Реферат - Биологическая роль Железа в организме человека - файл n1.doc

Реферат - Биологическая роль Железа в организме человека
скачать (3784 kb.)
Доступные файлы (1):
n1.doc3784kb.05.06.2012 07:04скачать

n1.doc



ВВЕДЕНИЕ.....................................................................................................................3

1. Общие сведения..........................................................................................................7

1.1. История железа.....................................................................................................7

1.2. Происхождение названия..................................................................................13

1.3. Изотопы...............................................................................................................14

1.4. Геохимия железа................................................................................................15

1.5. Геохимические свойства железа.......................................................................16

1.6. Минералы железа...............................................................................................17

1.7. Основные месторождения.................................................................................19

1.8. Получение...........................................................................................................20

1.9. Физические свойства.........................................................................................22

1.10. Химические свойства.......................................................................................24

1.11. Применение.......................................................................................................27

2. Биологическое значение железа.............................................................................29

3. Железосодержащие органические соединения в организме человека...............31

3.1. Клеточное железо...............................................................................................32

3.1.1. Гемопротеины.............................................................................................32

3.1.2. Железосодержащие ферменты негеминовой группы.............................38

3.1.3. Ферритин и гемосидерин внутренних органов.......................................39

3.2. Внеклеточное железо.........................................................................................42

4. Этапы обмена железа в организме.........................................................................46

5. Этиология дефицита железа....................................................................................51

6. Распространенность железодефицитных состояний............................................62

7. Лечение железодефицитной анемии......................................................................63

8. Роль питания.............................................................................................................64

9. Диагностическое применение железа....................................................................67

10. Лечебное применение железа...............................................................................69

11. Препараты, содержащие железо...........................................................................71

ЛИТЕРАТУРА

ВВЕДЕНИЕ
Железо – элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Простое вещество железо (CAS-номер: 7439-89-6) – ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро коррозирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

На самом деле железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.

В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре – 4,65 % (4-е место после O, Si, Al) (рис.1). Считается также, что железо составляет бо́льшую часть земного ядра (рис. 2). [2]



Рисунок 1. Основные элементы земной коры.



Рисунок 2. Состав земного ядра.

Свойства атома

Имя, символ, номер

Железо / Ferrum (Fe), 26

Атомная масса (молярная масса)

55,847 а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d6 4s2

Радиус атома

126 пм


Химические свойства

Ковалентный радиус

117 пм

Радиус иона

(+3e) 64 (+2e) 74 пм

Электроотрицательность

1,83 (шкала Полинга)

Электродный потенциал
Fe?Fe3+ ?0,04 В

Fe?Fe2+ ?0,44 В

Степени окисления

6, 3, 2, 0.

Энергия ионизации (первый электрон)

759,1 (7,87) кДж/моль (эВ)


Термодинамические свойства простого вещества

Плотность (при н. у.)

7,874 г/см3

Температура плавления

1812 K

Температура кипения

3134 K

Теплота плавления

247,1 кДж/кг 13,8 кДж/моль

Теплота испарения

~6088 кДж/кг ~340 кДж/моль

Молярная теплоёмкость

25,14 Дж/(K·моль)

Молярный объём

7,1 см3/моль


Кристаллическая решётка простого вещества

Структура решётки

кубическая объёмноцентрированная

Параметры решётки

2,866 A

Температура Дебая

460 K


Прочие характеристики

Теплопроводность

(300 K) 80,4 Вт/(м·К)




Рисунок 3. Ковкий, вязкий металл серебристо-белого цвета.

1. Общие сведения
1.1. История железа
Железо как инструментальный материал известно с древнейших времён, самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это наконечники для стрел и украшения из метеоритного железа, то есть, сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), из которого состоят метеориты. От их небесного происхождения идёт, видимо, одно из наименований железа в греческом языке: «сидер» (а на латыни это слово значит «звёздный»).



Рисунок 4. Кусочек метеоритного железа.
Изделия из железа, полученного искусственно, известны со времени расселения арийских племён из Европы в Азию и острова Средиземного моря (4–3-е тысячелетие до н. э.). Самый древний железный инструмент из известных – стальное долото, найденное в каменной кладке пирамиды Хеопса в Египте (построена около 2550 года до н. э.). Железо часто упоминается в древнейших (3-е тысячелетие до н. э.) текстах хеттов, основавших свою империю на территории современной Анатолии в Турции. Например, в тексте хеттского царя Анитты (около 1800 года до н. э.) говорится:

"Когда на город Пурусханду в поход я пошел, человек из города Пурусханды ко мне поклониться пришел (…?) и он мне 1 железный трон и 1 железный скипетр (?) в знак покорности (?) преподнес." [14]

В древности мастерами железных изделий слыли халибы, которых Геродот перечисляет в числе эллинских племён Малой Азии, подвластных Крезу. Халибы жили на севере державы Хеттов, у побережья Чёрного моря возле устья реки Галис (современный г. Самсун в Турции), и от их имени происходит греч. ?ά????? – «сталь». Аристотель описал их способ получения стали: халибы несколько раз промывали речной песок их страны – видимо, таким способом (теперь это называют флотацией) выделяли тяжёлую железосодержащую фракцию породы, добавляли какое-то огнеупорное вещество, и плавили в печах особой конструкции; полученный таким образом металл имел серебристый цвет и был нержавеющим. Из этого процесса, видимо, возникло и название «руда», которое на латыни значит «мокрый» – то есть, «вымытый».

В качестве сырья для выплавки стали использовались магнетитовые пески, которые часто встречаются по всему побережью Чёрного моря: эти магнетитовые пески состоят из смеси мелких зёрен магнетита, титано-магнетита или ильменита, и обломков других пород, так что выплавляемая халибами сталь была легированной, и обладала отличными свойствами. Такой своеобразный способ получения железа не из руды говорит о том, что халибы, в основном, распространили железо как технологический материал, но их способ не мог быть методом повсеместного промышленного производства железных изделий. Однако их производство послужило толчком для дальнейшего развития металлургии железа.

Климент Александрийский в своём энциклопедическом труде «Строматы» упоминает, что по греческим преданиям железо (видимо, выплавка его из руды) было открыто на горе Иде – так называлась горная цепь возле Трои (в Илиаде она упоминается как гора Ида, с которой Зевс наблюдал за битвой греков с троянцами). Произошло это через 73 года после Девкалионова потопа, а этот потоп, согласно Паросской хронике, был в 1528 году до нашей эры, то есть метод выплавки железа из руды был открыт примерно в 1455 году до н. э. Однако из описания Климента не ясно, говорит ли он именно об этой горе в Передней Азии (Ида Фригийская у Вергилия), или же о горе Ида на острове Крит, о которой римский поэт Вергилий в Энеиде пишет:

"Остров Юпитера, Крета, лежит средь широкого моря,

Нашего племени там колыбель, где высится Ида …"

Более вероятно, что Климент Александрийский говорит именно о фригийской Иде возле Трои, так как там были найдены древние железные копи и очаги железоделательного производства. Видимо, ознакомившись с методом халибов, древние троянцы развили свой способ выплавки стали из руды, оказавшийся более производительным.

В самой глубокой древности железо ценилось дороже золота, и по описанию Страбона, у африканских племён за 1 фунт железа давали 10 фунтов золота, а по исследованиям историка Г. Арешяна стоимости меди, серебра, золота и железа у древних хеттов были в соотношении 1:160:1280:6400. В те времена железо использовалось как ювелирный металл, из него делали троны и другие регалии царской власти: например, в библейской книге Второзаконие 3,11 описан «одр железный» рефаимского царя Ога. В гробнице Тутанхамона (около 1350 года до н. э.) был найден кинжал из железа в золотой оправе – возможно, подаренный хеттами в дипломатических целях. Но хетты не стремились к широкому распространению железа и его технологий, что видно и из дошедшей до нас переписки египетского фараона и его тестя – царя Хеттов. Фараон просит прислать побольше железа, а царь хеттов уклончиво отвечает, что запасы железа иссякли, а кузнецы заняты на сельскохозяйственных работах, поэтому он не может выполнить просьбу царственного зятя. Как видно, хетты старались использовать свои знания для достижения военных преимуществ, и не давали другим возможности сравняться с ними. Видимо, поэтому железные изделия получили широкое распространение только после Троянской войны и падения державы хеттов, когда благодаря торговой активности греков технология железа стала известной многим, и были открыты железные месторождения и рудники. Так на смену «Бронзовому» веку настал век «Железный».

По описаниям Гомера, хотя во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно и пользовалось большим спросом, хотя больше как драгоценный металл. Например, в 23-й песне «Илиады» Гомер рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. Это железо ахейцы добывали у троянцев и сопредельных народов (Илиада 7,473), в том числе у халибов, которые воевали на стороне троянцев:

"Прочие мужи ахейские меной вино покупали,

Те за звенящую медь, за седое железо меняли,

Те за воловые кожи или волов круторогих,

Те за своих полоненых. И пир уготовлен веселый…"

Возможно, железо было одной из причин, побудивших греков-ахейцев двинуться в Малую Азию, где они узнали секреты его производства. А раскопки в Афинах показали, что уже около 1100 года до н. э. и позднее уже широко были распространены железные мечи, копья, топоры, и даже железные гвозди. В библейской книге Иисуса Навина 17,16 (ср. Судей 14,4) описывается, что филистимляне (библейские «PILISTIM», а это были протогреческие племена, родственные позднейшим эллинам, в основном пеласги) имели множество железных колесниц, то есть, в это время железо уже стало широко применяться в больших количествах.

Гомер в «Илиаде» и «Одиссее» называет железо «многотрудный металл», и описывает закалку орудий:

"Расторопный ковач, изготовив топор иль секиру,

В воду металл, раскаливши его, чтоб двойную

Он крепость имел, погружает…"

Гомер называет железо многотрудным, потому что в древности основным методом его получения был сыродутный процесс: перемежающиеся слои железной руды и древесного угля прокаливались в специальных печах (горнах – от древнего «Horn» – рог, труба, первоначально это была просто труба, вырытая в земле, обычно горизонтально в склоне оврага). В горне окислы железа восстанавливаются до металла раскалённым углём, который отбирает кислород, окисляясь до окиси углерода, и в результате такого прокаливания руды с углём получалось тестообразное кричное (губчатое) железо. Крицу очищали от шлаков ковкой, выдавливая примеси сильными ударами молота. Первые горны имели сравнительно низкую температуру – заметно меньше температуры плавления чугуна, поэтому железо получалось сравнительно малоуглеродистым. Чтобы получить крепкую сталь приходилось много раз прокаливать и проковывать железную крицу с углём, при этом поверхностный слой металла дополнительно насыщался углеродом и упрочнялся. И хотя это требовало больших трудов, изделия, полученные таким способом, были существенно более крепкими, чем бронзовые.

В дальнейшем научились делать более эффективные печи (в русском языке – домна, домница) для производства стали, и применили меха для подачи воздуха в горн. Уже римляне умели доводить температуру в печи до плавления стали (около 1400 градусов, а чистое железо плавится при 1535 градусах). При этом образуется чугун с температурой плавления 1100-1200 градусов, очень хрупкий в твёрдом состоянии (даже не поддающийся ковке), и не обладающий упругостью стали. Первоначально его считали вредным побочным продуктом (англ. pig iron, по-русски, свинское железо, чушки, откуда, собственно, и происходит слово чугун), но потом обнаружилось, что при повторном прожигании в печи с усиленным продуванием воздуха чугун превращается в сталь хорошего качества, так как лишний углерод выгорает. Такой двухстадийный процесс производства стали из чугуна оказался более простым и выгодным, чем кричный, и этот принцип используется без особых изменений многие века, оставаясь и до наших дней основным способом производства железных материалов.

1.2. Происхождение названия
Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза, укр. залізо, ст.-слав. желѣзо, болг. желязо, сербохорв. жељезо, польск. żelazo, чеш. železo, словен. železo).

Одна из этимологий связывает праславянское želězo с греческим словом ????ό?, что означало железо и медь, согласно другой версии želězo родственно словам žely "черепаха и glazъ "скала", с общей семой "камень". [4,5] Третья версия предполагает древнее заимствование из неизвестного языка. [5]

Романские языки (итал. ferro, фр. fer, исп. hierro, порт. ferro, рум. fier) продолжают лат. ferrum. Латинское ferrum (ferzom), скорее всего, заимствовано из какого-то восточного языка, скорее всего из финикийского. Ср. ивр. barzel?, шумерск. barzal, ассирийск. parzilla. [6]

Германские языки заимствовали название железа (готск. eisarn, англ. iron, нем. Eisen, нидерл. ijzer, дат. jern, швед. jarn) из кельтских. [7]

Древнегреческое слово ?ί?????, возможно, было заимствовано из того же источника, что и славянское, германское и балтийское слова для серебра. [9]

Название природного карбоната железа (сидерита) происходит от лат. sidereus – звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (?ί?????) для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

1.3. Изотопы
Изотоп железа 56Fe относится к наиболее стабильным ядрам: все следующие элементы могут уменьшить энергию связи на нуклон путём распада, а все предыдущие элементы, в принципе, могли бы уменьшить энергию связи на нуклон за счёт синтеза. Полагают, что железом оканчивается ряд синтеза элементов в ядрах нормальных звёзд, а все последующие элементы могут образоваться только в результате взрывов сверхновых. [10]

1.4. Геохимия железа
Железо – один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию. При этом в ядре находится около 86 % всего железа, а в мантии 14 %. Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002–0,02 мг/л. В речной воде несколько выше – 2 мг/л.



Рисунок 5. Гидротермальный источник с железистой водой. Окислы железа окрашивают воду в бурый цвет.

1.5. Геохимические свойства железа
Важнейшая геохимическая особенность железа – наличие у него нескольких степеней окисления. Железо в нейтральной форме – металлическое – слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO – основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.

По кристаллохимическим свойствам ион Fe2+ близок к ионам Mg2+ и Ca2+ – другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

1.6. Минералы железа
В земной коре железо распространено достаточно широко – на его долю приходится около 4,65 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало – в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe3(PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.

В природе также широко распространены сульфиды железа – пирит FeS2 (серный или железный колчедан) и пирротин. Они не являются железной рудой – пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

Содержание железа в морской воде – 1•10?5–1•10?8 %.

Другие часто встречающиеся минералы железа [11]:

• Сидерит – FeCO3 – содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом. Плотность равна 3 г/см3 и твёрдость 3,5–4,5 по шкале Мооса.

• Марказит – FeS2 – содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов с плотностью 4,6–4,9 г/см3 и твёрдостью 5–6 по шкале Мооса.

• Лёллингит – FeAs2 – содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов. Плотность равна 7–7,4 г/см3, твёрдость 5–5,5 по шкале Мооса.

• Миспикель – FeAsS – содержит 34,3 % железа. Встречается в виде белых моноклинных призм с плотностью 5,6–6,2 г/см3 и твёрдостью 5,5–6 по шкале Мооса.

• Мелантерит – FeSO4·7H2O – реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие. Плотность равна 1,8–1,9 г/см3.

• Вивианит – Fe3(PO4)2·8H2O – встречается в виде сине-серых или зелено-серых моноклинных кристаллов с плотностью 2,95 г/см3 и твёрдостью 1,5–2 по шкале Мооса.

Помимо вышеописанных минералов железа существуют, например:

•ильменит – FeTiO3

•магномагнетит – (Fe,Mg)[Fe2O4]

•фиброферрит – FeSO4(OH)·4,5H2O

•ярозит – KFe3(SO4)2(OH)6

•кокимбит – Fe2(SO4)3·9H2O

•рёмерит – Fe2+Fe3+2(SO4)4·14H2O

•графтонит – (Fe,Mn)3(PO4)2

•скородит – Fe3+AsO4·2H2O

•штренгит – FePO4·2H2O

•феялит –
Fe2SiO4

•альмандит – Fe3Al2[SiO4]3

•андрадит – Ca3Fe2[SiO4]3

•гиперстен –
(Fe,Mg)2[Si2O6]

•геденбергит – (Ca,Fe)[Si2O6]

•эгирин –
(Na,Fe)[Si2O6]

•шамозит – Fe2+4Al[AlSi3O10]
(OH)6·nH2O

•нонтронит – (Fe3+,Al)2[Si4O10]
(OH)2·nH2O

1.7. Основные месторождения
Основные месторождения железа находятся в Бразилии (1 место), Австралии, США, Канаде, Швеции, Венесуэле, Либерии, Франции, Индии.



Рисунок 6. Месторождения железа.

1.8. Получение
В промышленности железо получают из железной руды, в основном из гематита (Fe2O3) и магнетита (Fe3O4).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства – восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод в виде кокса окисляется до монооксида углерода. Данный оксид образуется при горении в недостатке кислорода:

.

В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III):

.

Флюс добавляется для избавления от нежелательных примесей (в первую очередь от силикатов; например кварц) в добываемой руде. Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Для устранения других примесей используют другие флюсы.

Действие флюса (в данном случае карбонат кальция) заключается в том, что при его нагревании он разлагается до его оксида:

.

Оксид кальция соединяется с диоксидом кремния, образуя шлак – метасиликат кальция:

.

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности – это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишки углерода и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо:

,
при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей.
1.9. Физические свойства
Железо – типичный металл, в свободном состоянии – серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности – углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» – группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.

Для железа характерен полиморфизм, он имеет четыре кристаллические модификации:

• до 769 °C существует ?-Fe (феррит) с объёмноцентрированной кубической решёткой и свойствами ферромагнетика (769 °C?1043 K – точка Кюри для железа).

• в температурном интервале 769–917 °C существует ?-Fe, который отличается от ?-Fe только параметрами объёмноцентрированной кубической решётки и магнитными свойствами парамагнетика.

• в температурном интервале 917–1394 °C существует ?-Fe (аустенит) с гранецентрированной кубической решёткой.

• выше 1394 °C устойчиво ?-Fe с объёмоцентрированной кубической решёткой.

Металловедение не выделяет ?-Fe как отдельную фазу, и рассматривает её как разновидность ?-Fe. При нагреве железа или стали выше точки Кюри (769 °C?1043 K) тепловое движение ионов расстраивает ориентацию спиновых магнитных моментов электронов, ферромагнетик становится парамагнетиком – происходит фазовый переход второго рода, но фазового перехода первого рода с изменением основных физических параметров кристаллов не происходит.

Для чистого железа при нормальном давлении, с точки зрения металловедения, существуют следующие устойчивые модификации:

• От абсолютного нуля до 910 °C устойчива ?-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой.

• От 910 до 1400 °C устойчива ?-модификация с гранецентрированной кубической (ГЦК) кристаллической решёткой.

• От 1400 до 1539 °C устойчива ?-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой.

Наличие в стали углерода и легирующих элементов существенным образом изменяет температуры фазовых переходов. Твёрдый раствор углерода в ?- и ?-железе называется ферритом. Иногда различают высокотемпературный ?-феррит и низкотемпературный ?-феррит (или просто феррит), хотя их атомные структуры одинаковы. Твёрдый раствор углерода в ?-железе называется аустенитом.

• В области высоких давлений (свыше 104 МПа, 100 тыс. атм.) возникает модификация ?-железа с гексагональной плотноупакованной (ГПУ) решёткой.

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря ?–? переходам кристаллической решётки происходит термообработка стали. Без этого явления железо как основа стали не получило бы такого широкого применения.

Железо тугоплавко, относится к металлам средней активности. Температура плавления железа 1539 °C, температура кипения – 2862 °C.

1.10. Химические свойства
Основные степени окисления железа – +2 и +3.

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe2O3·xH2O.

С кислородом железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe3O4, при сгорании в чистом кислороде – оксид Fe2O3. Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeO. При нагревании порошка серы и железа образуется сульфид, приближённую формулу которого можно записать как FeS.

При нагревании железо реагирует с галогенами. Так как FeF3 нелетуч, железо устойчиво к действию фтора до температуры 200–300 °C. При хлорировании железа (при температуре около 200 °C) образуется летучий димер Fe3Cl6. Если взаимодействие железа и брома протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr3. При нагревании FeCl3 и, особенно, FeBr3 отщепляют галоген и превращаются в галогениды железа(II). При взаимодействии железа и иода образуется иодид Fe3I8.

При нагревании железо реагирует с азотом, образуя нитрид железа Fe3N, с фосфором, образуя фосфиды FeP, Fe2P и Fe3P, с углеродом, образуя карбид Fe3C, с кремнием, образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с оксидом углерода(II) CO, причём образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава (?5-C5H5)2Fe.

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа(II):

Fe + 2HCl ? FeCl2 + H2?;

Fe + H2SO4 ? FeSO4 + H2?.

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа(III):

2Fe + 6H2SO4 ? Fe2(SO4)3 + 3SO2? + 6H2O.

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами:

2Fe(OH)3 + 3H2SO4 ? Fe2(SO4)3 + 6H2O.

Гидроксид железа(III) Fe(OH)3 проявляет слабо амфотерные свойства, он способен реагировать только с концентрированными растворами щелочей:

Fe(OH)3 + 3КОН ? K3[Fe(OH)6].

Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Fe + 2FeCl3 ? 3FeCl2.

При хранении водных растворов солей железа(II) наблюдается окисление железа(II) до железа(III):

4FeCl2 + O2 + 2H2O ? 4Fe(OH)Cl2.

Из солей железа(II) в водных растворах устойчива соль Мора – двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2·6Н2O.

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 – железокалиевые квасцы, (NH4)Fe(SO4)2 – железоаммонийные квасцы и т. д.

При действии газообразного хлора или озона на щелочные растворы соединений железа(III) образуются соединения железа(VI) – ферраты, например, феррат(VI) калия K2FeO4. Имеются сообщения о получении под действием сильных окислителей соединений железа(VIII).

Для обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами SCN?. При взаимодействии ионов Fe3+ с анионами SCN? образуется ярко-красный роданид железа Fe(SCN)3. Другим реактивом на ионы Fe3+ служит гексацианоферрат(II) калия K4[Fe(CN)6] (жёлтая кровяная соль). При взаимодействии ионов Fe3+ и [Fe(CN)6]4? выпадает ярко-синий осадок берлинской лазури:

4K4[Fe(CN)6] + 4Fe3+ ? 4KFeIII[FeII(CN)6]? + 12K+.

Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe2+ и [Fe(CN)6]3? выпадает осадок турнбулевой сини:

3K3[Fe(CN)6] + 3Fe2+ ? 3KFeII[FeIII(CN)6]? + 6K+.

Интересно, что берлинская лазурь и турнбулева синь – две формы одного и того же вещества, так как в растворе устанавливается равновесие:

KFeIII[FeII(CN)6] ? KFeII[FeIII(CN)6].

1.11. Применение
Железо – один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.

• Железо является основным компонентом сталей и чугунов – важнейших конструкционных материалов.



Рисунок 7. Железная руда.
• Железо может входить в состав сплавов на основе других металлов – например, никелевых.

• Магнитная окись железа (магнетит) – важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.

• Ультрадисперсный порошок магнетита используется в черно-белых лазерных принтерах в качестве тонера.

• Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.

• Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.

• Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.

• Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.

2. Биологическое значение железа
В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 75 % являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Обычно железо входит в ферменты в виде комплекса, называемого гемом. В частности, этот комплекс присутствует в гемоглобине – важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.

Неорганические соединения железа встречается в некоторых бактериях, иногда используется ими для связывания азота воздуха.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа – был потерян «лишний» ноль после запятой).

Суточная потребность человека в железе следующая[13]: дети – от 4 до 18 мг, взрослые мужчины – 10 мг, взрослые женщины – 18 мг, беременные женщины во второй половине беременности – 33 мг. У женщин потребность несколько выше, чем у мужчин. Как правило, железа, поступающего с пищей, вполне достаточно, но в некоторых специальных случаях (анемия, а также при донорстве крови) необходимо применять железосодержащие препараты и пищевые добавки (гематоген, ферроплекс).

Содержание железа в воде больше 1–2 мг/л значительно ухудшает её органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования, вызывает у человека аллергические реакции, может стать причиной болезни крови и печени (гемохроматоз). ПДК железа в воде 0,3 мг/л.

Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

3. Железосодержащие органические соединения в организме человека
Железо, находящееся в организме человека, можно
разбить на 2 большие группы: клеточное и внеклеточное.

Соединения железа в клетке, отличающиеся различным строением,
обладают характерной только для них функциональной активностью
и биологической ролью для организма. В свою очередь их можно
подразделить на 4 группы:

1. гемопротеины, основным структурным элементом которых
является гем (гемоглобин, миоглобин, цитохромы, каталаза и
пероксидаза);

2. железосодержащие ферменты негеминовой группы (сукцинатдегидрогеназа, ацетил–коэнзим–А–дегидрогеназа, НАДН–цитохром С–редуктаза и др.);

3. ферритин и гемосидерин внутренних органов;

4. железо, рыхло связанное с белками и другими органическими
веществами.

Ко второй группе внеклеточных соединений железа
относятся железо-связывающие белки трансферрин и лактоферрин,
содержащиеся во внеклеточных жидкостях.

3.1. Клеточное железо
3.1.1. Гемопротеины
Гемоглобин, содержащийся в эритроцитах, выполняет важную для организма газотранспортную функцию – переносит экзогенный кислород и эндогенный углекислый газ. Эритроцит по отношению к гемоглобину играет роль буферной системы, способной регулировать общую величину газотранспортной функции.

Дыхательный пигмент крови – сложный белок, состоящий из белковой молекулы – глобина, соединенной полипептидными цепочками с 4 комплексами гема. Глобин состоит из 2 пар полипептидных цепочек, каждая из которых содержит 141-146 аминокислот. Гем, составляющий 4% веса молекулы гемоглобина, содержит железо в центре порфиринового кольца. У здорового человека гемоглобин гетерогенен. Нормальный эритроцит содержит приблизительно 30 пг. гемоглобина, в котором находится 0,34% железа.



Рисунок 8. Строение гемоглобина.

Миоглобин – дыхательный белок сердечной и скелетной мускулатуры. Он состоит из единственной полипептидной
цепочки, содержащей 153 аминокислоты и соединенный с гемпростетической группой. Основной функцией миоглобина является транспортировка кислорода через клетку и регуляция его содержания в мышце для осуществления сложных биохимических процессов, лежащих в основе клеточного дыхания. Он содержит 0,34% железа. Миоглобин депонирует кислород во время сокращения мышц, а при их поражении он может попадать в кровь и выделяться с мочой.



Рисунок 9. Пространственная структура миоглобина.
Железосодержащие ферменты и негеминовое железо клетки находится главным образом в митохондриях. Наиболее изученными и важными для организма ферментами являются цитохромы, каталаза и пероксидаза.

Цитохромы делятся на 4 группы в зависимости от строения геминовой группы:



Рисунок 10. Цитохром С-оксидаза.
В организме человека содержатся следующие цитохромы:

A1, A3, B, B5, C, C1, Р450. Они представляют собой липидные комплексы гемопротеинов и прочно связаны с мембраной митохондрии. Однако, цитохромы B5 и Р450 находятся в эндоплазматическом ретикулюме, а микросомы содержат НАДН–цитохром С–редуктазу. Существует мнение, что митохондриальное дыхание необходимо для процессов дифференцировки тканей, а внемитохондриальное играет важную роль в процессах роста и дыхания клетки. Основной биологической ролью большинства цитохромов является участие в переносе электронов, лежащих в основе процессов терминального окисления в тканях.
Цитохромоксидаза является конечным ферментом митохондриального транспорта электронов – электронотранспортной цепочки, ответственным за образование АТФ при окислительном фосфолировании в митохондриях. Показана тесная зависимость между содержанием этого фермента в тканях и утилизацией ими кислорода.


Рисунок 11. Структура и функция цитохромоксидазы.
(электрон от цитохрома с передается через CuА на гем а и далее в место восстановления кислорода (гем а3 с CuB), откуда наружу выделяется вода; между двумя гемами прокачиваются протоны, часть которых идет на образование воды; в транслокации протонов участвуют боковые цепи аминокислот D124 и E278)


Каталаза, как и цитохромоксидаза, состоит из единственной полипептидной цепочки, соединенной с гем-группой. Она является одним из важнейших ферментов, предохраняющих эритроциты от окислительного гемолиза. Каталаза выполняет двойную функцию в зависимости от концентрации перекиси водорода в клетке. При высокой концентрации перекиси водорода фермент катализирует реакцию ее разложения, а при низкой и в присутствии донора водорода (метанол, этанол и др.) становится преобладающей пероксидазная активность каталазы.



Рисунок 12. Структура каталазы.
Пероксидаза содержится преимущественно в лейкоцитах и слизистой тонкого кишечника у человека. Она также обладает защитной ролью, предохраняя клетки от их разрушения перекисными соединениями. Миелопероксидаза – железосодержащий геминовый фермент, находящийся в азурофильных гранулах нейтрофильных лейкоцитов и освобождается в фагоцитирующие вакуоли в течение лизиса гранул.

Активированное этим ферментом разрушение белка клеточной стенки бактерий является смертельным для микроорганизма, а активированное им йодинирование частиц относится к бактерицидной функции лейкоцитов.
3.1.2. Железосодержащие ферменты негеминовой группы
К железосодержащим относятся и флавопротеиновые ферменты, в которых железо не включено в геминовую группу и необходимо только для реакций переноса.

Наиболее изученной является сукцинатдегидрогеназа, которая наиболее активна в цикле трикарбоновых кислот. Митохондриальные мембраны свободно проницаемы для субстрата фермента.

Негеминовое железо, локализующееся главным образом в митохондриях клетки, играет существенную роль в дыхании клетки, участвуя в окислительном фосфолировании и транспорте электронов при терминальном окислении, в цикле трикарбоновых кислот.

3.1.3. Ферритин и гемосидерин внутренних органов
Ферритин и гемосидерин – запасные соединения железа в клетке, находящиеся главным образом в ретикулоэндотелиальной системе печени, селезенки и костного мозга. Приблизительно одна треть резервного железа организма человека, преимущественно в виде ферритина, падает на долю печени. Запасы железа могут быть при необходимости мобилизованы для нужд организма и предохраняют его от токсичного действия свободно циркулирующего железа.

Известно, что гепатоциты и купферовские клетки печени участвуют в создании резервного железа, причем в нормальной печени большая часть пегом и нового железа обнаружена в гепатоцитах в виде ферритина. При парентеральном введении железа как гепатоциты, так и кунферовские клетки печени аккумулируют большое количество дополнительного ферритина, хотя последние имеют тенденцию запасать относительно больше из лишнего негеминового железа в виде гемосидерина.



Рисунок 13. Структура ферритинового комплекса у мыши.
Сферическая белковая оболочка молекулы ферритина состоит из 24 субъединиц, имеющих молекулярный вес 18500–19000. Общий молекулярный вес апоферритина 445000. Электронно-микроскопические исследования показали, что ферритин имеет полую оболочку с внутренним диаметром 70–80 А. Оболочка имеет 6 каналов, расширяющихся кнутри (их диаметр 9–12 А).

Ядро ферритина состоит из мицелл железо-фосфатного комплекса, имеющих кристаллическую структуру. Захват и освобождение железа осуществляется через белковые каналы путем свободного пассажа, а его отложение и мобилизация происходят на поверхности микрокристаллов. Стимуляция синтеза ферритина железом является хорошо установленным фактом.

Как известно, печень является основным компонентом ретикулоэндотелиальной системы. В конце жизнедеятельности эритроциты фагоцитируются макрофагами этой системы, а освобождающееся железо или оседает в печени в виде ферритина (гемосидерина), или возвращается в плазму крови и захватывается в паренхиматозных клетках печени и мышц, а также в макрофагах ретикулоэндотелиальной системы печени, селезенки и костного мозга.

Гемосидерин является вторым запасным соединением железа в клетке и содержит значительно больше железа, чем ферритин. В отличие от ферритина он нерастворим в воде. Существует достаточно аргументированное предположение, что преобразование ферритина в гемосидерин происходит путем постепенного перенасыщения ферритиновой молекулы железом с последующим ее разрушением и образованием зрелого гемосидерина.



Рисунок 14. Почки под микроскопом. Коричневые включения содержат гемосидерин.
Внимание исследователей в последнее время привлекает циркулирующий в крови ферритин. Вероятно, он происходит из клеток ретикулоэндотелиальной системы. Имеются предположения, что сывороточный ферритин является отражением активной секреции ферритина из печеночных клеток, возможно из связанных полисом. Таким образом, его присутствие в сыворотке в небольшом количестве не является результатом разрушения клеток печени. Не только его происхождение, но и биологическая роль в организме человека до настоящего времени изучены недостаточно. Не вызывает сомнений точно установленный факт концентрация сывороточного ферритина отражает состояние запасного фонда железа в организме человека. Отметим, что хорошая зависимость отмечена между уровнем сывороточного ферритина и мобилизуемыми запасами железа в организме человека, изученных с помощью количественных кровопусканий, а также между ферритином и концентрацией негеминового железа в тканях печени, полученных с помощью биопсии у людей. Средняя концентрация его в сыворотке крови у мужчин выше, чем у женщин, с колебаниями от 12 до 300 мкг/л.

3.2. Внеклеточное железо
Во внеклеточных жидкостях железо находится в связанном состоянии – в виде железо-белковых комплексов. Концентрация его в плазме широко варьирует у здорового человека, составляет 10,8–28,8 мкмоль/л с достаточно большими суточными колебаниями, достигающими 7,2 мкмоль/л. Общее содержание железа во всем объеме циркулирующей плазмы у взрослого человека составляет 3–4 мг. Уровень железа в плазме крови зависит от ряда факторов: взаимоотношения процессов разрушения и образования эритроцитов, состояния запасного фонда железа в желудочно-кишечном тракте. Однако наиболее важной причиной, определяющей уровень плазменного железа, является взаимодействие процессов синтеза и распада эритроцитов. Железо-связывающий белок трансферрин, открытый шведскими учеными, содержится в небольшом количестве в плазме крови. Общая железо-связывающая способность плазмы, характеризуящаяся практически концентрацией трансферрина, колеблется от 44,7 до 71,6 мкмоль/л, а свободная железо-связывающая способность – резервная емкость трансферрина – составляет 28.8–50.4 мкмоль/л у здорового человека.

В плазме здорового человека трансферрин может находиться в 4 молекулярных формах:

1) апотрансферрина;

2) моножелезистого трансферрина А – железо занимает только
А-пространство;

3) моножелезистого трансферрина В – железо занимает только В-пространство;

4) дижелезистого транферрина – заняты А и В пространства.

Молекулярный вес трансферрина 76000–80000, он состоит из единственной полипептидной цепочки с расположенными на ней двумя значительно схожими, если не идентичными, металлсвязывающими пространствами. Эти пространства (А и В) наиболее прочно связывают железо по сравнению с ионами других металлов. Около 6% железо-связывающего белка составляют углеводные остатки, находящиеся в 2 ответвляющихся цепочках и заканчивающихся сиаловой кислотой. Углеводы, вероятно, не участвуют в механизме захвата железа. Синтезируется трансферрин преимущественно в паренхиматозных клетках печени. Функции трансферрина в организме представляют значительный интерес. Он не только переносит железо в различные ткани и органы, но и «узнает» синтезирующие гемоглобин ретикулоциты и, возможно другие нуждающиеся в железе клетки. Трансферрин отдает железо им только в том случае, если клетки имеют специфические рецепторы, связывающие железо. Таким образом, этот железо-связывающий белок функционирует как транспортное средство для железа, обмен которого в организме человека зависит как от общего поступления железа в плазму крови,
так и от его количества, захваченного различными тканями соответственно количеству в них специфических рецепторов для железа. Кроме того трансферрин обладает защитной функцией – предохраняет ткани организма от токсического действия железа.

Анализируя биологическую роль трансферрина в организме, следует упомянуть о результатах экспериментальных исследований, свидетельствующих о способности этого белка регулировать транспорт железа из лабильных его запасов в эпителии клеток желудочно-кишечного тракта в плазму крови. Из плазмы железо захватывается преимущественно костным мозгом для синтеза гемоглобина и эритроцитов, в меньшей степени – клетками ретикулоэндотелиальной системы и откладывается в виде запасного железа, некоторое количество его поступает в неэритропоэтические ткани и используется для образования миоглобина и ферментов тканевого дыхания (цитохромы, каталаза и т.д.). Все эти процессы являются сложными и до конца не изученными.

Однако некоторые этапы наиболее важного процесса передачи железа трансферрином клеткам костного мозга можно представить следующим образом:

1) адсорбция трансферрина рецепторными участками на поверхности ретикулоцитов;

2) образование прочного соединения между трансферрином и клеткой, возможно проникновение белка в клетку;

3) перенос железа от железо-связывающего белка к синтезирующему
гемоглобин – аппарату клетки;

4) освобождение трансферрина в кровь.

Известно, что количество связывающих трансферрин пространств максимально в ранних эритроидных предшественниках и уменьшается по мере созревания этих клеток.

Железо-связывающий белок лактоферрин обнаружен во многих биологических жидкостях: молоке, слезах, желчи, синовиальной жидкости, панкреатическом соке и секрете тонкого кишечника. Кроме того, он находится в специфических вторичных гранулах нейтрофильных лейкоцитов, образуясь в клетках миелоидного ряда со стадии промиелоцита. Подобно трансферрину,
лактоферрин способен связывать 2 атома железа специфическими пространствами. Он состоит из одной полипептидной цепочки, молекулярный вес приблизительно равен 80000. В физиологических условиях этот железо-связывающий белок насыщен железом до 20%, в ничтожных количествах он содержится в плазме крови, освобождаясь в нее из нейтрофильных лейкоцитов. Несмотря на схожесть лактоферрина и трансферрина, эти железо-связывающие
белки отличаются друг от друга по антигенным свойствам, составу аминокислот, белков и углеводов.

В настоящее время известны следующие функции этого белка: бактериостатическая, участие в иммунных процессах и абсорбции железа в желудочно-кишечном тракте. Свободный от железа лактоферрин – аполактоферрин обладает бактериостатическими свойствами, которые теряются при насыщении его железом.

Аполактоферрин тормозит in vitro рост бактерий и грибов, и возможно, играет роль во внутриклеточной гибели микроорганизмов. При низкой концентрации лактоферрина в нейтрофильных лейкоцитах может уменьшаться их бактерицидная активность.

Железо-серные ферменты – это еще один важный класс железосодержащих ферментов, участвующих в переносе электронов в клетках животных, растений и бактерий. Железо-серные ферменты не содержат гемогрупп, они характеризуются тем, что в их молекулах присутствует равное число атомов железа и серы, которые находятся в особой лабильной форме, расщепляющейся под действием кислот. К железо-серным ферментам относится, например, ферредоксин хлоропластов, осуществляющий перенос электронов от возбужденного светом хлорофилла на разнообразные акцепторы электронов.

4. Этапы обмена железа в организме
При среднем поступлении с пищей 10-20 мг железа в сутки у здорового человека не более 1-2 мг абсорбируется в желудочно-кишечном тракте. Наиболее интенсивно этот процесс происходит в двенадцатиперстной кишке и начальных отделах тощей кишки. Желудок играет лишь незначительную роль в усвоении: в нем абсорбируется не более 1-2% от общего количества поступающего в желудочно-кишечный тракт. Соотношение в пище продуктов животного и растительного происхождения, веществ, усиливающих и тормозящих абсорбцию, функциональное и морфологическое состояние эпителия желудочно-кишечного тракта все это оказывает влияние на величину усвоения железа.

Усвоение пищевого железа напрямую зависит от состава самой пищи. Наличие в ней янтарной, аскорбиновой, лимонной кислот, а также фруктозы, сорбита, метионина и цистеина ускоряют заданный процесс. Напротив, фосфаты, фитаты, оксалаты, препараты кальция и содержащие кальций продукты (творог, молоко) тормозят.



Кратко остановимся на процессе всасывания железа, состоящем из ряда последовательных этапов:

1) начальный захват железа щеточной каймой клеток слизистой оболочки кишечника;

2) внутриклеточный транспорт его образование лабильных запасов
железа в клетке;

3) освобождение железа из слизистой оболочки кишечника в кровь.

В экспериментальных исследованиях показано, что клетки эпителия слизистой оболочки кишечника чрезвычайно быстро абсорбируют железо из его полости, причем митохондрии активно участвуют в ранних механизмах транспорта железа. Значительная часть его (80%) находилась в митохондриях клеток, а остальная часть – в щеточной кайме в течение 5-20 минут после введения железа в желудочно-кишечный тракт. Исследования с использованием ультраструктурной авторадиографии показали, что первый этап обеспечивает достаточную концентрацию железа на поверхности слизистой оболочки клеток для последующей его абсорбции. При этом железо концентрируется на щеточной кайме, закисное железо переходит в окисное на мембране
микроворсинок.

Второй этап поступление железа в богатую рибосомами цитоплазму и латеральное межклеточное пространство, и, наконец, третий этап перенос железа в кровеносные сосуды собственной оболочки, где оно захватывается белком крови трансферрином.

Существует точка зрения, что транспортировка железа из цитоплазмы эпителиальных клеток в кровь может осуществляться ферритином.

Интенсивность захвата железа из клеток слизистой оболочки кишечника в кровь зависит от соотношения содержания в плазме свободного, моножелезистого или дижелезистого (насыщенного) трансферрина. Свободные молекулы последнего обладают максимальной способностью связывать железо. Комплекс трансферрин–железо поступает главным образом в костный мозг, небольшая часть его в запасной фонд, преимущественно в печень, и еще меньшее количество связанного транферрином железа ассимилируется тканями для образования миоглобина, некоторых ферментов тканевого дыхания, нестойких комплексов железа с аминокислотами и белками.

Костный мозг, печень и тонкий кишечник являются тремя основными органами обмена железа, каждый из которых обладает системой тканевых рецепторов, специфичных для трансферрина. Ретикулоциты костного мозга, так же как и клетки эпителия слизистой оболочки кишечника, имеют повышенную способность захватывать железо из насыщенных (дижелезистых) форм трансферрина. Таким образом, ненасыщенный трансферрин лучше связывает, а насыщенный – лучше отдает железо. Механизмы регуляции активности рецепторных полей тканей, играющих определенную роль в абсорбции железа, равно как и взаимоотношения различно насыщенных форм трансферрина до настоящего времени не раскрыты.

Основным источником плазменного железа является поступления его из ретикулоэндотелиальной системы внутренних органов (печени, селезенки, костного мозга), где происходит разрушение гемоглобина эритроцитов. Небольшое количество железа поступает в плазму из запасного фонда и при абсорбции его из пищи в желудочно-кишечном тракте. Преобладающим циклом в интермедиарном обмене железа в организме человека является образование и разрушение гемоглобина эритроцитов, что составляет 25 мг железа в сутки.



Рисунок 15. Схема обмена железа.
Ферритин сыворотки крови, вероятно, осуществляет транспортировку железа от ретикулоэндотелиальных к паренхиматозным клеткам печени, однако его роль в общем обмене железа в организме человека представляется минимальной.

Обмен железа между транспортным и тканевым его фондами изучен недостаточно. Это объясняется прежде всего тем, что механизмы, пути и количественные аспекты движения железа из тканей, исключая эритропоэтические, в плазму крови и наоборот изучены мало. Расчетные данные однако, свидетельствуют о том, что величина плазменно-тканевого обмена железа приблизительно составляет 6 мг в сутки.



Рисунок 16. Схема обмена железа в организме.

5. Этиология дефицита железа
В общем виде дефицит железа развивается при нарушении баланса между поступлением и потерями железа из организма. Его гомеостаз в организме поддерживается главным образом за счет механизма абсорбции в желудочно-кишечном тракте, так как выделение железа лимитировано. Многочисленными исследованиями показано компенсаторное повышение абсорбции меченого железа при обеднении им организма, поэтому уместно говорить только о неадекватном потребностям организма усвоении железа в том случае.

Общее содержание железа в пище и его усвоение, зависящее преимущественно от соотношения продуктов животного и растительного происхождения, веществ, усиливающих или тормозящих абсорбцию, определяет его поступление в организм. Потребности в железе определяются его эндогенными затратами в связи с беременностью, ростом, и расходованием железа с кровопотерями различного происхождения, а также с отшелушивающимися клетками кожи и десквамацией кишечного эпителия.

Итак, основными причинами дефицита железа могут быть:

Нередко сочетание перечисленных факторов приводит к развитию этого состояния. Определенную, но не основную роль в происхождении обеднения организма железом могут играть нарушения пищеварения в связи с заболеваниями желудка и кишечника. Некоторые инфекционно-воспалительные заболевания могут привести к перераспределению железа в организме и тем самым вызвать сидеропению. Однако истинного дефицита железа в этих случаях не наблюдается. То же самое можно сказать и об опухолях различных организмов и систем.

Железодефицитная анемия (наиболее распространенная из всех анемий) впервые описана в XVI столетии под названием morbus virginum (поскольку обнаруживалась у девушек в 14–17 лет) и chlorosis, или зеленая болезнь. Железодефицитная природа хлороза впервые отмечена Sydenham в XVIII столетии, когда была признана связь анемии, гипохромии и железодефицита. Так, в 1832 г. Pierre Blaud сообщил о положительных результатах лечения хлороза сернокислым железом. В 1866 г. Perls внедрил в практику реакцию на прусскую лазурь в целях выявления тканевого железа, которая в дальнейшем была дополнена внедрением в клиническую практику метода Гейльмайера и Плотнера для определения железа в сыворотке.

Наибольшими по содержанию железа (в мг на 100 г продукта) продуктами являются печень говяжья – 9,8 мг, соль поваренная – 10,0, крупа гречневая – 8,0, язык говяжий – 5,0, фасоль – 12,4, горох – 9,4.

Однако количество железа в продукте питания не корреллирует с его способностью к всасыванию в желудочно–кишечном тракте, что объясняется лучшим усвоением железа в виде гема. Так, из продуктов питания растительного происхождения до 7% от содержания железа усваивается из бобов сои, из фруктов – не более 3%, мясные продукты обладают большим процентом усвоения – до 22% железа из телятины (телятина содержит до 90% железа в виде гема), до 11% из рыбных изделий (железо преимущественно в виде ферритина и гемосидерина).

Физиологическое всасывание железа из пищи ограничено. При полноценном питании взрослый мужчина получает в день до 18 мг железа, из которого усваивается только 1–1,5 мг, у женщин при 12–15 мг поступления усвоение коснется только 1–1,3 мг железа. По данным Гуревича М.И. (1977), в норме гемовое железо всасывается у мужчин до 16,9+1,6%, у женщин 13,6+1,1%. Максимальное количество всасываемого железа не превышает 2–2,5 мг. К этому прибавляется 21 мг железа из разрушенных эритроцитов, 11 мг – из пула костного мозга, 1 мг – из депо. Суммарно до 35 мг в сутки.
Расходы складываются из следующих величин: синтез гемоглобина (17–40 мг), физиологические потери (с калом, мочой, потом, слущивающимся эпителием кожи – не более 1 мг). Расходы практически полностью покрываются поступлением железа, при условии отсутствия повышенных потребностей в нем, снижения его поступления и увеличения потерь. В числовом варианте это соответствует потере более 2 мг в сутки.

Снижение поступления железа в организм напрямую связано с пищевым рационом и возникает при общем голодании, уменьшении продуктов питания, содержащих железо, патологии 12–перстной кишки и проксимальных отделов тонкого кишечника (либо резекция данных отрезков желудочно–кишечного тракта).

Потери железа четко ассоциируются с кровопотерями, в первую очередь теми, которые считаются фи­зио­логическими – у менструирующих женщин. У 10–25% женщин, которые считают себя практически здо­ровыми, во время менструации теряется более 40 мг железа, у 5% объем теряемой крови за цикл превышает 90 мл (45 мг железа). При обильных и длительных кровопотерях их величина достигает 100–500 мл крови (50–250 мг железа). Суточная потребность в железе у женщин, теряющих 30–40 мл крови за 1 цикл, 1,5–1,7 мг. В ситуации обильной кровопотери потребность возрастает до 3 мг/сут., но такое количество железа не может быть усвоено из пищи. Создается дефицит, который из мизерного количества за одни сутки (0,5–1 мг), увеличивается за месяц до 15–20 мг, за год до 189–240 мг, в течение 10 лет возрастает до 1,8–2,4 г. Срок же репродуктивной функции женского организма (а значит, и менструальных кровопотерь) не менее 40 лет. Следовательно, к возрасту 42–45 лет женщина подходит уже с выраженным дефицитом железа, хотя патологических процессов в состоянии здоровья не определяется.

У мужчин физиологических кровопотерь не бывает. Поэтому дефицит железа объясняется патологическими процессами, сопровождающимися кровотечением. Поиск имеет смысл начинать с исследования желудочно–кишечного тракта (язвенная болезнь желудка и 12–перстной кишки, опухоли, дивертикулы различной локализации, глистные инвазии, эрозии слизистой, грыжи пищеводного отверстии диафрагмы, анкилостомидоз) (табл. 1).
Реже встречаются железодефицитные анемии, обусловленные кровопотерей в замкнутые пространства с последующим нарушением реутилизации железа. Примерами могут служить легочный сидероз с постоянной кровопотерей в легочную ткань, и эндометриоз, не связанный с полостью матки. В этих случаях кровотечение во время менструации происходит в замкнутую полость, чаще всего расположенную эктопически.



Третьей причиной формирования дефицита железа является возрастание расходования железа организмом: беременность, лактация, детский и подрост­ковый возраст.

Развитие дефицита железа у детишек младшего возраста развивается, как правило, внутриутробно вследствие многоплодной беременности, при недоношенности. Кроме того, способствующими факторами, могут являться дефицит ферментов кишечника, необходимых для усвоения железа из молока матери. Дальнейший рост детей увеличивает расходную статью железа, причем и девочки, и мальчики оказываются в одинаковой ситуации. В пубертатный период кровопотери в сочетании с эстрогенным воздействием на эритропоэз и утилизацию железа (некоторое торможение) создают условия для формирования железодефицита у представительниц слабого пола. Беремен­ность и лактация – физиологические состояния, присущие женскому организму, к сожалению, в 100% случаев сопровождаются железодефицитом в организме женщины и возможным в дальнейшем развитием железодефицитной анемии. Последнее заключение особенно важно, так как диагноз железодефицитной анемии должен основываться на лабораторных анализах крови. Периферическая кровь реагирует на истощение депо железа в последнюю очередь, в то время как перераспределение запасов железа между организмом матери и плода происходит в обязательном порядке (табл. 2).



Кроме того, благодаря компенсаторным механизмам, улучшающим эффективность снабжения кислородом, симптомы, обусловленные тканевой гипоксией, могут не проявляться вплоть до падения уровня гемоглобина ниже 80 г/л (двумя адаптационными важнейшими механизмами являются увеличение сердечного выброса и усиленное освобождение кислорода в тканях, происходящее в результате повышенной концентрации в эритроцитах 2–3–дифосфоглицериновой кислоты – 2–3–ДФГ).
Подитоживая выше сказанное, рассмотрим основные моменты, касающиеся железодефицитной анемии.
Дефицит железа сопровождается:


Восполнение железа в организме зависит от:


К дефициту железа могут приводить:


Основные клинические синдромы железодефицитных состояний:

1. Анемический

2. Сидеропенический

3. Висцеральный

4. Синдром вторичного иммунодефицита

Дефицит железа у женщин


Организм женщины детородного возраста нуждается в ежедневном поступлении 2,5-2,8 мг железа. У беременных женщин потребность в железе повышается, как минимум, в 2 раза. Такое его количество только из пищевых продуктов получить невозможно. Анемией страдает каждая третья беременная.

У женщин, страдающих от дефицита железа, чаще случаются выкидыши, преждевременные роды, тяжелейший токсикоз.

По рекомендации Всемирной Организации Здравоохранения (ВОЗ) женщины на протяжении 2-3 триместров беременности и в первые 6 месяцев лактации должны получать препараты, содержащие железо.

Дефицит железа у женщин обусловлен преимущественно кровопотерями.

Объем физиологической менструальной кровопотери составляет от 30 до 50 мл, т.е. теряется в среднем 15 мг железа. Еще больше теряется при обильной кровопотере.

С пищей при полноценном питании и хорошей всасываемости поступает 2 мг железа.

Опасность развития дефицита железа значительно возрастает при нарушениях менструального цикла, особенно у девочек-подростков и у женщин во время климактерического периода, при заболеваниях женской половой сферы (миома матки, эндометриоз, гиперпластические процессы эндометрия и др.), а также при использовании внутриматочных спиралей.




Во время беременности дефицит железа может вызвать:


Течение родового периода осложняется при дефиците железа:


Среди перинатальных аспектов дефицита железа выделяют:


Высока вероятность возникновения дефицита железа у женщины после родов.

Аборт и плановые хирургические вмешательства могут способствовать развитию дефицита железа.

Дефицит железа у детей





Дефицит железа у детей вызывается:


При дефиците железа у детей наблюдаются:

Дефицит железа у лиц пожилого и старческого возраста



Дефицит железа у лиц пожилого и старческого возраста вызывается:


Дефицит железа у лиц пожилого и старческого возраста провоцирует:

Дефицит железа у спортсменов


Дефицит железа у спортсменов вызывается:


6. Распространенность железодефицитных состояний
Статистические данные подтверждают высокую распространенность дефицита железа среди населения – до 200 млн человек в мире. Частота ЖДА достигает 98% среди всех анемий. Группами риска являются исходя из особенностей обмена, женщины детородного возраста, беременные, кормящие, дети младших возрастных групп. Скрытый дефицит железа у беременных достигает, по данным ВОЗ, 100%, анемия – от 21 до 80%. Нехватка железа в организме беременной женщины чревата развитием гипоксии с дальнейшей цепочкой вторичных метаболических расстройств, в том числе фетоплацентарной недостаточностью.

В I триместре потребность железа составляет 0,6–0,8 мг/сут., не отличаясь от такового до беременности, во II триместре увеличивается до 2–4 мг/сут., в III – до 12 мг/сут. За весь гестационный период на кроветворение расходуется 500 мг железа, на потребности плода – 280–290 мг, плаценты – от 25 до 100 мг. К концу беременности в фетоплацентарном комплексе сосредотачивается около 450 мг железа, в увеличенном объеме крови – до 500 мг. При родах физиологическая потеря составляет 150 мг, лактация забирает до 400 м. Сум­марная величина потери железа к окончанию неосложненной беременности составляет 1200–1400 мг.

По степени тяжести анемии разделяют:

Легкая степень 110–91 г/л

Среднетяжелая степень 90–81 г/л

Тяжелая степень менее 80 г/л

У беременных понижение показателя гемоглобина до 110–100 г/л не говорит о патологических изменениях и объясняется физиологическим увеличением объема крови, гемоделюцией. Анемическим порогом является 100–96 г/л (эритроциты – 3,0 млн), тяжелая форма анемии оценивается с 60 г/л.

7. Лечение железодефицитной анемии
Лечение ЖДА проводится только препаратами железа, имеющими большую всасываемость в желудочно–кишечном тракте в сравнении с пищевым железом.

Препараты, применяемые в терапии, должны помимо 2–валентного железа содержать аскорбиновую кислоту, способствующую его усвоению. Адекватный гемопоэз невозможен без участия фолиевой кислоты и витамина В12. Оба компонента усиливают синтез ДНК в кроветворных клетках, а также регулируют весь цикл метаболизма железа в организме.

Профилактика анемии прежде всего требуется беременным с высоким риском развития малокровия. К ним могут быть отнесены:

– женщины, прежде болевшие анемией;

– женщины, имеющие хронические инфекционные болезни или хронические заболевания внутренних органов;

– много рожавшие женщины;

– беременные с уровнем гемоглобина в I триместре меньше 120 г/л;

– беременные с многоплодием;

– беременные с явлениями токсикоза;

– женщины, у которых в течение многих лет менструации продолжались более 5 дней.

Профилактический прием препарата происходит в дозе 1–2 капсулы в день в течение 4–6 мес., начиная с 12–14–й недели беременности.

8. Роль питания
Суточная потребность взрослого человека в железе определяется
масштабами физиологических процессов кроветворения и кроверазрушения.

Распространенность дефицита железа свидетельствует о том, что количества железа, абсорбированного из пищи, часто недостаточно для покрытия потребности в нем практически здорового населения. Однако довольно трудно установить истинную роль диет в различных районах земного шара в происхождении этой патологии.

Железодефицитные состояния могут развиваться при длительном употреблении питания с недостаточным общим содержанием железа, несмотря на нормальную калорийность, с достаточным или высоким его содержанием, но преобладанием продуктов растительного происхождения, содержащих тормозящие усвоение железа вещества. Длительное вынужденное применение однообразного по составу питания при некоторых внутренних заболеваниях или соблюдение больничных диет в ряде случаев может способствовать обеднению организма железом.

В последнее время для оценки усвоения железа из комплексной пищи используется новый метод – внешняя радиоактивная метка железом. Абсорбция его биологически меченых растительных продуктов не отличалась от усвоения при добавлении меченого железа в процессе приготовления пищи из этих продуктов. Получены доказательства, что даже при высоком содержании железа в пищевых рационах, превышающем официальные рекомендации для соответствующих групп населения, абсорбция его может быть незначительной и не удовлетворять потребности организма.

У жителей Северной Америки дефицит железа в организме – одно из наиболее распространенных последствий неправильного питания. Особенно характерен он для детей, девочек подростков и женщин детородного возраста.

Железо может всасываться только в виде ионов Fe; его всасывание и выведение протекают очень медленно и зависят от многих сложных факторов. Усваивается лишь незначительная часть присутствующего в пищевых продуктах железа. Более того, способность железа усваиваться сильно варьирует для разных пищевых продуктов. Лучше всего железо усваивается из мяса, значительно хуже из зерновых злаков. Молоко содержит очень мало железа.


В хлеб и другие злаковые продукты специально добавляют дополнительное количество железа, однако это далеко не всегда является решением проблемы недостаточности железа, так как многие девушки и женщины, следя за своим весом, исключают хлеб из рациона. Недостаток железа приводит к железодефицитной анемии, при которой число эритроцитов в крови остается нормальным, а содержание гемоглобина в них уменьшается.

9. Диагностическое применение железа
Железо-связывающую способность сыворотки крови определяют по шале (A. Shade) в модификации Pата C.Rath) и Финча (C.Finch). Метод основан на том, что при взаимодействии р-глобулинов и двухвалентного железа образуется комплекс оранжево-красного цвета. Поэтому при добавлении ферросолей (обычно соли мора) к сыворотке крови нарастает интенсивность этой окраски, которая резко стабилизируется в точке насыщения белка.

Содержание железа в плазме крови подвержено суточным колебаниям – оно снижается ко второй половине дня.

При гемосидерозе, гемохроматозе, гемолитической, n-, дне- и гипопластической анемиях, железодефицитной анемии, острых и хронических инфекциях, циррозе печени, уремии, злокачественных новообразованиях, гемолитических и паренхиматозных (но не застойных) желтухах наблюдаются гиперсидеремии и одновременное уменьшение НЖСС. Гипосидеремия и одновременное повышение НЖСС определяются при недостаточном поступлении железа с пищей и при состояниях, сопровождающихся повышенной в нем потребностью: при беременности, острых и хронических кровопотерях, т.е. при так называемых гипохромных анемиях, а также при острых инфекционных заболеваниях.

Обмен железа в организме во многом зависит от нормального функционирования печени, поэтому определение содержания железа в сыворотке крови может быть использовано в качестве функциональной печеночной пробы. При паренхиматозных поражениях печени нарушается ее функция по депонированию железа, т.к. пораженный или погибающий гепатоцит отдает железо в кровь. Вместе с тем из-за утраты гепатоцитами способности ассимилировать железо разрушающихся эритроцитов происходит его накопление в сыворотке крови. Оба эти процесса вызывают при острых паренхиматозных заболеваниях печени гиперсидеремию, которую особенно важно учитывать при эпидемическом гепатите, т.к. при вирусных инфекциях содержание железа в сыворотке крови снижается.

В отличие от паренхиматозной желтухи механическая желтуха всегда протекает при нормальном или несколько пониженном содержании железа в сыворотки крови.

Радиоактивное железо применяют в радиоизотопной диагностике, для изучения эритропоэза, обмена и всасывания железа, главным образом, в виде цитрата или хлорида. Наиболее широкое клиническое применение находят препараты, меченные Fe. Препараты, меченные Fe, в клинической практике применяются редко из-за длительного периода выведения из организма и неудобства детектирования его излучения. В ряде случаев (сканирование головного мозга и др.) Предпочтительнее использовать короткоживущий изотоп Fe, который создает значительно меньшую дозу облучения организма. При определении усвояемости железа эритроцитами радиоактивное железо Fe) вводят в кровoток. В последующие 15-20 дней с промежутками в 2-3 дня берут пробы крови и путем измерения Fe-активности эритроцитов определяют степень поглощения железа эритроцитами.

10. Лечебное применение железа
При анемических состояниях лечебное применение железа обусловлено его участием в процессе гемоглобинообразования, совершающемся в эритробластах костного мозга.

Показаниями к применению железа являются железодефицитные анемии различной этиологии (анемии от кровопотерь, алиментарные анемии, хлороз, анемии беременных и др.), Протекающие с пониженным содержанием железа в крови и истощением тканевых резервов железа, а также состояния латентного (бессимптомного) дефицита железа, встречающегося у 20-30% практически здоровых женщин. Назначение железа показано и при других состояниях гипосидероза (недостаточности железа), сочетающихся с анемией или проявляющихся самостоятельно: при сидеропенической дисфагии Россолимо-Бехтерева, коилонихии, извращенности вкуса и обоняния, зловонном насморке (онезе).

При назначении препаратов железа внутрь следует учитывать анатомно-функциональное состояние желудочно-кишечного тракта, особенно его верхних отделов желудка, двенадцатиперстной кишки и начального отдела тощей кишки, являющихся наиболее активными участками всасывания железа. После кровопусканий, активирующих эритропоэз, абсорбция железа возрастает и осуществляется на протяжении всего кишечника, включая слепую кишку.

Лечебное применение железа обусловлено необходимостью восстановления нормальной концентрации не только гемоглобина, но и железа в тканях. Недостаточное лечение, в результате которого резервы тканевого железа не восполняются, способствует сохранению латентного дефицита железа и быстрому рецидиву анемии.

Критериями эффективности лечения препаратами железа считаются:

Показателем эффективности лечения препаратами железа является также обратное развитие трофических нарушений эпителия и эндотелия, связанных с дефицитом железа.

11. Препараты, содержащие железо

1) Ферлатум® и Ферлатум Фол®


Антианемический, препарат железа
– Ferlatum® 

( Fe protein succinilate | железа протеин сукцинилат )

Ферлатум – самый инновационный железосодержащий препарат для эффективного лечения и профилактики железодефицитной анемии, обладающий отличной переносимостью и высокой безопасностью.
– Ferlatum Fol® 

(ferrous protein succinilate + calcium folinate) 
(железа протеин сукцинилат + кальция фолинат)

Ферлатум Фол – идеальный лечебно-профилактический комплекс для беременных женщин, обогащённый фолиновой кислотой.

Фолиновая кислота – это активный метаболит фолиевой кислоты, быстро включающийся в метаболизм железа, что повышает физиологическое использование доступного железа в процессах гемопоэза и синтеза гемоглобина

2) ГЕМОФЕР®





Фармакологические свойства 

ГЕМОФЕР – антианемический препарат, содержащий двухвалентное железо в виде простой соли хлорида железа (II) и предназначенный для лечения железодефицитных состояний. 

Ионы железа играют существенную роль в транспорте кислорода и тканевом дыхании. Являются составной важной частью гемоглобина, миоглобина и различных ферментов, например: цитохрома С, принимающих участие в образовании и передаче энергии.

Гемофер в форме капель содержит двухвалентное железо и предназначен для перорального применения. Дополняет существующий дефицит железа в организме, а также противодействует возникновению его недостатка в период повышенной потребности и в случае недостаточного поступления железа. 
При дефиците железа, первые эффекты действия препарата наблюдаются спустя 3-10 дней его применения. Однако запасы железа в организме восстанавливаются через 2-3 месяца от начала приема.

3) ТОТЕМА®





Железо необходимо для синтеза гема, входящего в состав гемоглобина, миоглобина и других металлопротеинов организма, участвует в окислительно-восстановительных процессах. Медь и марганец - важная составная часть ферментативных систем, участвующих в основных окислительно-восстановительных процессах в организме. 

Всасывание микроэлементов происходит, в проксимальном отделе тонкого кишечника. При приеме препарата происходит постепенная регрессия клинических и лабораторных симптомов анемии, вызванной дефицитом этих металлов (микроэлементов).




Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации