Стержни с круглым сечением имеют меньшее сопротивление, но быстрей засоряются, поэтому чаще используют прямоугольные стержни, закругленные со стороны входа воды в решетку. Решетки очищают граблями, которые могут быть установлены по-разному (рис. 1.3)

Размеры поперечного сечения решеток выбирают из условия минимальных потерь давления потока на решетке. Скорость сточной воды в зазоре между стержнями решетки не должна превышать значений 0,8 – 1,0 м/с при максимальном расходе сточных вод. Расчет решеток сводится к определению числа зазоров п, ширины решетки В и потерь напора сточной воды на ней по формулам



где – объемный расход сточной воды; b – ширина прозоров между стержнями; H – глубина коллектора; wП – скорость движения сточной воды в прозорах;



где – толщина стержня;

,

где w – скорость в канале перед решеткой (w = 0,7–0,8 м/с); k – коэффициент, учитывающий увеличение сопротивления решетки в процессе осаждения в ее зазорах примесей сточных вод, принимается равным 2–З; ? – коэффициент местного сопротивления решеток; ; ? – коэффициент, характеризующий форму поперечного сечения стержней решетки: для круглых стержней ? = 1,79; прямоугольных – 2,42; овальных – 1,83; ? – угол наклона решетки к горизонту.

При эксплуатации решетки должны непрерывно очищаться, что обычно осуществляется механически, и лишь при задержании примесей в количествах менее 0,0042 м3/ч допускается ручная очистка. Примеси, снятые с решеток, измельчают на специальных дробилках и сбрасывают в поток сточной воды за решеткой или направляют на переработку. Однако эта процедура усложняет технологическую схему очистки сточных вод и ухудшает качество воздушной среды в помещениях очистных станций. Для устранения этих недостатков применяют решетки-дробилки, измельчающие задержанные примеси, не извлекая их из воды. Средний размер измельченных ими примесей не превышает 10 мм.

Наибольшее применение получили решетки следующих типов: решетки механические унифицированные типа РМУ и с механическими граблями типа МГ, предназначенные для извлечения из сточных вод крупных загрязнений с механизированной выгрузкой их непосредственно в контейнер или на транспортирующее устройство к дробилкам; комбинированные решетки-дробилки типов РД и КРД.

4.2. Отстаивание



Отстаивание применяют для осаждения из сточных вод грубодисперсных примесей. Осаждение происходит под действием силы тяжести. Для проведения процесса используют песколовки, отстойники и осветлители. В осветлителях одновременно с отстаиванием происходит фильтрация сточных вод через слой взвешенных частиц.

Обычно сточные воды содержат взвешенные частицы различной формы и размера. Такие воды представляют собой полидисперсные гетерогенные агрегативно-неустойчивые системы. В процессе осаждения размер, плотность и форма частиц, а также физические свойства системы изменяются. Кроме того, при слиянии различных по химическому составу сточных вод могут образовываться твердые вещества, в том числе и коагулянты. Эти явления также оказывают влияние на форму и размеры частиц. Все это усложняет установление действительных закономерностей процесса осаждения.

Свойства сточных вод отличаются от свойств чистой воды. Они имеют более высокую плотность и вязкость. Вязкость и плотность сточных вод, содержащих только взвешенные твердые частицы, равна





Объемная доля жидкой фазы вычисляется по соотношению



где и – динамическая вязкость сточной и чистой воды, Па·с; с0 –объемная концентрация взвешенных частиц, кг/м3; и – плотность соответственно чистой воды и твердых частиц, кг/м3; – объемная доля жидкой фазы; Vж и VТВ – объем жидкой и твердой фаз в сточной воде, м3.

Основным параметром, который используют при расчете отстойников, является wос – скорость осаждения частиц.

Для ламинарного, переходного и турбулентного режимов скорость свободного осаждения шарообразных частиц вычисляют по формуле



где – число Рейнольдса; – число Архимеда; d – диаметр частицы.

Для шарообразных частиц в формулы подставляют эквивалентный диаметр частиц , где Vч – объем частицы.

При отстаивании сточных вод наблюдается стесненное осаждение, которое сопровождается столкновением частиц, трением между ними и изменением скоростей как больших, так и малых частиц. Скорость стесненного осаждения меньше скорости осаждения свободного, вследствие возникновения восходящего потока жидкости и большей вязкости среды.

Скорость стесненного осаждения шарообразных частиц одинакового размера можно рассчитать при ламинарном режиме по формуле Стокса с поправочным коэффициентом, учитывающим влияние концентрации взвешенных частиц и реологические свойства системы:



Скорость осаждения полидисперсной системы непрерывно изменяется во времени. Вследствие агломерации частиц она может изменяться в несколько раз по сравнению с теоретической. Способность к агломерации зависит от концентрации, формы, размера и плотности взвешенных частиц, а также от соотношения частиц различного диаметра и вязкости среды.

Коэффициент агломерации характеризуется отношением Ка = dф/d0, где dф – фиктивный диаметр частицы, эквивалентный теоретической скорости ее осаждения. Для полидисперсных систем кинетику осаждения устанавливают опытным путем. Она характеризуется кривой, показанной на рис. 1.4.

При периодическом процессе осаждения взвешенные частицы в отстойнике распределяются неравномерно по высоте слоя сточных вод. Через какой-то промежуток времени после начала отстаивания в верхней части отстойника появляется осветленный слой жидкости. Чем ближе к дну отстойника, тем больше концентрация взвешенных частиц в сточной воде, а у самого дна образуется слой осадка. Во времени высота слоя осветленной жидкости и высота слоя осадка возрастают за счет промежуточных слоев. Через определенный промежуток времени в отстойнике будут находиться только слой осветленной жидкости и слой осадка. В дальнейшем, если осадок не удалить, он будет уплотняться с уменьшением высоты.
Песколовки

Песколовки применяют для выделения минеральных частиц, размером свыше 0,2 – 0,25 мм из сточных вод. В зависимости от направления движения сточной воды песколовки делят на горизонтальные с прямолинейным и круговым движением воды, вертикальные и аэрируемые песколовки.

Конструкцию песколовки выбирают в зависимости от количества сточных вод, концентрации взвешенных веществ. Наиболее часто используют горизонтальные песколовки.

Горизонтальные песколовки представляют собой резервуары с треугольным или трапецеидальным поперечным сечением. Глубина песколовок 0,25 – 1 м. Скорость движения воды в них не превышает 0,3 м/с.

На рис. 1.5. представлена схема горизонтальной песколовки с прямолинейным движением сточной воды, поступающей в песколовку (2) через входной патрубок (1). Оседающие в процессе движения воды твердые частицы скапливаются в шламосборнике (3) и на дне песколовки, а очищенная сточная вода через выходной патрубок 4 направляется для дальнейшей обработки.

Глубину h1 выбирают из условия ,

где – время движения воды в песколовке, составляет обычно 30...100 с.

Длину песколовки определяют по формуле

,

где w = 0,15...0,3 м/с – скорость движения воды в песколовке; k = 1,3…1,7–коэффициент, учитывающий влияние турбулентности и неравномерности скоростей движения сточной воды в песколовке.

Ширину В песколовки определяют с учетом реализации заданного расхода сточных вод (Q):



где п – число секций в песколовке.

Р
азновидностью горизонтальных песколовок являются песколовки с круговым движением воды в виде круглого резервуара конической формы с периферийным лотком для протекания сточной воды (рис. 1.6.). Горизонтальные песколовки с круговым движением сточной воды предназначаются для удаления песка из производственных сточных вод, имеющих нейтральную или слабощелочную реакцию.

Сточная вода подводится к песколовкам и отводится от них лотками. Подводящий лоток располагается в насыпи высотой до 5 м.

Для выключения песколовок из работы на подводящих и отводящих лотках в распределительной камере устанавливают затворы. Осадок из песколовок удаляют гидроэлеваторами. Подача рабочей жидкости к гидроэлеватору и отвод пульпы осуществляются самостоятельными напорными трубопроводами через камеру переключения, оборудованную задвижками.

А
эрируемые песколовки
(рис. 1.7.) применяются для выделения содержащихся в сточной воде минеральных частиц размером 13 – 18 мм/с. Скорость движения сточных вод составляет 0,08 – 0,12 м/с при максимальном притоке. Расчетная пропускная способность аэрируемой песколовки шириной 4,5 м на три отделения составляет 200 – 240 тыс. м3/сут сточных вод. Подвод сточной воды к песколовкам и отвод ее осуществляются открытыми лотками. Для системы аэрации используется воздух от насосно-воздуходувной станции.

Осадок смывается в бункер песколовки гидромеханической системой, включающей продольный лоток и трубопроводы со спрысками; осадок из бункера удаляется с помощью гидроэлеватора.

Крупные фракции осаждаются, как и в горизонтальных песколовках. Мелкие частицы, обволакиваясь пузырьками воздуха, всплывают наверх и с помощью скребковых механизмов удаляются с поверхности.

Длина аэрируемых песколовок вычисляется по формуле

.

Время пребывания сточной воды в песколовке составляет 30...90 с, wx = 0,1...0,2 м/с, удельный расход аэрируемого воздуха 0,00083...0,0014 м3/(м2·с).

Вертикальные песколовки имеют прямоугольную или круглую форму, в них сточные воды движутся с вертикальным восходящим потоком со скоростью 0,05 м/с.

Расчет вертикальных песколовок заключается в определении требуемой ее глубины в предположении w0>wу, где wу = 0,03...0,04 м/с – вертикальная составляющая скорости движения воды; время пребывания сточной воды в песколовке для практических расчетов принимают 120 с.
Отстойники

Отстойники используют для выделения из сточных вод твердых частиц размером менее 0,25 мм. По направлению движения сточной воды в отстойниках их делят на горизонтальные, вертикальные, радиальные и комбинированные.

Горизонтальные отстойники. Они представляют собой прямоугольные резервуары, имеющие два или более одновременно работающих отделения. Вода движется с одного конца отстойника к другому. Глубина отстойников (Н) равна 1,5 – 4 м, длина 8 – 12 Н, а ширина коридора 3 – 6 м. Равномерное распределение сточной воды достигается при помощи поперечного лотка. Горизонтальная скорость движения воды в отстойнике принимают не более 0,01 м/с.

Горизонтальные отстойники рекомендуется применять при расходах сточных вод свыше 15000 м3/сут. Продолжительность отстаивания – 1–3 ч. Эффективность отстаивания достигает 60 %.

При расчете отстойников определяют его длину и высоту. На рис. 1.8. представлена расчетная схема горизонтального отстойника.

Отстойник по длине разбит на три зоны: в первой зоне длиной l1 наблюдается неравномерное распределение скоростей по глубине потока. Длина этой зоны:

,

где h0 – высота движущегося слоя в начале отстойника, принимается равной 0,25 Н; k = (0,0184-0,02) wх.

Во второй зоне длиной l2 скорость потока считается постоянной. При движении в этой зоне большая часть частиц загрязнений должна осесть в иловую часть отстойника, поэтому

l2= (Hh1)wx / (w0 – 0,5wх),

где h1 – максимально возможная высота подъема частицы в первой зоне.

В третьей зоне длиной l3 скорость потока увеличивается, и условия осаждения частиц ухудшаются. Длина этой зоны определяется по формуле ,

где – угол сужения потока жидкости в выходной части отстойника, принимается равным 25–30°.

Для расчета длины отстойника L = l1 + l2 + l3 должны быть заданы: расход сточной воды и геометрические размеры поперечного сечения отстойника.
В
ертикальный отстойник
представляет собой цилиндрический (или квадратный в плане) резервуар с коническим днищем (рис. 1.9). Сточную воду подводят по центральной трубе. После поступления внутрь отстойника вода движется снизу вверх к желобу. Для лучшего ее распределения и предотвращения образования мути трубу делают с раструбом и распределительным щитом.

Таким образом, осаждение происходит в восходящем потоке, скорость которого равна 0,5–0,6 м/с. Высота зоны осаждения – 4 – 5 м.
Каждая частица движется с водой вверх со скоростью v и под действием силы тяжести вниз wос. Поэтому различные частицы будут занимать различное положение в отстойнике. При wос>v будут быстро оседать, при wос
Эффективность осаждения вертикальных отстойников на 10 – 20 % ниже, чем в горизонтальных.

Радиальные отстойники представляют собой круглые в плане резервуары. Вода в них движется от центра к периферии. При этом минимальная скорость наблюдается у периферии. Такие отстойники применяют при расходах сточных вод свыше 20 000 м3/сут. Глубина проточной части отстойника 1,5 – 5 м, а отношение диаметра к глубине от 6 до 30. Эффективность осаждения составляет 60 %.

Пластинчатые отстойники. Они имеют в корпусе ряд параллельно установленных наклонных пластин. Вода движется между пластинами, а осадок сползает вниз, в шламоприемник. Могут быть прямоточные отстойники, в которых направление движения воды и осадка совпадают; противоточные – вода и осадок движутся навстречу друг другу; перекрестные, в которых вода движется перпендикулярно движению осадка. Наиболее распространены противоточные отстойники.
Гидроциклоны

Отделение твердых примесей под действием центробежных сил осуществляется в открытых или напорных гидроциклонах и центрифугах.

Открытые (безнапорные) гидроциклоны применяют для отделения из сточных вод крупных твердых частиц со скоростью осаждения 0,02 м/с. Преимущества открытых гидроциклонов перед напорными – большая производительность и малые потери напора, не превышающие 0,5 кПа. Эффективность очистки сточных вод от твердых частиц в гидроциклонах зависит от характеристик примесей (вида материала, размеров и формы частиц и др.), а также от конструкционных и геометрических характеристик самого гидроциклона.

На рис. 1.10. представлена схема открытого гидроциклона, состоящего из входного патрубка (1), кольцевого водослива (2), трубы для отвода очищенной воды (3) и шламоотводящей трубы (4). Кроме указанной схемы известны гидроциклоны с нижним отводом очищенной воды и циклоны с внутренней цилиндрической перегородкой.

Производительность открытого гидроциклона

,

где D – диаметр цилиндрической части гидроциклона; q – удельный расход воды, определяемый по формуле

q = 4,32·w0

для открытых гидроциклонов с внутренней цилиндрической перегородкой

q = 7,15·w0.

При проектировании открытых гидроциклонов рекомендуются следующие значения геометрических характеристик:

D = 2…10 м.

Высота цилиндрической части Н=D; диаметр входного отверстия d=0,1D (при одном отверстии), при двух входных отверстиях d= 0,0707·D; угол конической части ? = 60°.

Напорные гидроциклоны используются для выделения из сточных вод грубодисперсных примесей, в основном минерального происхождения, плотность которых отличается от плотности жидкой среды сточных вод, в том числе: частиц песка, угля, окалины, компонентов керамики, стекла, строительных материалов и т. д

Из напорных гидроциклонов наибольшее распространение получил аппарат конической формы (рис. 1.11).

Сточную воду тангенциально подают внутрь гидроциклона. При вращении жидкости под действием центробежной силы внутри гидроциклона образуется ряд потоков. Жидкость, войдя в цилиндрическую часть, приобретает вращательное движение и движется около стенок по винтовой спирали вниз к сливу. Часть ее с крупными частицами удаляется из гидроциклона. Другая часть (осветленная) поворачивает и движется вверх около оси гидроциклона. Кроме того, возникают радиальные и замкнутые циркуляционные токи. В центре образуется воздушный столб, давление которого меньше атмосферного. Он оказывает влияние на эффективность гидроциклонов. Гидроциклоны изготовляются диаметром от 10 до 700 мм, высота цилиндрической части примерно равна диаметру аппарата. Угол конусности равен 10–20°.

Производительность напорных гидроциклонов определяют по формуле



где К1 – безразмерный коэффициент; Q – диаметр гидроциклона, м; dвх – диаметр входного патрубка, м; ?H – перепад давлений между сливным и входным патрубками, Па.

4.3. Фильтрование



Фильтрование сточных вод предназначено для очистки их от тонкодисперсных твердых примесей с небольшой концентрацией. Процесс фильтрования применяется также после физико-химических и биологических методов очистки, т. к. некоторые из этих методов сопровождаются выделением в очищаемую жидкость механических загрязнений.

Для очистки сточных вод промышленных предприятий используют два класса фильтров: зернистые, в которых очищаемую жидкость пропускают через насадки несвязанных пористых материалов, и микрофильтры, фильтроэлементы которых изготовлены из связанных пористых материалов.

Фильтры с зернистой перегородкой представляют собой резервуар, в нижней части которого имеется дренажное устройство для отвода воды. На дренаж укладывается слой поддерживающего материала, затем – фильтрующий материал.

Важной характеристикой пористой среды является порозность и удельная поверхность. Порозность зависит от структуры пористой среды и связана не только с размером зерен, но и с их формой и укладкой:



где ? – порозность, VB – объем, занимаемый телом. При ? = 0, среда превращается в сплошное тело, а при ? = 1 – в максимально пористое тело (размера стенок твердого вещества так малы, что VB ? 0).

Удельная поверхность слоя определяется не только общей порозностью, но и порозностью отдельных зерен, а также зависит от формы зерен:



где а – удельная объемная поверхность фильтрующего слоя, м23; ? – коэффициент формы зерен; dЭ – эквивалентный диаметр зерен, м.

По характеру механизма задерживания взвешенных частиц различают два вида фильтрования: 1) фильтрование через пленку (осадок) загрязнений, образующуюся на поверхности зерен загрузки; 2) фильтрование без образования пленки загрязнений.

В первом случае задерживаются частицы, размер которых больше пор материала, а затем образуется слой загрязнений, который является также фильтрующим материалом. Такой процесс характерен для медленных фильтров, которые работают при малых скоростях фильтрования.

Во втором случае фильтрование происходит в толще слоя загрузки, где частицы загрязнений удерживаются на зернах фильтрующего материала адгезионными силами. Такой процесс характерен для скоростных фильтров.

Фильтры с зернистым слоем подразделяют на медленные и скоростные, открытые и закрытые. Высота слоя в открытых фильтрах равна 1–2 м, в закрытых 0,5–1 м. Напор воды в закрытых фильтрах создается насосами.

Медленные фильтры используют для фильтрования некоагулированных сточных вод. Они представляют собой бетонные или кирпичные резервуары с дренажным устройством, на котором расположен зернистый слой. Скорость фильтрования в них зависит от концентрации взвешенных частиц: до 25 мг/л принимают скорость фильтрования 0,2 – 0,3 м/ч; при 25 – 30 мг/л – 0,1–0,2 м/ч.

Достоинством фильтров является высокая степень очистки сточных вод. Недостатки: большие размеры, высокая стоимость и сложная очистка от осадка.

Скоростные фильтры могут быть двух типов: однослойные и многослойные. У однослойных фильтров фильтрующий слой состоит из одного и того же материала, у многослойных – из различных материалов. Схема скоростного фильтра приведена на рис. 1.12.

С
точная вода подается по коллектору и через отверстия в нем равномерно распределяется по сечению фильтра. Нисходящий поток сточной воды проходит через слои фильтрующего материала и дренаж и удаляется из фильтра. После засорения фильтрующего материала проводят промывку подачей промывных вод снизу вверх. Дренажное устройство выполняют из пористобетонных сборных плит. На нем размещают фильтрующий материал (в 2 – 4 слоя) одного гранулометрического состава. Общая высота слоя загрузки равняется 1,5–2 м. Скорость фильтрования принимается равной 12 – 20 м/ч.

Выбор типа фильтра для очистки сточных вод зависит от количества фильтрующих вод, концентрации загрязнений и степени их дисперсности, физико-химических свойств твердой и жидкой фаз и от требуемой степени очистки.

Особенностью фильтра с подвижной загрузкой является вертикальное расположение фильтрующей загрузки и горизонтальное движение фильтруемой воды. Фильтрующим материалом служит кварцевый песок (1,5 – 3 мм) или гранитный щебень (3 – 10 мм). Схема фильтра показана на рис. 1.13.

Сточная вода подается в коллектор, откуда через каналы и отверстия поступает в фильтрующий слой. Очищенную воду отводят из фильтра через дренажную камеру. Загрязненный материал перекачивают гидроэлеватором по трубе в промывное устройство. Расчетная скорость фильтрации 15 м/ч; расход промывной воды 1 – 2% от производительности фильтра; необходимый напор перед фильтром 2 – 2,5 м. Эффективность очистки составляет 50 – 55%.
М
икрофильтры.
Процесс микрофильтрации заключается в процеживании сточной воды через сетки с отверстиями размером от 40 до 70 мкм. Барабанные сетки имеют ячейки размером от 0,3Ч0,3 до 0,5Ч0,5 мм. Микрофильтры применяют для очистки сточных вод от твердых и волокнистых материалов. Схема одного из микрофильтров показана на рис. 1.14.





Сточная вода поступает внутрь барабана и через отверстия проходит в камеру. Взвешенные вещества задерживаются на внутренней поверхности барабана и при промывке с промывной водой поступают в лоток. Барабан вращается с частотой 6 – 20 мин –1. Скорость фильтрации достигает 25 – 45 м3/(м2·ч).

При концентрации взвешенных частиц 15 – 20 мг/л эффективность очистки составляет 50 – 60 % в зависимости от состава и свойств сточных вод, размера ячеек и режима работы микрофильтров.

Магнитные фильтры обеспечивают степень очистки 80 %. Такие фильтры применяют для удаления мелких ферромагнитных частиц (0,5 – 5 мкм) из жидкостей. Помимо магнитных частиц фильтры улавливают абразивные частицы, песок и другие загрязнения. Этому способствует эффект электризации немагнитных частиц. Магнитные фильтры могут быть снабжены постоянным магнитом или электромагнитом, их производительность до 60 м3/ч.

При прохождении сточных вод ламинарным потоком через магнитное поле ферромагнитные частицы размером 0,5 – 1 мкм намагничиваются и образуют агломераты размером до 50 мкм, которые удаляются фильтрованием или осаждаются под действием гравитационного поля. Направление потока жидкости должно совпадать с направлением магнитного поля, т. к. при этом создаются наиболее благоприятные условия осаждения.

Магнитные сепараторы делят на три группы:

  1. сепараторы, в которых отделение ферромагнитных частиц идет непосредственно под действием постоянного магнита;

  2. сепараторы, в которых отделителями частиц служат специальные ферромагнитные элементы, помещенные в силовом поле постоянного магнита;

  3. фильтры-сепараторы, представляющие собой комбинацию постоянных магнитов с различными механическими фильтрующими элементами. Наиболее простыми сепараторами являются магнитные уловители и магнитные патроны.

Степень очистки фильтрованием зависит от напряженности магнитного поля, скорости течения жидкости, ее вязкости, расположения силовых полей относительно направления потока жидкости.

5. Физико-химические процессы очистки сточных вод




5.1. Коагуляция



Коагуляция – это слипание частиц коллоидной системы при столкновениях в процессе теплового движения, перемешивания или направленного перемешивания во внешнем силовом поле. В результате коагуляции образуются агрегаты – более крупные (вторичные) частицы, состоящие из скопления мелких (первичных) частиц. Первичные частицы в таких агрегатах соединены силами межмолекулярного взаимодействия непосредственно или через прослойку окружающей (дисперсной) среды. Коагуляция сопровождается прогрессирующим укрупнением частиц и снижением их общего числа в объеме дисперсной среды. Слипание однородных частиц называется гомокоагуляцией, а разнородных – гетерокоагуляцией.

Производственные сточные воды в большинстве случаев представляют собой слабоконцентрированные эмульсии или суспензии, содержащие коллоидные частицы размером 0,003-0,1 мкм, мелкодисперсные частицы 0,1-10 мкм, а также частицы размером 10 мкм и более. В процессе механической очистки сточных вод достаточно хорошо удаляются частицы размером 10 мкм и более, мелкодисперсные и коллоидные частицы практически не удаляются. Таким образом, сточные воды многих производств после сооружений механической очистки представляют собой агрегативно устойчивую систему. Для их очистки применяются методы коагуляции: агрегативно устойчивая система при этом нарушается, образуются более крупные агрегаты частиц, которые удаляются из сточных вод механическими методами. Одним из видов коагуляции является флокуляция, при которой мелкие частицы, находящиеся во взвешенном состоянии, под действием специально добавляемых веществ (флокулянтов) образуют интенсивно оседающие рыхлые скопления.

Методы коагуляции и флокуляция широко распространены для очистки сточных вод предприятий химической, нефтехимической, нефтеперерабатывающей, целлюлозно-бумажной, легкой, текстильной и других отраслей промышленности. Эффективность коагуляционной очистки зависит от вида коллоидных частиц; концентрации и степени дисперсности коллоидных частиц; наличия в сточных водах электролитов и других примесей; величины электрокинетического потенциала.

В сточных водах могут содержаться твердые (глина, волокна, цемент, кристаллы солей и т.п.) и жидкие (нефть и нефтепродукты, смолы и другие) загрязнения. Коллоидные частицы, представляющие собой совокупность большого числа молекул вещества, содержащегося в сточной воде в диспергированном состоянии, при перемешивании прочно удерживают покрывающий их слой воды. Обладая большой удельной площадью поверхности, коллоидные частицы адсорбируют находящиеся в воде ионы преимущественно одного знака, которые значительно снижают свободную поверхностную энергию коллоидной частицы. Ионы, непосредственно прилегающие к ядру, образуют слой поверхностно-ядерных ионов, или так называемый адсорбционный слой. В этом слое может находиться также небольшое количество противоположно заряженных ионов.

Коагулирующее действие есть результат гидролиза, который происходит вслед за растворением. Силы взаимного притяжения между коллоидными частицами начинают преобладать над электрическими силами отталкивания при ? – потенциале системы менее 0,03 В. При ? = 0 В, коагуляция происходит с максимальной интенсивностью, состояние коллоидной системы в этом случае называется изоэлектрическим, а величина рН называется изоэлектрической точкой системы (рис. 1.15.).

Процесс гидролиза коагулянтов и образования хлопьев происходит по следующим стадиям:

Ме3+ + НОН = Ме(ОН)2+ + Н+

Ме(ОН)2+ + НОН = Ме(ОН) 2+ + Н+

Ме(ОН)2+ НОН = Ме(ОН)3 + Н+




Ме3+ + НОН = Ме(ОН)3 + 3Н+



В действительности процесс гидролиза значительно сложнее. Ион металла образует ряд промежуточных соединений в результате реакций с гидроксид-ионами и полимеризации. Образующиеся соединения имеют положительный заряд и легко адсорбируются отрицательно заряженными коллоидными частицами. Одним из методов снижения ? – потенциала коллоидной системы является увеличение концентрации электролитов в сточной воде. Способность электролита вызывать коагуляцию коллоидной системы возрастает с увеличением валентности коагулирующего иона, обладающего зарядом противоположным по знаку заряду коллоидных частиц. Соотношение коагулирующей способности одно-, двух- и трехвалентных ионов приблизительно 1:30:1000, т.е., чем выше валентность, тем более эффективно коагулирующее действие.

При коагуляции хлопья образуются сначала за счет взвешенных частиц и коагулянта или только коагулянта. Образовавшиеся хлопья коагулянта сорбируют вещества, загрязняющие сточные воды, и, осаждаясь вместе с ними, очищают воду.
Основным процессом очистки производственных сточных вод является гетерокоагуляция – взаимодействие коллоидных и мелкодисперсных частице агрегатам и, образующимися при введении в сточную воду коагулянтов. При использовании в качестве коагулянтов солей алюминия и железа в результате реакции гидролиза образуются малорастворимые в воде гидроксиды железа и алюминия, которые сорбируют на раз витой хлопьевидной поверхности взвешенные мелкодисперсные частицы, коллоидные частицы при благоприятных гидродинамических условиях оседают на дно отстойника, образуя осадок:

Al2(SО4)3 + 6Н2О ? 2Аl(ОН)3 + 3H24;

FeCl3 + ЗН2О ? Fe(OH)3 + 3HCl;

Fe(SO4) + 2H2O ? Fe(OH)2 + H2SO4;

4Fe(OH)2 + О2 + 2H2О ? 4Fe(OH)3.

Образующуюся в процессе гидролиза серную и соляную кислоты следует нейтрализовать известью или другими щелочами. Нейтрализация образующихся при гидролизе коагулянтов кислот может также протекать за счет щелочного резерва сточной жидкости:

Н+ + HCO ? СО2 + Н2О.

В целях уменьшения расходов коагулянтов процесс коагуляции следует осуществлять в диапазоне оптимальных величин рН. Значения рН при оптимальных условиях коагуляции будут следующими:

- для Аl(ОН)3 рН = 4,57;

- для Fe(OH)2 pH = 8,5-10,5;

- для Fе(ОН)3 рН = 4-6 и 8-10.

Для очистки производственных сточных вод применяют различные коагулянты: соли алюминия, соли железа, соли магния, известь, шламовые отходы и отработанные растворы отдельных производств (например, хлорид алюминия является отходом при производстве этилбензола, сульфат двухвалентного железа – травление металлов, известковый шлам и другие).

Соли алюминия. Сульфат алюминия (глинозем) Al2(SО4)·18Н2О (плотность 1,62 т/м3, насыпная масса на 1 м3 сточных вод равна 1,05-1,1 т, растворимость в воде при температуре 20 °С – 362 г/л). Процесс коагуляции алюминия рекомендуется проводить при значениях рН = 4,5-8. В результате применения сульфата алюминия степень минерализации воды увеличивается. Алюминат натрия NaAlO2, оксихлорид алюминия, полихлорид алюминия [Al2(OH)nCl6n]m(SO4)x, где 1 < n < 5< m < 10, алюмокалиевые [AlK(SO4)2 ·18Н2О] и алюмоаммонийные квасцы [Al(NH4)(SO4)2·12H2O] квасцы имеют меньшую стоимость и дефицитность, чем сульфат алюминия.

Соли железа. Сульфат двухвалентного железа, или железный купорос FeSO4·7H2O (плотность 3 т/м3, насыпная масса на один куб. метр сточных вод равна 1,9 т, растворимость в воде при 20 0С – 265 г/л). Применение процесса коагуляции оптимально при рН > 9. Гидроксид железа – плотные, тяжелые, быстро осаждающиеся хлопья, что является несомненным преимуществом его применения. Хлорид железа FеСl3·6Н2О, сульфат железа Fе2(SO4)3∙9Н2О.

Соли магния – хлорид магния MgCl2·6H2O, сульфат магния MgSO4·7H2O. Соли железа, как коагулянты, имеют ряд преимуществ перед солями алюминия: действие при низких температурах воды; более широкая область оптимальных значений рН среды; большая плотность и гидравлическая крупность хлопьев; возможность использовать для вод с более широким диапазоном солевого состава; способность устранять вредные запахи и привкусы, обусловленные присутствием сероводорода. Однако имеются и недостатки: образование при реакции катионов железа с некоторыми органическими соединениями сильно окрашивающих растворимых комплексов; сильные кислотные свойства, усиливающие коррозию аппаратуры; менее развитая поверхность хлопьев.

При использовании смесей Аl(SO4)3 и FeCl3 соотношениях от 1:1 до 1:2 достигается лучший результат коагулирования, чем при раздельном использовании реагентов. Происходит ускорение осаждения хлопьев. Кроме названных коагулянтов для обработки сточных вод могут быть использованы другие реагенты – глины, алюмосодержащие отходы производства, травильные растворы, пасты, смеси, шлаки, содержащие диоксид кремния. Оптимальную дозу реагента устанавливают на основании пробного коагулирования.

Количество коагулянта, необходимое для осуществления процесса коагуляции, зависит от вида коагулянта, расхода, состава, требуемой степени очистки сточных вод и определяется экспериментально.

Образующиеся в результате коагуляции осадки представляют собой хлопья размером от нескольких микрометров до нескольких миллиметров. Рыхлая пространственная структура хлопьев осадка обуславливает их высокую влажность – до 96-99 %. Плотность хлопьев осадка составляет обычно 1,01-1,03 т/м3. Для обесцвечивания высококонцентрированных и интенсивно окрашенных вод расходы коагулянтов достигают 1-4 кг/м3 сточной воды. Объем осадка, получающегося в результате коагуляции, достигает 10-20 % объема обрабатываемой сточной воды.

Недостатки метода коагуляционной очистки сточных вод (значительный объем коагулянтов, большой объем получающегося осадка, сложность его обработки и складирования, увеличение степени минерализации обрабатываемой сточной воды) не позволяют рекомендовать коагуляцию как самостоятельный метод очистки.

Коагуляционный метод очистки сточных вод применяется в основном при небольших расходах воды и при наличии дешевых коагулянтов.

Расширению оптимальных областей коагуляции (по рН и температуре) способствуют флокулянты, повышающие плотность и прочность образующихся хлопьев, снижающие расход коагулянтов, снижающие расход коагулянтов, повышающие надежность работы и пропускную способность очистных сооружений.

При растворении в сточных водах флокулянты могут находиться в неионизированном и ионизированном состоянии. Последние носят название растворимых полиэлектролитов. В зависимости от состава полярных групп флокулянты бывают:

- неионогенные – полимеры, содержащие неионогенные группы: -ОН, >СО (крахмал, оксиэтилцеллюлоза, поливиниловый спирт, полиакрилонитрил и др.);

- анионные – полимеры, содержащие анионные группы: –СООН, –SО3Н, –OSO3H (активная кремниевая кислота, полиакрилат натрия, альгинат натрия, лигносульфонаты и др.);

- катионные – полимеры, содержащие катионовые группы: –NH2, =NH (полиэтиленимин, сополимеры винил пиридина, ВА-2, ВА-102, ВА-202 и др.);

- амфотерные – полимеры, содержащие одновременно анионные и катионные группы: полиакриламид, белки и др.

Скорость и эффективность процессов флокуляции и коагуляции зависят от состава сточных вод, их температуры, интенсивности перемешивания последовательности введения коагулянтов и флокулянтов. Дозы флокулянтов составляют обычно 0,1-10 г/м, а в среднем 0,5-1 г/м. Так применение добавок полиакриламида в концентрации 1 г/м3 при коагуляции сточных вод металлургического завода позволило увеличить удельную нагрузку на радиальные отстойники в два раза.

Процесс очистки сточных вод методом коагуляции или флокуляцией состоит из следующих стадий: дозирование и смешивание реагентов со сточной водой; хлопьеобразование и осаждение.

В реагентное хозяйство на очистных сооружениях входят склады для хранения коагулянтов. Широко применяется так называемое мокрое (рис. 1.16) хранение коагулянтов - в виде раствора или кускового продукта в концентрированном растворе, в баках и резервуарах, располагаемых внутри или вне зданий. Емкости, располагаемые вне зданий, следует утеплять. Растворение коагулянтов в воде осуществляется в специальных растворных баках с устройствами для барботажа сжатым воздухом интенсивностью 4-5 л/с на 1 м2 площади колосниковой решетки.


Применяются также баки с лопастными и пропеллерными мешалками для растворения соответственно зернистых и кусковых материалов размером не более 20 см.
Из растворных баков коагулянты перекачивают в расходные баки, а оттуда дозируют в обрабатываемую воду с помощью дозаторов различных конструкций. Коагулянты вводят в обрабатываемую воду обычно в виде 1-10 % растворов, а флокулянты 0,1-1 % растворов. Коагулянты смешивают с обрабатываемой сточной водой в смесителях в течение 1-2 мин. Для смешения коагулянтов применяют гидравлические и механические смесители. В гидравлических смесителях смешение происходит вследствие изменения направления движения и скорости тока воды.

Применяют перегородчатые, шайбовые и вертикальные смесители, а также механические с пропеллерными или лопастными мешалками. Трубопроводы или, отводящие воду из смесителей в камеры хлопьеобразования, и осветлители с взвешенным слоем осадка рассчитывают на скорость движения сточной воды 0,8-1 м/с и продолжительность ее пребывания в них не более двух минут. После смешивания сточных вод с коагулянтами начинается процесс образования хлопьеобразования. Эти камеры могут быть водоворотные, перегородчатые, вихревые, с механическим перемешиванием.

Водоворотные камеры хлопьеобразования представляют собой цилиндр, в верхнюю часть которого из смесителя вводится сточная вода, имеющая скорость на выходе из сопла 2-3 м/с. В нижней части камеры перед выходом в отстойник находятся гасители вращательного движения воды. Продолжительность пребывания воды в камере 15-20 мин.

П
ерегородчатые камеры могут быть горизонтальные (рис. 1.17) и вертикальные. В горизонтальной камере сточная вода протекает по нескольким последовательно соединенным коридорам. Перемешивание осуществляется за счет 8-10 поворотов. Коридоры устраиваются таким образом, чтобы скорость движения сточной воды в первом была 0,2-0,3 м/с, а в последнем – 0,1 м/с. Продолжительность пребывания воды в перегородчатых камерах 20-30 мин. Высота камеры определяется высотой отстойника, а ширина коридоров составляет не менее 0,7 м.

В камерах хлопьеобразования с лопастными мешалками скорость движения воды 0,15-0,2 м/с, а продолжительность пребывания – 20-30 мин.

Последующее осветление сточной воды производится в горизонтальных, радиальных или вертикальных отстойниках.

Наиболее целесообразной является двухступенчатая схема отстаивания сточных вод. На первой ступени осуществляется простое отстаивание в отстойнике без коагулянта. На второй ступени – обработка сточных вод коагулянтами и флокулянтами с последующим отстаиванием в отстойнике.

Если в производственных сточных водах концентрация взвешенных веществ, способных к агрегации, не превышает 4 г/л, то применяют осветлители со взвешенными слоями осадка. В осветлителях происходят три основных процесса: смешение, коагуляция и осветление сточных вод. Обрабатываемая в осветлителях сточная вода проходит снизу вверх через слой ранее выделившегося шлака с такой скоростью, при которой взвешенные частицы не уносятся из зоны взвешенного осадка. При движении сточной воды взвешенный слой увеличивается эффект задержания мелких суспензированных частиц. Осветлители проектируются круглыми (диаметр до 15 м) или прямоугольными в плане, площадь осветлителя не должна превышать 150 м2.

Для обеспечения нормальной работы осветлителя сточную воду после смешения с коагулянтами направляют в воздухоотделитель, где она освобождается от пузырьков воздуха, выделяющихся в результате реакции. В течение одного часа допускается колебание температуры не более чем на 1 0С, а расхода – не более чем на 10 %. Скорость коагуляции (рис. 1.18) зависит от концентрации электролита.




При малых числах соударений частиц, т.е. отношений числа столкновений окончившихся слипанием скорость близка к нулю (у = 0). По мере роста концентрации скорость коагуляции повышается, но не все столкновения эффективны – такую коагуляцию называют медленной. При наступает быстрая коагуляция, при которой все столкновения частиц заканчиваются образованием агрегатов.

Скорость быстрой коагуляции для неподвижной среды при броуновском движении частиц по теории Смолуховского равна



Количество частиц в единице объема воды за время Т для быстрой и медленной коагуляции определяются по формулам



Для ламинарного и турбулентного движения потока воды число взаимодействий частиц за единицу времени в единицу объема жидкости и вычисляется по формулам



где – число агрегатов частиц; k – константа коагуляции, k = 4?D, R = 8?Dr; D – коэффициент диффузии одиночных частиц; r – радиус частиц; R – расстояния, на которые должны приблизиться частицы, чтобы произошло их объединение в агрегаты: R ? 2r; – начальная концентрация частиц; Т1/2 – время коагуляции, в течение которого количество частиц в единице объема уменьшается вдвое; – коэффициент эффективности столкновений частиц; nл и nт – число взаимодействий частиц за единицу времени в единицу объема соответственно для ламинарного и турбулентного движения потока воды; n1 и n2 – число частиц с размером d1 и d2 соответственно; G – скоростной градиент: G = dV / dz; V1 и V2 – среднеквадратичные скорости двух коагулирующих частиц.

В полудисперсных системах коагуляция происходит быстрее, чем в монодисперсных, т.к. крупные частицы при оседании увлекают за собой более мелкие.

Форма частиц также влияет на скорость коагуляции. Например, удлиненные частицы коагулируют быстрее, чем шарообразные.

Размер хлопьев (в пределах 0,5-3 мм) определяется соотношением между молекулярными силами, удерживающими частицы вместе, и гидродинамическими силами отрыва, стремящимися разрушить агрегаты. Для характеристики хлопьев пользуются (определением) понятием эквивалентного диаметра



где – кинематическая вязкость воды; рх – плотность хлопьев; – скорость свободного осаждения; Кф – коэффициент формы хлопьев.

Плотность хлопьев определяется с учетом плотностей воды рв и твердой фазы и объема твердого вещества в единице объема хлопьев



Прочность хлопьев зависит от гранулометрического состава образующихся частиц и пластичности. Агломераты частиц, неоднородных по размеру, прочнее, чем однородных. Вследствие выделения газов из воды, а также в результате аэрации и флотации происходит газонасыщение хлопьев, которые сопровождаются уменьшением плотности хлопьев и снижением скорости осаждения.

Резкие колебания скорости движения воды не допускаются. Величина восходящей скорости потока в зоне осветления зависит от концентрации взвешенных веществ. Так, при обработке сточных вод сульфатом алюминия при содержании взвешенных веществ в одном литре до 40 мг расчетная скорость восходящего потока:

до 400 мг/л,

400-1000 мг/л

1000-2500 мг/л

Vpacч= 0,8-1,0 мм/с;

Vpасч= 1,0-1,1 мм/с;

Vpacч= 1,1-1,2 мм/с.

Высота слоя взвешенного осадка принимается равной 1,5-2,5 м; высота защитной зоны от верха осадкоотводящих окон или труб до лотков для сбора осветленной воды 1-1,5 м; низ осадкоприемных окон или кромка осадкоотводящих труб располагается на расстоянии 1,5-1,75 м выше перехода наклонных стенок осветлителя в вертикальные; угол наклона к горизонту нижних частей стенок осветлителей и осадкоуплотнителей принимается не менее 45 0С.

Избыток шлама, накапливающегося в осветлителе со взвешенным слоем осадка (рис. 1.19), перетекает под действием разности плотностей осветленной воды и взвешенного слоя в осадкоуплотнитель – это осветлитель с естественным отсосом шлама, либо отсасывается вследствие разностей уровней отбора воды из рабочей камеры и уплотнителя – это осветлитель с принудительным отсосом избытка шлама. Осветлители второй конструкции работают эффективнее.

Исходя из концентрации взвешенных веществ в обрабатываемой сточной воде Сн, при известных расчетах скорости восходящего потока воды в зоне осветлителя Vрасч, эталонной концентрации взвешенных веществ во взвешенном слое Сэ (при скорости движения воды 1 мм/с) и концентрации взвешенных веществ в осадке после его уплотнения Сшл, можно определить расход воды и размеры осветлителя (табл. 1.1). Расчетный расход сточной воды, проходящей через осветлитель



Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации