Козлова И.С., Щербакова Ю.В. Начертательная геометрия. Конспект лекций - файл n1.rtf

Козлова И.С., Щербакова Ю.В. Начертательная геометрия. Конспект лекций
скачать (2293.6 kb.)
Доступные файлы (1):
n1.rtf2294kb.12.09.2012 09:12скачать

n1.rtf

1   2   3   4   5

Лекция № 4. Плоскость
1. Определение положения плоскости
Для произвольно расположенной плоскости проекции ее точек заполняют все три плоскости проекций. Поэтому не имеет смысла говорить о проекции всей плоскости целиком, нужно рассматривать лишь проекции таких элементов плоскости, которые ее определяют.

На основании законов стереометрии плоскость определяется, когда известны принадлежащие ей:

1) три точки, не лежащие на одной прямой;

2) прямая и точка, не находящаяся на этой прямой;

3) две пересекающиеся прямые;

4) две параллельные прямые.

Итак, плоскость будет считаться заданной, если имеется на эпюре одна из перечисленных выше комбинаций элементов, определяющих данную плоскость (рис. 35 случаи 1, 2, 3, 4).

Все четыре способа задания плоскости равнозначны, так как легко имея одну комбинацию элементов, изображенную на рисунке 35 перейти к любой другой.


Если соединить одноименные проекции трех точек А, В и С , определяющих данную плоскость (рис. 35, случай 5), можно получить проекции треугольника ABC , лежащего в этой плоскости. Способ изображения плоскости в виде треугольника, не является принципиально новым, но обладает по сравнению с остальными четырьмя случаями большей наглядностью.
2. Следы плоскости
След плоскости Р – это линия пересечения ее с данной плоскостью или поверхностью (рис. 36).

Линию пересечения плоскости Р с горизонтальной плоскостью называют горизонтальным следом и обозначают P h, а линию пересечения с фронтальной плоскостью – фронтальным следом и обозначают Р v (рис. 37).


Иногда применяется и профильный след P w – линия пересечения данной плоскости с профильной плоскостью.

Точки, в которых пересекается плоскость Р с осями проекций, называют точками схода следов . Р х – точка схода следов на оси х, P у – на оси у , а Р z – на оси z (рис. 37). в точке Р пересекаются следы P h и P v и т. д.

Следы P h и P v плоскости Р являются прямыми, которые и лежат на горизонтальной и фронтальной плоскостях. Они имеют по одной из своих проекций, которые совпадают с осью х : горизонтальный след P h – фронтальную, а фронтальный P v– горизонтальную проекции.

Любую плоскость Р можно задать на эпюре с помощью указания положения двух ее следов – горизонтального и фронтального (рис. 38).


Следы P h и P v чаще всего изображаются парой пересекающихся или параллельных прямых и поэтому могут определять положение плоскости в пространстве.
3. Прямая, лежащая в данной плоскости
Прямая принадлежит плоскости Р в том случае, если любые две ее точки лежат в данной плоскости.

Например, если следы прямой лежат на одноименных следах плоскости, то прямая лежит в этой плоскости (рис. 39).

Рассмотрим построение прямой, лежащей в данной плоскости Р .

Первый способ. Возьмем на следах P h и P v по одной точке (рис. 40) и рассмотрим их как следы искомой прямой.

Рассматривая следы прямой, легко построить ее проекции.

Второй способ. Одну проекцию прямой, например горизонтальную 1, можно провести (рис. 40). Точки ее пересечения со следом P h и осью х определят горизонтальные проекции h и v следов искомой прямой. Если соединить прямой фронтальные проекции и следов, можно получить фронтальную проекцию 1́.


4. Горизонтали и фронтали плоскости
Среди прямых, которые лежат в некоторой плоскости, можно выделить два класса прямых, играющих большую роль при решении всевозможных задач. Это прямые, которые называют горизонталями и фронталями .

Горизонталь плоскости Р (рис. 41) – прямая, которая лежит в этой плоскости и параллельна горизонтальной плоскости. Горизонталь как прямая, параллельная горизонтальной плоскости, имеет фронтальную проекцию ѓ , параллельную оси х .


Три прямые – горизонталь Г , ее горизонтальная проекция г и горизонтальный след P h плоскости Р – параллельны (рис. 42).

Действительно, горизонталь является прямой, параллельной горизонтальной плоскости, и поэтому не имеет горизонтального следа P h, лежащего с ней в одной плоскости. При этом горизонталь Г не может пересечь свою горизонтальную проекцию г . В противном случае в этой точке пересечения она встречала бы горизонтальную плоскость, что противоречит определению, т. е. все три прямые Г , г и P h параллельны.

Любая из плоскостей имеет множество горизонталей. Все горизонтали этой плоскости параллельны друг другу вследствие того, что все они параллельны прямой P h.


Фронталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна фронтальной плоскости (рис. 43).

Фронталь является прямой, параллельной фронтальной плоскости, и ее горизонтальная проекция ф параллельна оси х .

Фронталь Ф, ее фронтальная проекция ф́ и фронтальный след Pv взаимно параллельны. У каждой плоскости есть бесчисленное множество фронталей. Все фронтали данной плоскости параллельны, за исключением плоскости, параллельной фронтальной плоскости.
5. Точка, лежащая в данной плоскости
Если необходимо построить некоторую точку в данной плоскости Р , то нужно предварительно провести в этой плоскости одну из прямых и на ней взять искомую точку.

Если задача обратная, т. е. необходимо узнать, лежит ли данная точка в плоскости Р , то нужно провести через эту точку какую-нибудь прямую, лежащую в этой плоскости. Если такую прямую провести нельзя, то исследуемая точка М не лежит в плоскости Р .

Часто в качестве вспомогательной прямой применяют горизонталь или фронталь, хотя можно применять и прямые общего положения.

Покажем построение в плоскости Р произвольной точки (рис. 44).


Для выполнения задания необходимо провести любую горизонталь Г этой плоскости и на ней выбрать некоторую точку М . Данная точка принадлежит плоскости, следовательно, задача выполнена.
6. Построение следов плоскости
Рассмотрим построение следов плоскости Р , которая задана парой пересекающихся прямых I и II (рис. 45).

Если прямая находится на плоскости Р, то ее следы лежат на одноименных следах плоскости. Поэтому следы плоскости, которые необходимо найти, должны проходить через одноименные следы всех прямых, находящихся в этой плоскости, т. е. находим следы обеих прямых I и II. Соединив их горизонтальные следы h 1 и h 2, можно получить горизонтальный след P h плоскости Р , а если соединить фронтальные 1, и 2, можно получить фронтальный след P v.


Оба следа P h и Р должны пересекаться на оси х в точке схода Р х или оказаться одновременно ей параллельными. Таким способом осуществляется проверка правильности построения, т. е. для построения следов плоскости возможно ограничиться нахождением любых трех следов двух прямых, определяющих плоскость.
7. Различные положения плоскости
Плоскостью общего положения называется плоскость, не параллельная и не перпендикулярная ни одной плоскости проекций. Следы такой плоскости также не параллельны и не перпендикулярны осям проекций.

Проецирующие плоскости – это плоскости, которые перпендикулярны одной, и только одной, плоскости проекций.

На рисунке 46 показана горизонтально-проектирующая плоскость Р , которая перпендикулярна горизонтальной плоскости; на рисунке 47 – фронтально-проектирующая плоскость Q , которая перпендикулярна фронтальной плоскости, и на рисунке 48 – профильно-проектирующая плоскость R, которая перпендикулярна профильной плоскости.


Среди свойств проецирующих плоскостей можно выделить следующие.

1. На одну из плоскостей проекций, т. е. на ту, которой данная плоскость перпендикулярна, эта плоскость проецируется в виде прямой линии. В этом случае говорят о проекции плоскости, подразумевая под ней именно эту прямую. Горизонтальнопроектирующая плоскость Р имеет горизонтальную проекцию р (рис. 46), фронтально-проецирующая плоскость Q – фронтальную проекцию (рис. 47), а профильно-проецирующая R – профильную проекцию (рис. 48). Данные проекции совпадают с одноименными следами плоскостей, т. е. p = P h (рис. 46), = Q v (рис. 47) и = R w (рис. 48).


2. Любая фигура, которая лежит в проецирующей плоскости, проецируется в виде отрезка прямой на плоскость проекций, перпендикулярную данной плоскости, т. е. треугольник ABC, который лежит в плоскости Р (рис. 46), имеет горизонтальную проекцию abc на горизонтальной проекции плоскости Р (р = P h).

3. Фронтали горизонтально-проецирующей плоскости Р (рис. 47) перпендикулярны горизонтальной плоскости, а горизонтали фронтально-проектирующей плоскости Q (рис. 47) перпендикулярны фронтальной плоскости, т. е. перпендикулярность фронталей горизонтальной плоскости определяет горизонтально-проектирующую плоскость, а перпендикулярность горизонталей фронтальной плоскости является признаком фронтально-проектирующей плоскости. Профильно-проектирующая плоскость Р (рис. 47) имеет горизонтали, которые являются одновременно и фронталями; те и другие в этом случае перпендикулярны профильной плоскости.


4. Горизонтально-проектирующая плоскость Р параллельна оси z , поэтому ее следы Р v и P w также являются параллельными оси z . Фронтально-проектирующая плоскость Q параллельна оси у , поэтому Q h и Q w параллельны оси у. Профильно-проектирующая плоскость R параллельна оси х, и ее следы R h и R vпараллельны оси х . Третьи следы этих плоскостей, а именно P h, Q v и R w, способны занимать любое положение относительно осей проекций в зависимости от углов наклона этих плоскостей к плоскостям проекций.

5. Проектирующие плоскости с плоскостями проекции образуют углы, размеры которых видны на эпюре. На рисунках 46, 47 и 48 обозначен буквой угол между проектирующей плоскостью и горизонтальной плоскостью, буквой – угол с фронтальной плоскостью и буквой – с профильной плоскостью. Важно, что для данных плоскостей один из этих углов обязательно прямой, а два остальных угла составляют в сумме 90°. Данные два угла на эпюре равны углам, которые образуются следами плоскости с осями проекций.


Рассмотрим плоскость, которая содержит ось х . Эта плоскость (рис. 49) принадлежит к числу профильно-проектирующих; она перпендикулярна профильной плоскости W , так как содержит ось х.

При этом горизонтальный и фронтальный следы R h и R v сливаются с осью х и не определяют положения плоскости R в пространстве. Для определения плоскости нужно дополнительно задать ее профильную проекцию ( = R w) (рис. 49) или указать положение какой-либо точки А на этой плоскости (рис. 49).

Лекция № 5. Взаимное расположение прямых и плоскостей
1. Взаимное расположение двух плоскостей
Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей .

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).


В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов P w и Q w. Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v || Q v, и P h у || Q h.


В случае, когда плоскости параллельны, горизонтали одной плоскости параллельны горизонталям другой. Фронтали одной плоскости при этом должны быть параллельными фронталям другой, так как у этих плоскостей параллельны одноименные следы.

Для того чтобы построить две плоскости, пересекающиеся между собой, необходимо найти прямую, по которой пересекаются две плоскости. Для построения этой прямой достаточно найти две точки, принадлежащие ей.

Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.
2. Прямая, параллельная плоскости
Может быть несколько положений прямой относительно некоторой плоскости.

1. Прямая лежит в некоторой плоскости.

2. Прямая параллельна некоторой плоскости.

3. Прямая пересекает данную плоскость.

Рассмотрим признак параллельности прямой и плоскости. Прямая является параллельной плоскости, когда она параллельна любой прямой, лежащей в этой плоскости. На рисунке 53 прямая АВ параллельна плоскости Р , так как она параллельна прямой MN , которая лежит в этой плоскости.


Когда прямая параллельна плоскости Р , в этой плоскости через какую-либо ее точку можно провести прямую, параллельную данной прямой. Например, на рисунке 53 прямая АВ параллельна плоскости Р . Если через точку М , принадлежащую плоскости Р , провести прямую NM , параллельную АВ , то она будет лежать в плоскости Р . На том же рисунке прямая CD не параллельна плоскости Р , потому что прямая KL , которая параллельна CD и проходит через точку К на плоскости Р , не лежит в данной плоскости.
3. Прямая, пересекающая плоскость
Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).


Рассмотрим построение точки пересечения плоскостей.

Через некоторую прямую I необходимо провести вспомогательную плоскость Q (проецирующую). Линия II определяется как пересечение плоскостей Р и Q . Точка К, которую и требуется построить, находится в пересечение прямых I и II. В этой точке прямая I пересекает плоскость Р .

В данном построении основным моментом решения является проведение вспомогательной плоскости Q , проходящей через данную прямую. Можно провести вспомогательную плоскость общего положения. Однако показать на эпюре проецирующую плоскость, используя данную прямую, проще, чем провести плоскость общего положения. При этом через любую прямую можно провести проецирующую плоскость. На основании этого вспомогательная плоскость выбирается проецирующей.
4. Прямая, перпендикулярная плоскости
Прямая и плоскость перпендикулярны, если на плоскости можно найти две пересекающиеся прямые, перпендикулярные исходной прямой. В качестве подобной пары контрольных прямых легче всего рассматривать следы плоскости P h и P v (рис. 55). Это вызвано тем, что прямой угол между перпендикуляром к плоскости и следом P h дает проекцию на горизонтальную плоскость без искажения, а угол между перпендикуляром и следом Р v проецируется на фронтальную плоскость V .


Итак, признак перпендикулярности можно задать, используя прямую и плоскость на эпюре.

Прямая является перпендикулярной плоскости, когда проекции прямой перпендикулярны одноименным следам плоскости.

Лекция № 6. Проекции геометрических тел
1. Призма и пирамида
Рассмотрим прямую призму, которая стоит на горизонтальной плоскости (рис. 56).


Ее боковые грани являются частями горизонтально-проецирующих плоскостей, а ребра являются отрезками вертикальных прямых. Исходя из этого ребра следует проецировать на горизонтальную плоскость в виде точек, а на фронтальную плоскость – без искажения (AA = áá 1 и т. д.).

Нижнее основание призмы ABC находится в горизонтальной плоскости, поэтому ее можно изобразить на этой плоскости без искажения: ?ABC = ?abc . Фронтальная проекция пирамиды а́b́с́ совпадает с осью х.

Оба основания дают одинаковые горизонтальные проекции (?abc = ?a 1b 1c 1). Верхнее основание A 1B 1C 1 параллельно горизонтальной плоскости, т. е. его фронтальная проекция а́ 1 1с́ 1 параллельна оси х .


При рассмотрении призмы сверху (рис. 57) будет видно только верхнее основание призмы.

Горизонтальные проекции трех точек, которые лежат на нижнем основании, помещены в скобки с целью показа, того, что точки А, В и С невидимы, если смотреть на призму из данного положения.

Для определения невидимых элементов на фронтальной проекции обращаются к горизонтальной проекции.

Направление луча зрения показано на рисунке 58 стрелкой. Видно, что грань AA 1C 1С при таком угле зрения будет невидимой.

На рисунке 58 показана треугольная пирамида, которая находится на горизонтальной плоскости.


Гранями пирамиды являются треугольники, являющиеся частями плоскостей общего положения.

Если рассматривать пирамиду сверху, можно увидеть всю ее боковую поверхность, т. е. для горизонтальной проекции не существует невидимых элементов.

Из рассуждений, подобных рассуждениям в случае призмы, можно убедиться, что на фронтальной проекции невидима грань SAC (рис. 59).


3. Цилиндр и конус
Цилиндр – это фигура, поверхность которого получается вращением прямой m вокруг оси i , расположенной в одной плоскости с этой прямой. В случае, когда прямая m направлена параллельно оси вращения, получается цилиндр (рис. 60), когда она пересекает ось вращения, полученная фигура будет являться конусом (рис. 61).


Прямой круговой цилиндр имеет образующие, направленные перпендикулярно горизонтальной плоскости (рис. 61). По этой причине вне зависимости от выбора точки N на его поверхности горизонтальная проекция n этой точки находится на основании цилиндра.


Основание цилиндра составляет линию пересечения боковой поверхности цилиндра с горизонтальной плоскостью, т. е. это горизонтальный след поверхности цилиндра. Следовательно, боковая поверхность прямого кругового цилиндра, который стоит на горизонтальной плоскости, рассматривается как горизонтально-проецирующая поверхность по отношению к любой линии, начерченной на его поверхности.


На рисунке 63 показаны проекции цилиндра.

Фронтальная проекция а́а́ 1, которая образует АА 1, ограничивает слева фронтальную проекцию цилиндра, т. е. является ее контурной образующей. На профильной плоскости ее проекция а˝а˝ 1располагается на оси симметрии этой проекции. Профильная проекция d˝d˝1образующей DD1 является контурной, а ее фронтальная проекция d́d́1 находится на оси симметрии и т. д.

Если мы посмотрим на цилиндр сверху (рис. 63), увидим только его верхнее основание.

Рассмотрим горизонтальную проекцию. Если провести фронтальную плоскость Р , разделяющую цилиндр на две равные части, можно заметить, что все точки, лежащие на передней половине цилиндра, будут видны при рассмотрении цилиндра спереди, т. е. на фронтальной проекции. Боковая поверхность цилиндра, которая расположена ниже следа P h, видима на фронтальной проекции, а остальная его часть невидима, т. е. образующая CC 1 на фронтальной проекции невидима.

Для выделения невидимых элементов на профильной проекции, необходимо обратиться к горизонтальной проекции. След Q h профильной плоскости разделяет горизонтальную проекцию на две части. Боковая поверхность, которая расположена слева от Q h, видима на профильной проекции и т. д. Таким образом образующая BB 1 невидима на профильной проекции.

На рисунке 64 показан прямой круговой конус, который стоит на горизонтальной плоскости.


Основание конуса и линия пересечения поверхности конуса с любой горизонтальной плоскостью Р проецируются на горизонтальную плоскость в виде окружности, а на фронтальную плоскость – в виде отрезка, который равен диаметру этой окружности.

Рассмотрим на рисунке 65 и все проекции четырех образующих, ограничивающих какой-либо из контуров проекций.


Проекция áś образующей AS ограничивает контур на фронтальной проекции, а ее профильная проекция a˝s˝ лежит на оси симметрии проекции (на образующей AS находится произвольная точка) и т. д.

При рассмотрении конуса сверху все точки боковой поверхности видимы (рис. 65).

Для отыскания невидимых элементов на фронтальной проекции проведем на горизонтальной проекции след P h той плоскости, которая разделяет конус на две части (видимую и невидимую), если смотреть на конус спереди, т. е. образующая SD в этом случае невидима.

Аналогично можно убедиться, что образующая SB невидима на профильной проекции.
3. Шар, тор и кольцо
Когда некоторая ось вращения I является диаметром окружности, то получается шаровая поверхность (рис. 66).


Если положение оси другое, в плоскости окружности получается поверхность, называемая тором (рис. 67).

Когда ось вращения не пересекает окружность (рис. 68), то полученную в этом случае поверхность обычно называются кольцом (или кольцевой поверхностью).

Рассмотрим эти поверхности отдельно.

Для того чтобы построить контур проекции шара, необходимо провести все проецирующие лучи, которые касаются ее поверхности (рис. 69). Эти лучи образуют цилиндр, касающийся шара по большому кругу, плоскость которого Q перпендикулярна проецирующим лучам.

В случае, если плоскость проекции перпендикулярна лучам проекции, проекцией шара будет окружность, которая равна большому кругу шара. В других случаях проекция будет иметь форму эллипса.

Итак, прямоугольная проекция шара – круг, косоугольная проекция – эллипс.

Следовательно, проекции контура шара на горизонтальных, фронтальных и профильных плоскостях всегда являются окружностью.


Шаровую поверхность можно получить вращением окружности около ее диаметра. Пусть ось вращения I является перпендикулярной горизонтальной плоскости и становится одним из диаметров окружности. Окружность будет вращаться около оси I и описывать шаровую поверхность (рис. 66). Точки, которые лежат на этой исходной окружности (А, В, С и D ), при вращении ее вокруг оси I также опишут окружности, называемые параллелями. Параллели изображаются без искажения на горизонтальной плоскости, а на фронтальной плоскости – в виде отрезков, равных диаметрам (рис. 70).


Самая большая параллель равна большому кругу шара. Она называется его экватором. Проекции экватора показаны на рисунке 70 штриховой линией.

Разные положения вращающейся вокруг оси I окружности выступают как так называемые меридианы шара. Их изображают на горизонтальной плоскости в форме диаметров окружности, которые представляют собой контуры проекции шара. На фронтальной плоскости все меридианы, кроме двух, изображаются в виде эллипсов. Меридиан, находящийся во фронтальной плоскости, будет изображаться в виде контура на этой проекции и в виде вертикального диаметра на остальных проекциях. Подобным образом изображается меридиан, который расположен в профильной плоскости.


Точки пересечения поверхности шара с осью вращения (Е и F , рис. 65) принято называть полюсами .


Любое из сечений шара плоскостью будет являться окружностью. Она проецируется на данную плоскость проекций без искажения только тогда, когда секущая плоскость параллельна рассматриваемой плоскости горизонтальной проекции. На рисунке 71 показана фронтальная плоскость. Окружность, по которой эта плоскость пересекает поверхность шара, проецируется на фронтальную плоскость без искажения. На горизонтальной и профильной плоскостях эта окружность проектируется в форме отрезков, которые совпадают со следами P h и P w и двумя точками контуров горизонтальной и профильной проекций шара, заключенных между ними. Длины отрезков равны диаметру полученной окружности.


На рисунке 70 показаны семь горизонтальных плоскостей, которые пересекают шар по горизонтально расположенным окружностям. Данные окружности проецируются на горизонтальную плоскость в полную величину, а на фронтальную плоскость – в виде отрезков. Одна плоскость проходит через центр шара и делит его на две равные части. Верхняя половина шара является видимой при наблюдении сверху, а точки, находящиеся на нижней, невидимы.


Также проведены шесть окружностей, представляющих собой различные положения вращающейся вокруг оси I окружности; одна из них является сечением шара фронтальной плоскостью. Эта фронтальная плоскость разделяет шар на две половины. Его передняя часть видна на фронтальной проекции. Еще одна окружность получена в результате сечения профильной плоскостью. Она также отделяет видимые точки шара от невидимых на профильной проекции. Остальные четыре окружности являются сечениями шара горизонтально-проецирующими плоскостями. Все эти четыре окружности имеют горизонтальные проекции в виде отрезков, равных диаметру шара, а фронтальные проекции – в виде эллипсов.

Тор – это поверхность, получаемая в результате вращения окружности около оси, которая лежит в ее плоскости, не проходящей через ее центр.

На рисунке 67 показаны окружность и ось вращения I , пересекающая окружность в двух точках (F и Е ).

Если вращать большую часть FABCE окружности, то получается тор, показанный на рисунке 67.

Если вращать меньшую дугу РВЕ окружности, то получается поверхность тора, которая напоминает по форме лимон (рис. 72).


Дуга полуокружности ABC (рис. 74) образует при вращении ту часть поверхности тора, которую принято называть наружной , а две небольшие дуги AF и СЕвнутренней его поверхность.


Точка В при вращении описывает самую большую окружность (ее можно назвать экватором тора ). Эта окружность отделяет видимую часть поверхности тора от невидимой, если смотреть на тор сверху. Дуги окружности BAF или BF (рис. 75) описывают при вращении видимые части поверхности, а дуги ВСЕ или BE – невидимые.

При наблюдении тора спереди вся его внутренняя поверхность будет невидимой. Если провести фронтальную плоскость через ось вращения I , то эта плоскость разделит наружную поверхность тора на переднюю видимую и заднюю невидимую.

Рассмотрим образования кольца. В этом случае ось вращения I , несмотря на то что лежит в плоскости исходной окружности, ее не пересекает (рис. 73). Любая горизонтальная плоскость, перпендикулярная оси вращения, даст в сечении две окружности. На рисунке 74 проведена плоскость R, пересекающая кольцевую поверхность по двум окружностям (с радиусаи R и r ), т. е. по двум параллелям.
1   2   3   4   5


Лекция № 4. Плоскость
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации