Сорокин В.Н. Экспериментальная механика - файл n1.doc

приобрести
Сорокин В.Н. Экспериментальная механика
скачать (9661 kb.)
Доступные файлы (1):
n1.doc11962kb.28.10.2010 10:14скачать

n1.doc

  1   2   3   4   5   6   7   8


Министерство образования и науки Российской Федерации




Государственное образовательное учреждение

высшего профессионального образования

«Омский государственный технический университет»


В. Н. Сорокин


ЭКСПЕРИМЕНТАЛЬНАЯ
МЕХАНИКА


Конспект лекций
Омск

Издательство ОмГТУ

2010

УДК 539.3(075)

ББК 22.2я73

С65


Рецензенты:

Н. С. Галдин, д-р техн. наук, проф. (СибАДИ);

Г. В. Редреев, канд. техн. наук, доц. (ОмГАУ)
Сорокин, В. Н.

С65 Экспериментальная механика: конспект лекций / В. Н. Сорокин. – Омск: Изд-во ОмГТУ, 2010. – 116 с.


В конспекте лекций кратко рассмотрены основные направления экспериментальной механики, методы и средства определения механических характеристик и свойств материалов и соединений, а также некоторые вопросы методологии планирования и организации исследований. Приведены методы испытаний конструкций и конкретные примеры.

Предназначен для студентов дневной формы обучения по специальности 150300 «Прикладная механика».

Печатается по решению редакционно-издательского совета

Омского государственного технического университета

УДК 539.3(075)

ББК 22.2я73


© ГОУ ВПО «Омский государственный

технический университет», 2010


ВВЕДЕНИЕ

Снижение материалоемкости конструкций и одновременное обеспечение заданного ресурса и надежности стали важнейшими требованиями для новых машин и сооружений. Эти требования обусловили развитие расчетных и экспериментальных методов и средств в прикладной механике и существенно изменили к настоящему времени общую методологию проектирования новой техники в различных отраслях машиностроения. Появились новые понятия, такие как «системы автоматического проектирования» (САПР), «конструкции заданного ресурса», «эксплуатация машин по техническому состоянию».

Систематизация и накопление данных о теоретических коэффициентах концентрации напряжений (ККН) привели к развитию проектирования по уровню местных напряжений, т.е. нормированию качества конструкций по значениям ККН.

Создание и применение новых материалов и полуфабрикатов конструкционных пластиков (полимеров) и других неметаллов определило развитие реологических исследований в новой области – механике полимеров. Развитие новых концепций проектирования машин и конструкций изменило соотношения между объемами и трудоемкостью расчетных, конструкторских и экспериментальных работ. Значительно повысилась доля экспериментальных исследований на всех этапах разработки и эксплуатации новой техники.

Содержание экспериментальных работ обогатилось новыми направлениями и методами, произошел отбор средств экспериментальной механики для решения инженерных прикладных задач. Появились новые черты в развитии методов и средств экспериментальной механики, утвердившиеся в инженерной практике: широкое применение в промышленности и научных исследованиях электротензоизмерений, успешное решение проблем автоматизации тензоизмерений, обработки данных для средних и больших массивов тензорезисторов с требуемым быстродействием и точностью; создание информационно-измери­тельных систем (ИИС) тензотермометрирования на основе ЭВМ. Значительные сдвиги произошли в создании автоматизированных систем нагружения для испытания конструкций на статические, переменные и динамические нагрузки на базе электрогидравлических и других типов устройств одно- и многоканального типа, которые воспроизводят различные детерминированные законы нагружения и случайные процессы.

Дальнейшее развитие получило физическое моделирование задач прочности и строительной механики, выполняемое методами фотомеханики, муаровых полос, сеток, голографической интерферометрии, хрупкими тензочувствительными покрытиями. Значительно обогатились средства неразрушающих методов контроля (НМК) материалов и изделий.

В 1982 г. введена новая научная дисциплина в области технических наук специальность 05.02.19 «Экспериментальная механика машин», содержанием которой является исследование, обоснование и разработка экспериментальных методов и средств определения режимов и параметров работы машин, механических и эксплуатационных свойств деталей и изделий. Основные направления этих исследований предусматривают методы и средства определения кинематических и динамических режимов и параметров работы машин, механизмов, робототехнических систем; напряжений и деформаций в деталях и узлах машин и механизмов на рабочих режимах; моментов, усилий и степени повреждения деталей и узлов машин в местах сопряжений в рабочих условиях; прочности конструкций в эксплуатационных условиях.

Термин "экспериментальная механика" впервые был введен замечательным русским ученым-механиком В.Л. Кирпичевым (1845–1913 гг.). В 1895 г. на II съезде русских деятелей по техническому и профессиональному образованию он выступил с докладом "Экспериментальная механика и механические лаборатории высших технических учебных заведений", в котором, в частности, сказал: "Наука должна возможно часто возвращаться к проверке экспериментальных данных, служащих ее основанием; в этом возвращении к земле она будет черпать новые силы для дальнейшего развития". Виктору Львовичу Кирпичеву принадлежат первые отечественные публикации по важнейшим разделам экспериментальной механики.

Малый объем данного курса предопределил фрагментарность изложения методов, целью которого явилось рассмотрение только принципов и применения методов.
Лекция 1

ОБЪЕКТЫ ИСПЫТАНИЙ.
ТРЕБОВАНИЯ К ОБРАЗЦАМ И ИХ КЛАССИФИКАЦИЯ


В общей методологии проектирования современных машин двумя важнейшими направлениями являются обеспечение функционирования механических систем и обеспечение прочности и заданного ресурса силовых конструкций и механизмов. Часть инженерных задач имеет достоверность оценок и рекомендации с точностью до 15 %, но другие задачи решаются на уровне достаточно грубых оценок и прогнозирования. В последнем случае, когда действуют законы статистики и случайные факторы, расчетчики используют введение нормированных высоких коэффициентов запаса.
Задачи обеспечения прочности, ресурса и функционирования машин
на основе экспериментальных исследований


Машиноведение и прикладная механика содержат дисциплины, определяющие методологию проектирования и разработку отдельных фундаментальных и частных проблем машиностроения.

Машина создается на базе данных нескольких научно-технических направлений по системам, но ее связующую конструктивную основу составляют силовые конструкции и механизмы. Они определяют значительную долю материалоемкости и массы машины, что, в свою очередь, ставит как первостепенными, задачи обеспечения прочности и ресурса конструкции при ее минимальной массе.

Современное проектирование предусматривает независимо от класса машин несколько стадий в создании и эксплуатации техники.

Экспериментальная механика машин объединяет и обобщает ту область знаний в прикладной механике (механике твердого тела), в теории машин и механизмов и других разделах общего машиноведения, которая изучает экспериментальные методы и средства, применяемые для исследования объектов силовой конструкции машин и механизмов с целью обоснования прочности и ресурса, а также обеспечения функционирования механических систем.

Схема силового проектирования машин и механизмов, этапы расчетного анализа, формулировки критериев функционирования, ресурса прочности, содержание экспериментального обеспечения и обоснования расчетных и проектных работ и самих критериев для заключения о прочности, ресурсе и функционировании машины показаны на рисунке 1.1.


Исходным этапом для проектирования силовых конструкций и механизмов является получение следующих данных: 1) о функциональном назначении, режимах, технико-экономических параметрах машины, рассматриваемых при составлении технического задания (ТЗ); 2) о внешних нагрузках и условиях эксплуатации, позволяющих сформулировать расчетные условия для проектирования; 3) о конструктивных схемах, расчетных статических, кинематических и динамических моделях конструкций и механизмов, их математическое описание; 4) о предположительном комплексе расчетных критериев прочности, ресурса и функционирования, относящихся к рассматриваемому классу машин и условиям эксплуатации; 5) о возможном наборе конструкционных материалов, полуфабрикатов, технологий деталей и типах соединений.

Перечисленные сведения и данные получают на стадии прогнозирования и в начале разработки проекта на этапах технического задания, технического предложения и аванпроекта (эскизного проекта) и затем уточняют на всех последующих этапах создания и эксплуатации машины.

В создании современных машин важнейшими, длительными и трудоемкими стадиями разработки являются первые этапы, включающие этап рабочего (технического) проектирования.

На этапе технического проектирования и постройки опытных экземпляров машины изменяется содержание экспериментальных исследований. Завершается опережающая разработка принципиально новых узлов, соединений, деталей, проводятся сравнительные испытания их с целью получения ожидаемых лучших характеристик по прочности, долговечности, изнашиванию и т.д. и сопоставление с данными известных технических решений. Испытания натурных и полунатурных элементов конструкции, узлов и агрегатов планируют и выполняют, как правило, в период, когда опытная машина комплектуется системами и оборудованием.

Подготовка серийного производства связана с доработками конструкции, принятыми в результате стендовых и натурных испытаний, и введением изменений в серийную документацию. Первые серийные машины, предназначенные для ведомственных или государственных испытаний и последующей эксплуатации, отличаются от первого опытного экземпляра, поэтому требуются испытания серийных натурных агрегатов и узлов.

На этапе эксплуатации парка машин проводят расчетные и экспериментальные работы по анализу дефектов и отказов с принятием обоснованных решений; по сравнению программного эквивалента и действительного расходования ресурса; темпов эксплуатационного изнашивания, появления предельных люфтов, потери кинематической точности механизмов; по возможному продлению ресурса изделия, проведению регламентных работ, осмотров, дефектации; а также исследование возможной модернизации машины или проектов создания модификаций.

Объекты экспериментальных исследований. Объекты, исследуемые для решения задач прочности и ресурса (табл. 1.1), образуют условный хронологический ряд по этапам создания машины. На основе принятых для машины и ее агрегатов расчетных условий и критериев прочности и ресурса определяют минимальные объемы испытания стандартных образцов материалов и полуфабрикатов (Ост, Оп) для уточнения базовых характеристик и зависимостей в условиях, близких к реальным ожидаемым условиям эксплуатации узла.

Экспериментальные исследования образцов-соединений (Ос), как стандартных, так и специальных, дают базовые характеристики и сравнительные данные о новых видах и технологиях соединений. Эти данные анализируют совместно с данными о жесткости, прочности, усталости и о массовых характеристиках известных соединений.

В разработке соединений, отдельных деталей, узлов, агрегатов и силовых конструкций в целом используют физические модели (Мс, Ма, Мк) и макеты.
Таблица 1.1

Наименование объектов экспериментальных
исследований


Обозначение


Решаемые задачи

Стандартные образцы
материалов


Ост

Механические, упругие, жесткостные, усталостные, коррозионные характеристики, ползучесть и др.


Образцы полуфабрикатов


Оп

Характеристики изгиба, сдвига, смятия, отрыва, потери устойчивости, теплопрочности полуфабрикатов


Образцы соединений


Ос

Характеристики прочности, усталости, пол­зучести болтовых, заклепочных, сварных, клеевых, композиционных и других соединений

Модели соединений
и отдельных деталей

Мс

Исследование на упруго- или конструк­тивно подобных моделях силовых потоков, НДС, перемещений, проверка приближен­ных теоретических расчетов, оптимизация конструкций на основе параметрических исследований

Модели агрегатов и узлов

Ма

Модели силовой
конструкции машин


Мк

Полунатурные элементы конструкции: панели, стыки, детали, рамы, опоры, и др.


Нд

Исследование несущей способности, силовых потоков, НДС, перемещений, остаточных деформаций и напряжений, теплопрочности, выносливости, остаточной прочности и долговечности, динамики, ударных воздействий, вибро- и акустической прочности, коррозии и других воздействий на конструкции

Натурные агрегаты и узлы

На

Натурная силовая
конструкция машины


Нк

Натурная машина
(опытная или серийная)


Н

Исследование спектра нагрузок, реальных напряжений, долговечности, вибраций, кор­розии, старения и других параметров в эксплуатации

НДС – напряженно-деформированное состояние

В зависимости от объема исходных данных и целей, которые преследуют при создании моделей, рассчитывают, проектируют и изготовляют упругоподобные, конструктивно подобные и динамически подобные модели. Большинство их создают на этапе эскизного и рабочего проектирования, когда становятся более конкретными силовые связи, жесткости, массовые характеристики и формы деталей.

Количественные оценки для обоснования реальной долговечности и прочности конструкции получают испытаниями полунатурных и натурных деталей, узлов, агрегатов (Нд, На) по программам, максимально приближенным к эксплуатационным условиям, и по нагрузкам программного эквивалента. В некоторых случаях применяют ускоренные испытания, форсируя основные режимы работы конструкций: повышая частоту, уровень нагрузок и непрерывно проводя испытания.

Исследования натурной силовой конструкции Нк на прочность и долговечность (ресурс) выполняют на основании действующих нормативно-технических документов.

Большие и трудоемкие исследования проводят на различных этапах создания машины для выявления работоспособности конструкции и материалов в местах силового контакта и трущихся поверхностей. Подшипниковые узлы, трансмиссии и передачи, робототехнические системы, энергоблоки и т.д. испытывают при стендовой и эксплуатационной наработке с измерением многих параметров. Условная классификация (табл. 1.2) показывает объекты исследований механических систем на функционирование, основные задачи и требуемые технические средства испытаний.

Таблица 1.2

Объекты экспериментальтных исследований

(группы)

Обо-

значение

Примеры типовых образцов, узлов,
агрегатов, машин

Примеры исследований объектов механических систем

Оборудование для
испытаний

1

2

3

4

5

Образцы пар трения: антифрикционные, фрикционные, для анализа смазок


Опт

Образцы пальчиковые, пластинчатые, дисковые (торцовые),

кольцевые (торцовые), типа вал-вкла­дыш или вал-втулка, вал-призма, вал-па­лец, ролик по роликам, шарик по шарикам

Определение коэфф. трения пар, моментов и сил трения, износостойкости материалов, условий изнашивания и заедания, фрикционной теплостойкости и изнашивания, сравнивание свойств смазочных материалов

Машины трения и специальные стенды (установки)

Модели
триботехники



Мтб

Масштабные физические макро- и микромодели подвижных силовых узлов и соединений

Изучение изнашивания и параметров трения на моделях и пересчет данных на натурный объект согласно теории подобия и размерности

Установки
и стенды, машины трения

Продолжение табл. 1.2

1

2

3

4

5

Модели
механизмов: кинематические
динамические



Ммк
Ммд

Масштабные кинематические модели сло­ж­ных пространственных механизмов.

Структурные динамические модели

Изучение перемещений, скоростей и ускорений элементов механизма.
Качественные оценки перегрузки, форм, частот, амплитуд и ускорений, устойчивости.

Установки
и стенды, машины трения

Объекты эксперименталтных исследований

(группы)

Обо-

зна-че-

ние

Примеры типовых об­разцов, узлов, агрегатов, машин

Примеры исследований объектов механических систем

Оборудование для
испытаний



Модели
и макеты машин и робототехники



Ммм

Масштабные, аэродинамические, гидродинамические, воздушные-летающие, погружаемые, функци­ональнодействующие, увязочные и т.д.

Изучение функциональ-ных характеристик объектов на моделях. Геометрическая увязка и оптимальное месторасположение узлов, агрегатов, элементов управления на макетах

Аэродина-мические трубы,
гидробассейны,
грунты и специальные среды


Натурные узлы подвижных
соединений


Нус

Подшипники, муфты, сцепления, тормоза, валы и уплотнения, направляющие станков, технологических и управляющих устройств, карданы и т.д.

Кинематическая точность и плавность хода, допустимые частоты вращения, биение, деформирующая и компенсационная способность (муфт), предельный износ, контактное схватывание, температурная выборка зазоров, шумность, КПД


Специальные стенды и приспособления

Натурные и
полунатурные элементы
передач и трансмиссий


Нэп

Зубчатые, червячные, планетарные, волновые передачи; цепные, ременные, винтовые (винт-гайка), шариковые передачи; карданные трансмиссии, редукторы, гидромеханические передачи и элементы.

Износостойкость при предельных и эксплуатационных контактных нагрузках, кинематическая точность и плавность при допустимых люфтах; жесткость и собственные частоты, допустимые ско­­­­рости шум, КПД, температурные режимы и надежность герметизации уплотнений и сальников


Специальные стенды и машины, приспособления и приборы
регистрации параметров

Натурные
передачи
и трансмиссии


Нп

Натурные
автоматические транспортирующие и робототехнические системы


Нар

Автоматические линии, транспортеры, тех­нологические
роботы и гидроусилители, системы силового управления, шас­си, демпферы

Точность технологических и транспортирующих операций, оценка допустимого износа, надежность дублирования, жесткость, параметры деформирования, влияние вибраций и динамики

Полунатурные стенды и агрегаты



Окончание табл. 1.2

1

2

3

4

5

Натурные
энергоагрегаты и энергомашины



Нэм

Атомные реакторы, парогенераторы, турбины, пневмокомпре­с­соры, ДВС, РД, ТРД, системы мотор-гене­ратор и т.д.

Стендовые и натурные испытания и исследования по специальной программе

Стенды и комплексы

Натурная

машина,
конструкция или система

Нк
Нн

Автомобили, тракторы, сельскохозяйственные, дорожные, горнодобывающие машины, станки, пре­ссы, прокатные станы, надводные и подводные суда, летательные и космические аппараты, буровые установки, атомные электростанции и т.д.

Натурные, эксплуатационные и пусковые испытания по специальной программе

Испыта-тельные комплексы, полигоны


Требования к образцам, и их классификация

Объекты исследования при механических испытаниях – образцы, модели, элементы конструкций и конструкции в натуральную величину. Наиболее широко используются образцы. Образцом называется тело специальной формы, подвергающееся испытанию для оценки механических свойств материала.
В настоящее время испытывают разнообразные образцы, которые отличаются друг от друга формой, размерами, назначением. Некоторые типы образцов регламентируются нормативами. К ним относятся образцы для испытаний на одноосное растяжение и сжатие, на кручение и изгиб, образцы для усталостных испытаний и др. Многие типы образцов, особенно используемые в научно-исследовательской работе, не регламентируются нормативными документами, например образцы для испытаний в сложном напряженном состоянии.

Для получения сопоставимых и воспроизводимых результатов механических испытаний образцы должны отвечать соответствующим требованиям. Заготовки образцов должны быть отобраны из прутков, листов или отливок одной и той же плавки или партии. Прежде всего изучается химический состав металла или сплава, т. е. устанавливается количественное содержание химических элементов в исследуемом материале. Механические свойства металлов и сплавов очень сильно зависят от их структурного состояния. Металлы и сплавы представляют собой поликристаллические вещества, поэтому необходимо провести микроструктурный анализ. Структурное состояние металлов зависит от режима термообработки, технологии литья или прокатки. Без знания химического состава и структурных характеристик металла невозможно достаточно надежно оценить его механические свойства. Всякий образец содержит рабочую часть, в которой реализуются однородные напряженное и деформированное состояния. Необходимость реализации однородного напряженно-деформированного состояния в рабочей части образца увязана с тем, что не существует метода прямой оценки напряжений в точках деформированного тела. Существующие методы исследования напряженно-деформированного состояния тел позволяют измерять деформацию на внешней поверхности исследуемого тела. Величину напряжений в точках тела оценивают по внешним силам, но это возможно только при соблюдении определенных условий.

Условия проведения эксперимента реализуются путем выбора формы образца, приложением к нему таких внешних сил, при которых с достаточной степенью достоверности можно считать, что напряженное и деформированное состояния во всех точках исследуемого образца одинаковы, т. е. в нем создано однородное напряженно-деформированное состояние. Обеспечив такие условия эксперимента, по измерениям взаимных перемещений точек на поверхности образца можно судить о деформациях во внутренних точках. По измеренным внешним силам можно рассчитать напряжения во внутренних точках исследуемого образца, приняв гипотезы однородности, сплошности и изотропности. На рабочей части образца выделяется расчетный участок, который используется для измерения соответствующих параметров (удлинений, укорочений, углов закручивания и поворота, изменений поперечных размеров и др.).

Чаще всего образец представляет собой стержень круглого, кольцевого или прямоугольного поперечного сечения. Форма рабочей части образца зависит от вида заготовки. Если в качестве заготовки используется пруток, отливка или лист большой толщины, то рабочая часть образца имеет цилиндрическую форму; если заготовка – относительно тонкий лист, то рабочая часть образца имеет призматическую форму. Процесс получения заготовки образца регламентируется нормативными документами. Предпочтительным является образец цилиндрической формы.

Образец получают механической обработкой (точением, фрезерованием, шлифованием, полированием). При этом нужно исключить изменение механических свойств материала образца относительно механических свойств исходных заготовок. В некоторых случаях в качестве образцов используются полуфабрикаты (проволока, лента, нити, канаты, арматура и т. п.).

К геометрической форме образца предъявляются требования, которые регламентируются нормативными документами и инструкциями. Совершенство геометрической формы образца позволяет правильно оценить результаты испытаний и воспроизвести их в последующих опытах. Недопустимы изменения поперечных размеров рабочей части образца, искривление его оси и другие геометрические несовершенства формы, приводящие к неоднородности напряженно-деформированного состояния выше предельных значений, предусмотренных инструкциями.

Значительное влияние на результаты механических испытаний образцов оказывает состояние поверхности рабочей части образца. Наличие царапин, вмятин, острых надрезов, раковин может привести к местному изменению напряженно-деформированного состояния, что, в свою очередь, приведет к преждевременному разрушению материала и исказит результаты опыта.

Шероховатость внешней поверхности рабочей части образца для статических испытаний должна соответствовать шероховатости, получаемой тонким точением или шлифованием. У образцов, предназначенных для усталостных испытаний, шероховатость поверхности должна быть ниже и достигаться тонким шлифованием и полированием.

Образец для механических испытаний должен быть однородным по химическому составу и микроструктуре. На рабочей части образца не должно быть раковин, волосовин, трещин, инородных включений и других дефектов структуры, влияющих на распределение внутренних сил, т. е. приводящих к неоднородности напряженно-деформированного состояния. Структурное состояние образца желательно оценивать методами неразрушающего контроля. Образцы, содержащие заметные дефекты структуры, должны быть отбракованы.

На структурное состояние металлов и их сплавов важнейшее влияние оказывает термообработка, поэтому она должна строго соответствовать заданной. На структурное состояние, по крайней мере, поверхностных слоев образца значительное влияние оказывают режимы механической обработки (скорость и глубина резания, охлаждение), приводящие к поверхностному наклепу. Поверхностный наклеп особенно нежелателен для образцов малых размеров (микрообразцы, тонкостенные). Некоторые виды термообработки, например закалка, приводят к неоднородности структуры образца, особенно при большом его сечении, так как глубина термообработанного слоя может быть невелика.

Геометрические формы образцов из металлов и сплавов, предназначенных для исследования упругопластических и прочностных свойств, весьма многообразны, но наиболее широко используются образцы в виде стержня с утолщениями на его концах (рис. 1.2). Эти утолщения называются головками. Форма головки зависит от конструкции захватов испытательной машины, соответствующих виду нагрузок на образец (рис. 1.3).




Рис. 1.2. Цилиндрический образец
для испытаний на растяжение:
1 – головка; 2 – рабочая часть

Рис. 1.3. Типы головок
цилиндрических образцов
для испытаний на растяжение


Для плоских образцов конструкции головок более однообразны по форме (рис. 1.4). Переход от рабочей части к головкам делается плавным, без резкого изменения формы, чтобы уменьшить концентрацию напряжений и тем самым обеспечить в рабочей части образца однородное и одноосное напряженное состояние.


Рис. 1.4. Головки плоских образцов для испытаний на растяжение
Длина рабочей части в 5–10 раз превышает ее наибольший поперечный размер. Переходный участок выполняется в виде торообразной или конической поверхности. Способ закрепления образцов не должен допускать их проскальзывания относительно захватов, смятия опорных поверхностей головок, а также разрушения образцов на переходных участках и в головках. Технология изготовления образцов должна обеспечивать строгую соосность головок и рабочей части, перпендикулярность опорных плоскостей головок к оси образца. Благодаря высокой точности изготовления образца осуществляется качественное центрирование его в захватах современных испытательных машин и предотвращается внецентренное растяжение.

При испытании на растяжение образцов, находящихся в хрупком состоянии, принимаются все меры к снижению концентрации напряжений и к высокоточному осевому нагружению образца. Образец из хрупкого материала показан на рисунке 1.5.

Образцы для испытаний на одноосное сжатие, как правило, не имеют головок и представляют собой короткие цилиндры или призмы в зависимости от вида заготовки. Отношение длины рабочей части образца к его наибольшему поперечному размеру для предотвращения изгиба не должно превышать трех (рис. 1.6). Торцы образца необходимо изготовить параллельными друг другу и перпендикулярными оси образца.




Рис. 1.5. Образец из хрупкого материала
для испытаний на растяжение

Рис. 1.6. Образец
для испытаний на сжатие


Образцы для испытаний на кручение имеют примерно такую же форму, как и образцы для испытаний на растяжение. Применяются как сплошные (рис. 1.7 а), так и полые образцы, поперечное сечение которых – тонкостенное кольцо (рис. 1.7 б). Переходный участок выполняется в виде горообразной поверхности. Конструкция головок должна обеспечить передачу крутящего момента к рабочей части образца. Головки имеют две или четыре грани для передачи крутящего момента от захватов испытательной машины к образцу. На рабочей части выделяется расчетный участок, в пределах которого устанавливаются угломерные устройства, позволяющие определять угол закручивания.

а) б)


Рис. 1.7. Образцы для испытаний на кручение:
а) сплошной; б) трубчатый
Образцы для испытаний при сложном напряженном состоянии представляют собой тонкостенные цилиндрические трубы с головками, конструкция которых зависит от видов тех нагрузок, которые должны быть переданы рабочей части (осевая сила, крутящий момент, внутреннее или внешнее давление либо их сочетание). При проведении испытаний в камерах высокого давления применяются сплошные цилиндрические образцы. Размеры и форма образцов для этого вида испытаний не регламентируются.

Некоторые виды механических испытаний образцов металлов и сплавов регламентируются нормативами. К ним относятся испытания на растяжение при комнатной, пониженной и повышенной температурах, на сжатие и на кручение. В процессе этих испытаний определяются механические характеристики металлов и сплавов. Под механической характеристикой понимается величина, характеризующая упругие, прочностные или деформационные свойства металлов и сплавов.

Механические характеристики носят условный характер, так как зависят от метода испытаний и способа обработки экспериментальных данных. Поэтому оценку механических характеристик проводят строго регламентированными методами, что необходимо для обеспечения сопоставимости их значений. Механические характеристики металлов и сплавов определяются в условиях однородного напряженно-деформированного состояния и используются в расчетах на прочность и жесткость элементов конструкций и сооружений.

К механическим характеристикам относится модуль упругости, коэффициент Пуассона, модуль сдвига, пределы пропорциональности, упругости, текучести и прочности, относительные остаточные удлинения и сужения после разрыва.
Лекция 2

СТРУКТУРА ИСПЫТАТЕЛЬНЫХ КОМПЛЕКСОВ.
УЗЛЫ ИСПЫТАТЕЛЬНЫХ МАШИН

  1   2   3   4   5   6   7   8


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации