Титаренко А. Шпаргалка по органической химии - файл n1.doc

приобрести
Титаренко А. Шпаргалка по органической химии
скачать (294.9 kb.)
Доступные файлы (2):
n1.doc922kb.11.10.2010 12:19скачать
n2.txt205kb.11.10.2010 12:19скачать

n1.doc

1   2   3   4   5   6   7   8

скачать книги

34. Крекинг нефтепродуктов

Шпаргалка по органической химии

Крекинг нефтепродуктов представляет собой дополнительный источник получения бензина.

Если крупные молекулы углеводородов при сильном нагревании разлагаются на более мелкие, значит, таким путем могут быть получены молекулы, отвечающие бензиновой фракции.

Опыт этого явления.

1. В нагреваемую на сильном пламени железную трубку впускаются из воронки по каплям керосин или смазочное масло.

2. Вскоре в U-образной трубке будет собираться жидкость.

3. В цилиндре над водой собирается газ.

4. Это признак того, что в трубке идет химическая реакция.

5. Такой вывод может быть подтвержден и испытанием полученных продуктов.

6. И жидкость, и газ обесцвечивают бромную воду, тогда как исходный продукт, если он был достаточно очищен, не обесцвечивает ее.

Результаты опыта объясняются тем, что:

1) при нагревании произошел распад углеводородов, например: С16Н34 (гексадекан) ? С8Н18 (октан) + С8Н16 (октен);

2) образовалась смесь предельных и непредельных углеводородов меньшей молекулярной массы, соответствующая бензину;

3) получившиеся вещества частично могут разлагаться далее, например:

С8Н18 ? С4H10 + С4Н8;

С4H10 ? С2Н6 + С2Н4;

С4H10 ? С3Н6 + СН4;

4) подобные реакции приводят к образованию газообразных веществ, которые также обнаруживаются в опыте;

5) разложение углеводородов под действием высокой температуры идет через образование свободных радикалов. Рассмотрим этот процесс на примере пентана;

6) под влиянием сильного нагревания химические связи в молекуле становятся менее прочными, какие-то из них разрываются с образованием свободных радикалов:

"Шпаргалка по органической химии"

СН3-СН2-СН2-СН2-СН3 ? СН3-СН2-СН2· + ·СН2-СН3.

Частицы с неспаренными электронами должны стабилизироваться.

Это может происходить по-разному, например:

а) в одних из них установится двойная связь в результате отщепления атома водорода от соседнего атома углерода:

СН3… СН2 ? СН2=СН2 + Н;

б) в других, наоборот, происходит присоединение атомов водорода к свободным радикалам:

СН3-СН2-СН2· + Н· ? СН3-СН2-СН3.

Процесс разложения углеводородов нефти на более летучие вещества называется крекингом (англ. cracking – расщепление).

скачать книги

35. Коксохимическое производство

Шпаргалка по органической химии

Важным источником промышленного получения ароматических углеводородов наряду с переработкой нефти является коксование каменного угля.

Характерные особенности коксования каменного угля.

1. Процесс коксования можно провести в лаборатории.

2. Если каменный уголь сильно нагревать в железной трубке без доступа воздуха, то через некоторое время можно будет наблюдать выделение газов и паров. В U-образной трубке конденсируются смола, имеющая неприятный запах, и над ней вода, содержащая аммиак.

3. Проходящие далее газы собираются в сосуде над водой.

4. В железной трубке после опыта остается кокс.

5. Собранный газ хорошо горит, он называется коксовым газом.

То есть при нагревании каменного угля без доступа воздуха образуются четыре основных продукта: а) кокс; б) каменноугольная смола; в) аммиачная вода; г) коксовый газ.

Коксовый газ после очистки применяется в качестве топлива в промышленных печах, так как содержит много горючих веществ. Он используется и как химическое сырье.

1. Промышленная коксовая печь состоит из длинной узкой камеры, в которую сверху через отверстия загружается каменный уголь, и отопительных простенков, в каналах которых сжигают газообразное топливо (коксовый или доменный газ).

2. Несколько десятков таких камер образуют батарею коксовых печей.

3. Для достижения высокой температуры горения газ и воздух предварительно нагревают в регенераторах, расположенных под камерами, подобно тому, как это осуществляется в мартеновском способе производства стали.

4. При нагревании до 1000 °C сложные органические вещества, входящие в состав каменного угля, претерпевают химические превращения, в результате которых образуются кокс и летучие продукты.

5. Процесс коксования длится около 14 ч.

6. После того как он закончится, образовавшийся кокс – «коксовый пирог» – выгружается из камеры в вагон и затем гасится водой или инертным газом; в камеру загружают новую партию угля, и процесс коксования начинается снова.

7. После остывания кокс сортируется и направляется на металлургические заводы для доменных печей.

8. Летучие продукты выводятся через отверстия вверху камер и поступают в общий газосборник, где из них конденсируются смола и аммиачная вода.

Из каменноугольной смолы путем фракционирования получают гомологи бензола, фенол (карболовую кислоту), нафталин и многие другие вещества.

"Шпаргалка по органической химии"

Коксовый газ после очистки применяется в качестве топлива в промышленных печах, так как содержит много горючих веществ. Он используется и как химическое сырье.

скачать книги

36. Природные газы и их использование

Шпаргалка по органической химии

Основные свойства природного газа:

1) в качестве горючего природный газ имеет большие преимущества перед твердым и жидким топливом;

2) теплота сгорания его значительно выше, при сжигании он не оставляет золы;

3) продукты сгорания значительно более чистые в экологическом отношении;

4) природный газ широко используется на тепловых электростанциях;

5) природный газ также необходим в заводских котельных установках, различных промышленных печах.

Природный газ – это важный источник сырья для химической промышленности, и роль его в этом отношении постепенно возрастает.

Дегидрированием этана получается этилен, на основе которого осуществляется много разнообразных синтезов.

Газовый бензин содержит летучие жидкие углеводороды, которые применяются как добавка к бензинам для лучшего их воспламенения при запуске двигателя.

Пропан и бутан в сжиженном состоянии широко используется в качестве горючего в быту и в автомобильном транспорте.

Сухой газ, по составу сходный с природным, используется для получения ацетилена, водорода и других веществ, а также в качестве топлива.

Характерные особенности неона (аргона):

1) эти газы получаются из воздуха путем его разделения при глубоком охлаждении;

2) неон и аргон имеют широкое применение: а) они применяются для заполнения ламп накаливания; б) ими заполняют газосветные трубки.

Общая характеристика природных газов:

1) главную подгруппу восьмой группы периодической системы составляют газы: а) гелий; б) неон; в) аргон; г) криптон;

2) эти элементы характеризуются очень низкой химической активностью, что дало основание называть их инертными газами.

Характерные особенности газов: а) они с трудом образуют соединения с другими элементами или веществами; б) атомы газов не соединены в молекулы, их молекулы одноатомны; в) газы заканчивают собой каждый период системы элементов; г) атомы природных газов характеризуются высокими значениями энергии ионизации и, как правило, отрицательными значениями энергии средства к электрону; д) температуры сжижения и затвердевания благородных газов тем ниже, чем меньше их атомные массы или порядковые номера: самая низкая температура сжижения у гелия, самая высокая – у радона.

Обычно чем выше молекулярная масса углеводорода, тем меньше его содержится в природном газе.

Состав природного газа различных месторождений неодинаков.

скачать книги

37. Предельные спирты

Шпаргалка по органической химии

Производные углеводородов, в молекулах которых один или несколько атомов водорода замещены гидроксильными группами (ОН), называют предельными спиртами или алкоголями. Общая формула R-OH.

Спирты классифицируются: 1) по строению углеводородного радикала различают: а) спирты алифатического (жирного ряда), Аlk-ОН; б) ароматические, которые разделяются на фенолы Аr-OH и жирноароматические спирты Ar(CH2)n-OH; 2) по числу гидроксилов спирты бывают одно-, двух– и многоатомные. Например: а) одноатомные спирты СН3-ОН (метанол); б) двухатомный спирт HO-CH2-CH2OH (этандиол); в) трехатомный спирт НОСН2-СНОН-СН2ОН (глицерин).

"Шпаргалка по органической химии"

В зависимости от характера углеродного атома, при котором находится гидроксил, различают первичные, вторичные и третичные спирты.

1) R-CH2-OH, или Аr-СН2-ОН, – первичный спирт;

2)



Шпаргалка по органической химии

– вторичный спирт;

3)



Шпаргалка по органической химии

– третичный спирт.

Изомерия и номенклатура.

Изомерия спиртов зависит от строения углеводородной цепи и положения гидроксила в цепи. Спирты часто называют по радикально-спиртовой и систематической (ИЮПАК) номенклатуре.

При названии спирта по радикально-спиртовой номенклатуре в основе лежит название соответствующего углеводородного радикала, связанного с гидроксилом, с прибавлением окончания – овый спирт. Например: 1) СН3-ОН – метиловый спирт (древесный); 2) С2Н5-ОН – этиловый спирт; 3) н-С4Н9ОН – бутиловый спирт;

4)



Шпаргалка по органической химии

– трет-бутиловый спирт.


Шпаргалка по органической химии

В основе названия спирта по ИЮПАК лежит наименование углеводорода самой длинной углеводородной цепи, наличие же гидроксильной группы указывается окончанием – ол, с цифрой за ним, указывающей номер атома углерода, при котором стоит гидроксил. При этом углеродная цепь нумеруются таким образом, чтобы гидроксил имел наименьший номер:

1)



Шпаргалка по органической химии
Шпаргалка по органической химии

– пентанол-2;

2)



Шпаргалка по органической химии

– 3,4,4-триметилгексанол-2.


Шпаргалка по органической химии

Одним из общих способов получения предельных спиртов является гидролиз галогенпроизводных углеводородов в присутствии водных растворов щелочей.

Щелочи ускоряют процесс и, нейтрализуя образующуюся кислоту, делают его необратимым. Реакция проходит при нагревании в течение длительного времени, т. к. исходные галогенуглеводороды плохо растворимы в воде.

скачать книги

38. Строение этилового спирта

Шпаргалка по органической химии

Этиловый спирт (этанол) С2Н5ОН – бесцветная, легко испаряющаяся жидкость, которая имеет своеобразный запах и кипит при температуре 78,3 °C. Этиловый спирт легче воды – его плотность 0,8 г/см3. Этанол неограниченно смешивается с водой.

Особенности строения этилового спирта.

1. Атом кислорода образует ковалентные связи с другими атомами под некоторым углом друг к другу, а не по прямой линии.

2. В наружном электронном слое его наряду с двумя спаренными s-электронами и двумя спаренными р-электронами имеются два неспаренных р-электрона.

3. Оси этих электронных облаков взаимно перпендикулярны.

4. В направлении их и образуются ковалентные связи атома кислорода с другими атомами (фактически вследствие гибридизации и действия других факторов валентный угол несколько отклоняется от прямого).

Молекула спирта имеет подобное пространственное строение:



Шпаргалка по органической химии

Молекулы этанола ассоциированы за счет взаимодействия положительно заряженного атома водорода гидроксильной группы одной молекулы со свободной электронной парой кислорода другой молекулы. Такой тип ассоциации носит название водородной связи. Энергия водородной связи составляет 20–40 кДж/моль, что на порядок ниже энергии ковалентных связей. Отсюда ясно, что более высокие температуры кипения по сравнению с соответствующими углеводородами и алкилгалогенидами обусловлены необходимостью разрыва водородных связей при переходе молекул в газовую фазу, для чего требуется дополнительная энергия.

"Шпаргалка по органической химии"

Характерной особенностью строения этилового спирта является подвижность атома водорода гидроксильной группы, что объясняется ее электронным строением. Важное значение имеет характер связи углерода с кислородом. Вследствие большой электроотрицательности кислорода по сравнению с углеродом связь «углерод – кислород» поляризована с частичным положительным зарядом у атома углерода и отрицательным у кислорода.

Этиловый спирт широко используют в различных областях промышленности и прежде всего в химической. Из него получают синтетический каучук, уксусную кислоту, красители, эссенции, фотопленку, порох, пластмассы. Спирт является хорошим растворителем и антисептиком. Поэтому он находит применение в медицине, парфюмерии.

При приеме внутрь этанол быстро всасывается в кровь и сильно действует на организм. Под влиянием спиртного у человека ослабевает внимание, затормаживается реакция, нарушается корреляция движения. Спирт поражает слизистые оболочки желудочно-кишечного тракта, поражает нервные клетки, ведет к появлению тяжелых психических расстройств.

скачать книги

39. Гомологический ряд спиртов

Шпаргалка по органической химии

Характерные особенности гомологического ряда спиртов:

1) этиловый спирт – один из членов гомологического ряда;

2) другие спирты ряда имеют аналогичное химическое и электронное строение;

3) первый представитель ряда – метиловый спирт;

4) в молекулах спиртов может содержаться не одна, а две и больше гидроксильных групп;

5) наличие гидроксильных групп в молекулах обусловливает характерные химические свойства спиртов, т. е. их химическую функцию.

Такие группы атомов называются функциональными группами;

6) спиртами называются органические вещества, молекулы которых содержат одну или несколько функциональных гидроксильных групп, соединенных с углеводородным радикалом;

7) они могут рассматриваться как производные углеводородов, в молекулах которых один или несколько атомов водорода заменены на гидроксильные группы. Спирты приведенного выше ряда можно считать производными предельных углеводородов, в молекулах которых один атом водорода заменен на гидроксильную группу;

8) это гомологический ряд предельных одноатомных спиртов;

9) общая формула веществ этого ряда R-ОН.

10) по систематической номенклатуре названия спиртов производятся от названий соответствующих углеводородов с добавлением суффикса – ол; цифрой указывают атом углерода, при котором находится гидроксильная группа;

11) нумерация углеродных атомов начинается с того конца, к которому ближе функциональная группа;

12) изомерия спиртов обусловливается как изомерией углеродного скелета, так и положением гидроксильной группы. Рассмотрим ее на примере бутиловых спиртов;

13) в зависимости от строения углеродного скелета изомерами будут два спирта – производные бутана и изобутана (н-бутанол, изобутанол);

"Шпаргалка по органической химии"

14) в зависимости от положения гидроксильной группы при том и другом углеродном скелете возможны еще изомеры (вторбутиловый и изобутиловый спирты);

15) водородная связь между молекулами.

Физические свойства спиртов.

1. Прочность водородной связи значительно меньше прочности обычной ковалентной связи (примерно в 10 раз).

2. За счет водородных связей молекулы спирта оказываются ассоциированными, как бы прилипшими друг к другу, на разрыв этих связей необходимо затратить дополнительную энергию, чтобы молекулы стали свободными и вещество приобрело летучесть.

3. Это и является причиной более высокой температуры кипения всех спиртов по сравнению с соответствующими углеводородами.

4. Вода при такой небольшой молекулярной массе имеет необычно высокую температуру кипения.

скачать книги

40. Химические свойства и применение предельных одноатомных спиртов

Шпаргалка по органической химии

Как вещества, содержащие углерод и водород, спирты горят при поджигании, выделяя теплоту, например:

С2Н5ОН + 3O2 ? 2СO2 + 3Н2О +1374 кДж,

При горении у них наблюдаются и различия.

Особенности опыта:

1) необходимо налить по 1 мл различных спиртов в фарфоровые чашки и поджечь жидкости;

2) будет заметно, что спирты – первые представители ряда – легко воспламеняются и горят синеватым, почти несветящимся пламенем.

Особенности этих явлений:

а) из свойств, обусловленных наличием функциональной группы ОН, известно о взаимодействии этилового спирта с натрием: 2С2Н5ОН + 2Na ? 2C2H5ONa + Н2;

б) продукт замещения водорода в этиловом спирте называется этилатом натрия, он может быть выделен после реакции в твердом виде;

в) реагируют со щелочными металлами другие растворимые спирты, которые образуют соответствующие алкоголяты;

г) взаимодействие спиртов с металлами идет с ионным расщеплением полярной связи О-Н;

д) в подобных реакциях у спиртов проявляются кислотные свойства – отщепление водорода в виде протона.

Понижение степени диссоциации спиртов по сравнению с водой можно объяснить влиянием углеводородного радикала:

а) смещение радикалом электронной плотности связи С-О в сторону атома кислорода ведет к увеличению на последнем частичного отрицательного заряда, при этом он прочнее удерживает атом водорода;

б) степень диссоциации спиртов можно повысить, если в молекулу ввести заместитель, притягивающий к себе электроны химической связи.

Это можно объяснить следующим образом.

1. Атом хлора смещает к себе электронную плотность связи Сl-С.

2. Атом углерода, приобретая вследствие этого частичный положительный заряд, чтобы компенсировать его, смещает в свою сторону электронную плотность связи С-С.

3. По этой же причине электронная плотность связи С-О несколько смещается к атому углерода, а плотность связи О-Н – от атома водорода к кислороду.

4. Возможность отщепления водорода в виде протона от этого возрастает, при этом степень диссоциации вещества повышается.

"Шпаргалка по органической химии"

5. У спиртов может вступать в химические реакции не только гидроксильный атом водорода, но и вся гидроксильная группа.

6. Если в колбе с присоединенным к ней холодильником нагревать этиловый спирт с галогеноводородной кислотой, например бромоводородной (для образования бромоводорода берут смесь бромида калия или бромида натрия с серной кислотой), то через некоторое время можно заметить, что в приемнике под слоем воды собирается тяжелая жидкость – бромэтан.

скачать книги

41. Метанол и этанол

Шпаргалка по органической химии

Метиловый спирт, или метанол, его особенности:

1) структурная формула – СН3ОН;

2) это бесцветная жидкость с температурой кипения 64,5 °C;

3) ядовит (может вызывать слепоту, смерть);

4) в больших количествах метиловый спирт получается синтезом из оксида углерода (II) и водорода при высоком давлении (20–30 МПа) и высокой температуре (400 °C) в присутствии катализатора (около 90 % ZnО и 10 % Сr2O3): СО + 2Н2 ? СН3ОН;

5) метиловый спирт образуется и при сухой перегонке дерева, поэтому его называют также древесным спиртом. Применяется он в качестве растворителя, а также для получения других органических веществ.

Этиловый (винный) спирт, или этанол, его особенности:

1) структурная формула – СН3СН2ОН;

2) температура кипения 78,4 °C;

3) этанол – это одно из важнейших исходных веществ в современной промышленности органического синтеза.

Способы получения этанола:

1) для получения используются различные сахаристые вещества (виноградный сахар, глюкоза, которая путем «брожения» превращается в этиловый спирт). Реакция протекает по схеме:

C6H12O6(глюкоза) ? 2C2H5OH + 2CO2.

2) глюкоза в свободном виде содержится, например, в виноградном соке, при брожении которого получается виноградное вино с содержанием спирта от 8 до 16 %;

3) исходным продуктом для получения спирта может служить полисахарид крахмал, который содержится, например, в клубнях картофеля, зернах ржи, пшеницы, кукурузы;

4) для превращения в сахаристые вещества (глюкозу) крахмал предварительно подвергают гидролизу.

Для этого мука или измельченный картофель заваривается горячей водой и по охлаждении в него добавляется солод.

Солод – это проросшие, а затем подсушенные и растертые с водой зерна ячменя.

В солоде содержится диастаз, который действует на процесс осахаривания крахмала каталитически.

Диастаз – это сложная смесь ферментов;

5) по окончании осахаривания к полученной жидкости прибавляются дрожжи, под действием ферментов которых (зимазы) образуется спирт;

6) его отгоняют и затем очищают повторной перегонкой.

В настоящее время осахариванию подвергается также полисахарид – целлюлоза (клетчатка), которая образует главную массу древесины.

Для этого целлюлоза подвергается гидролизу в присутствии кислот (например, древесные опилки при 150–170 °C обрабатываются 0,1–5 %-ной серной кислотой под давлением 0,7–1,5 МПа).

"Шпаргалка по органической химии"

скачать книги

42. Спирты как производные углеводородов. Промышленный синтез метанола

Шпаргалка по органической химии

Генетическая связь между спиртами и углеводородами:

1) спирты могут рассматриваться как гидроксильные производные углеводородов;

2) их можно отнести также к частично окисленным углеводородам, так как, кроме углерода и водорода, они содержат еще кислород;

3) довольно трудно непосредственно заменить атом водорода на гидроксильную группу или внедрить атом кислорода в молекулу углеводорода;

4) это можно осуществить через галогено-производные.

Например, чтобы получить этиловый спирт из этана, нужно сначала получить бромэтан:

С2Н6 + Вr ? С2Н5Вr + НВr.

А затем бромэтан превратить в спирт нагреванием с водной щелочью:

С2Н5 Вr + Н ОН ? С2Н5ОН + НВr;

5) щелочь нужна, чтобы нейтрализовать бромоводород и устранить возможность реакции его со спиртом;

6) таким же образом метиловый спирт можно получить из метана: СН4 ? СН3Вr ? СН3ОН;

7) спирты связаны генетически и с непредельными углеводородами.

Например, этанол получается при гидратации этилена:

СН2=СН2 ? Н2О=СН3-СН2-ОН.

Реакция идет при температуре 280–300 °C и с давлением 7–8 МПа в присутствии ортофосфорной кислоты в качестве катализатора.

Промышленный синтез метанола, его особенности.

1. Метиловый спирт нельзя получить гидратацией непредельного углеводорода.

2. Его получают из синтез-газа, который представляет собой смесь оксида углерода (II) с водородом.

Метиловый спирт из синтез-газа получается по реакции:

СО + 2Н2 ? СН3ОН + Q.

Характерные особенности реакции.

1. Реакция идет в сторону уменьшения объема смеси, при этом смещению равновесия в сторону образования нужного продукта будет способствовать повышение давления.

2. Чтобы реакция шла с достаточной скоростью, необходимы катализатор и повышенная температура.

3. Реакция обратимая, исходные вещества при прохождении через реактор реагируют не полностью.

4. В целях экономного их использования спирт, который образуется, необходимо выделять из продуктов реакции, а непрореагировавшие газы снова направлять в реактор, т. е. осуществить циркуляционный процесс.

5. В целях экономии энергетических затрат отходящие продукты экзотермической реакции необходимо использовать для нагревания газов, которые идут на синтез.

скачать книги

43. Понятие о ядохимикатах

Шпаргалка по органической химии

Ядохимикаты (пестициды) – это химические средства борьбы с микроорганизмами, вредоносными или нежелательными с точки зрения экономики или здравоохранения.

Важнейшими видами пестицидов являются следующие.

1. Гербициды. Основные свойства:

а) это препараты для борьбы с сорняками, которые делятся на арборициды и альгициды;

б) это феноксикислоты, производные бензойной кислоты;

в) это динитроанилины, динитрофенолы, галогенофенолы;

г) это многие гетероциклические соединения;

д) первый синтетический органический гербицид – 2-метил-4,6-динитрофенол;

"Шпаргалка по органической химии"

е) другие широко применяемые гербициды – атразин (2-хлор-4-этиламино-6-изопропиламино-1,3,5-триазин); 2,4-дихлорфеноксиуксусная кислота.

2. Инсектициды. Особенности:

а) это вещества, которые уничтожают вредных насекомых, их принято подразделять на антифидинги, аттрактаны и хемостерилизаторы;

б) к их числу относятся хлорорганические, фосфорорганические вещества, препараты, которые содержат мышьяк, препараты серы и др.;

в) один из наиболее известных инсектицидов – дихлордифенил-трихлорметилметан (ДДТ);

г) широко применяются в сельском хозяйстве и в быту такие инсектициды, как гексахлоран (гексахлорциклогексан).

3. Фунгициды.

Характерные особенности фунгицидов:

а) это вещества для борьбы с грибковыми болезнями растений;

б) в качестве фунгицидов используются различные антибиотики, сульфаниламидные препараты;

в) одним из наиболее простых по химической структуре фунгицидов является пентахлорфенол;

г) большинство пестицидов обладает отравляющими свойствами не только в отношении вредителей и возбудителей болезней;

д) при неумелом обращении они могут вызвать отравление людей, домашних и диких животных или гибель культурных посевов и насаждений;

е) пользоваться пестицидами необходимо очень осторожно, строго соблюдая инструкции по их применению;

ж) с целью минимизации вредного воздействия пестицидов на окружающую среду следует:

– применять вещества с более высокой биологической активностью и соответственно вносить их в меньшем количестве на единицу площади;

– применять вещества, которые не сохраняются в почве, а разлагаются на безвредные соединения.

скачать книги

44. Многоатомные спирты

Шпаргалка по органической химии

Особенности строения многоатомных спиртов:

1) содержат в молекуле несколько гидроксильных групп, соединенных с углеводородным радикалом;

2) если в молекуле углеводорода заменены гидроксильными группами два атома водорода, то это двухатомный спирт;

3) простейшим представителем таких спиртов является этиленгликоль (этандиол-1,2):

СН2(ОН) – СН2(ОН);

4) во всех многоатомных спиртах гидроксильные группы находятся при разных атомах углерода;

5) для получения спирта, в котором хотя бы две гидроксильные группы находились бы при одном атоме углерода, проводилось много опытов, но спирт получить не удалось: такое соединение оказывается неустойчивым.

Физические свойства многоатомных спиртов:

1) важнейшие представители многоатомных спиртов – это этиленгликоль и глицерин;

2) это бесцветные сиропообразные жидкости сладковатого вкуса;

3) они хорошо растворимы в воде;

4) эти свойства присущи и другим многоатомным спиртам, например этиленгликоль ядовит.

Химические свойства многоатомных спиртов.

1. Как вещества, которые содержат гидроксильные группы, многоатомные спирты имеют сходные свойства с одноатомными спиртами.

2. При действии галогеноводородных кислот на спирты происходит замещение гидроксильной группы:

"Шпаргалка по органической химии"

СН2ОН-СН2ОН + Н СI ? СН2ОН-СН2СI + Н2О.

3. Многие спирты обладают и особыми свойствами: многоатомные спирты проявляют более кислые свойства, чем одноатомные и легко образуют алкоголяты не только с металлами, но и с гидроксидами тяжелых металлов. В отличие от одноатомных спиртов, многоатомные спирты реагируют с гидроксидом меди, давая комплексы синего цвета (качественная реакция на многоатомные спирты).



Шпаргалка по органической химии

4. На примере многоатомных спиртов можно убедиться, что количественные изменения переходят в изменения качественные: накопление гидроксильных групп в молекуле обусловило в результате их взаимного появления у спиртов новых свойств по сравнению с одноатомными спиртами.

Способы получения и применения многоатомных спиртов: 1) подобно одноатомным спиртам, многоатомные спирты могут быть получены из соответствующих углеводородов через их галогенопроизводные; 2) наиболее употребительный многоатомный спирт – глицерин, он получается расщеплением жиров, а в настоящее время все больше синтетическим способом из пропилена, который образуется при крекинге нефтепродуктов.
1   2   3   4   5   6   7   8


скачать книги
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации