Шпоры по физике (ОГТУ) - файл n1.doc

приобрести
Шпоры по физике (ОГТУ)
скачать (1351 kb.)
Доступные файлы (1):
n1.doc1351kb.24.08.2012 03:53скачать

n1.doc

  1   2   3   4
1.Электрические заряды. Закон сохранения зарядов. Закон кулона.Электрическая постоянная

Не­смотря на огромное разнообразие веществ в природе, существует только два типа электрических зарядов: заряды, подобные возникающим на стекле, потертом о кожу (их назвали положительными), и заряды, подобные возникающим на эбоните, по­тертом о мех (их назвали отрицательны­ми); одноименные заряды друг от друга отталкиваются, разноименные — притяги­ваются. Опытным путем (1910—1914) амери­канский физик Р. Милликен (1868 — 1953) показал, что электрический заряд дискре­тен, т. е. заряд любого тела составляет целое кратное от элементарного электриче­ского заряда е (e= 1,6•10-19 Кл). Элек­трон е = 9,11•10-31 кг) и протон р=1,67•10-27 кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.

Все тела в природе способны электри­зоваться, т. е. приобретать электрический заряд. Электризация тел может осуще­ствляться различными способами: сопри­косновением (трением), электростатической индукцией (см. §92) и т.д. Из обобщения опытных данных был установлен фундаментальный закон при­роды, экспериментально подтвержденный в 1843 г. английским физиком М. Фараде­ем (1791 —1867),— закон сохранения за­ряда: алгебраическая сумма электриче­ских зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.

Электрический заряд — величина ре­лятивистски инвариантная, т. е. не за­висит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.В зависимости от концентрации сво­бодных зарядов тела делятся на проводни­ки, диэлектрики и полупроводники. Про­водники — тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две груп­пы: 1) проводники первого рода (метал­лы) — перенесение в них зарядов (свобод­ных электронов) не сопровождается хими­ческими превращениями; 2) проводники

второго рода (например, расплавленные соли, растворы кислот) — перенесение в них зарядов (положительных и отрица­тельных ионов) ведет к химическим изме­нениям. Диэлектрики (например, стекло, пластмассы) — тела, в которых практиче­ски отсутствуют свободные заряды. Полу­проводники (например, германий, крем­ний) занимают промежуточное положение между проводниками и диэлектриками.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, про­порциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:



где k — коэффициент пропорционально­сти, зависящий от выбора системы единиц.

Сила F направлена по прямой, соеди­няющей взаимодействующие заряды, т. е. является центральной, и соответству­ет притяжению (F<0) в случае разно­именных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой.

В векторной форме закон Кулона име­ет вид



где F12— сила, действующая на заряд Q1 со стороны заряда Q2, r12радиус-век­тор, соединяющий заряд Q2 с зарядом Q1, r= |r12| (рис. 117). На заряд Q2 со сторо­ны заряда Q1 действует сила F21=-F12, т. е. взаимодействие электрических точеч­ных зарядов удовлетворяет третьему за­кону Ньютона.

В СИ коэффициент пропорционально­сти равен

k=1/(40).

Тогда закон Кулона запишется в оконча­тельном виде:



Величина 0 называется электрической постоянной; она относится к числу фунда­ментальных физических постоянных и равна

0=8,85•10-12Кл2/(Н•м2),

или

0=8,85•10-12Ф/м, (78.3)

где фарад (Ф) — единица электрической емкости (см. §93). Тогда

1/(40) = 9•109м/Ф.

2.Электростатическое поле. Напряженность поля. Поле точеного заряда и системы зарядов. Приницп суперпозиции.

Для обнаружения и опытного исследо­вания электростатического поля использу­ется пробный точечный положительный заряд — такой заряд, который не искажа­ет исследуемое поле (не вызывает пере­распределения зарядов, создающих поле). Если в поле, создаваемое зарядом Q, по­местить пробный заряд Q0, то на него действует сила F, различная в разных точках поля, которая, согласно закону Ку­лона (78.2), пропорциональна пробному заряду Q0. Поэтому отношение F/Q0 не зависит от Q0 и характеризует электриче­ское поле в той точке, где пробный заряд находится. Эта величина называется на­пряженностью и является силовой харак­теристикой электростатического поля.

Напряженность электростатического поля в данной точке есть физическая вели­чина, определяемая силой, действующей на единичный положительный заряд, по­мещенный в эту точку поля:

E=F/Q0. (79.1)

Как следует из формул (79.1) и (78.1), напряженность поля точечного заряда



в вакууме



или в скалярной форме



Направление вектора Е совпадает с на­правлением силы, действующей на поло­жительный заряд. Если поле создается положительным зарядом, то вектор Е на­правлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положительного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду (рис. 118).


Согласно (79.1), F=Q0E и Fi,=Q0Ei, где Е—напряженность результирующего по­ля, а Еi — напряженность поля, создавае­мого зарядом Qi. Подставляя последние выражения в (80.1), получим



Формула (80.2) выражает принцип су­перпозиции (наложения) электростатиче­ских полей, согласно которому напряжен­ность Е результирующего поля, создавае­мого системой зарядов, равна геометриче­ской сумме напряженностей полей, со­здаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рас­считать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Принцип суперпозиции применим для расчета электростатического поля элек­трического диполя.
3.Элекктрическое поле диполя. Применение Применение принципа суперпозиции для расчета полей.

Электрический ди­поль — система двух равных по модулю разноименных точечных зарядов ( + Q, -Q), расстояние l между которыми зна­чительно меньше расстояния до рассмат­риваемых точек поля. Вектор, направлен­ный по оси диполя (прямой, проходящей через оба заряда) от отрицательного за­ряда к положительному и равный расстоя­нию между ними, называется плечом дипо­ля l. Вектор



совпадающий по направлению с плечом диполя и равный произведению заряда



|Q| на плечо l, называется электрическим моментом диполя р или дипольным мо­ментом (рис. 122).

Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произвольной точке

Е=Е+ + Е-,

где Е+ и Е- — напряженности полей, со­здаваемых соответственно положительным и отрицательным зарядами. Воспользо­вавшись этой формулой, рассчитаем на­пряженность поля на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолже­нии оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси дипо­ля и по модулю равна

ЕA+-.

Обозначив расстояние от точки А до середины оси диполя через л, на основании формулы (79.2) для вакуума можно за­писать



Согласно определению диполя, l/2<


Напряженность поля на перпенди­куляре, восставленном к оси из его середи­ны, в точке В (рис. 123). Точка В равноу­далена от зарядов, поэтому




где r'— расстояние от точки В до середи­ны плеча диполя. Из подобия равнобедренных треугольников, опирающихся плечо диполя и вектор ев, получим

откуда

ЕB+l/r'. (80.5)

Подставив в выражение (80.5) значение (80.4), получим

Вектор ЕB имеет направление, противопо­ложное электрическому моменту диполя (вектор р направлен от отрицательного заряда к положительному).
4.Графическое изображения электростатичеких полей. Направление вектора напряженности.

Графически электростатическое поле изображают с помощью линий напряжен­ности — линий, касательные к которым в каждой точке совпадают с направлением вектора Е (рис. 119). Линиям напряжен­ности приписывается направление, со­впадающее с направлением вектора на­пряженности. Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Для однородного поля (когда вектор на­пряженности в любой точке постоянен по

величине и направлению) линии напря­женности параллельны вектору напряжен­ности. Если поле создается точечным за­рядом, то линии напряженности — ради­альные прямые, выходящие из заряда, если он положителен (рис. 120, а), и вхо­дящие в него, если заряд отрицателен (рис. 120, б). Вследствие большой нагляд­ности графический способ представления электрического поля широко применяется в электротехнике.

Чтобы с помощью линий напряженно­сти можно было характеризовать не толь­ко направление, но и значение напряжен­ности электростатического поля, услови­лись проводить их с определенной густо­той (см. рис. 119): число линий напряжен­ности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно моду­лю вектора Е. Тогда число линий напря­женности, пронизывающих элементарную площадку dS, нормаль n которой образует угол  с вектором Е, равно ЕdScos= Еп dS, где Еnпроекция вектора Е на нормаль n к площадке dS (рис. 121). Ве­личина

E=EndS = EdS

называется потоком вектора напряженно­сти через площадку dS. Здесь dS == dSn — вектор, модуль которого равен dS, а направление совпадает с направ­лением нормали n к площадке.




Выбор направления вектора n (а следовательно, и dS) условен, так как его можно на­править в любую сторону.

Единица потока вектора напряженно­сти электростатического поля— 1 В•м..

Для произвольной замкнутой повер­хности S поток вектора Е через эту по­верхность


5.Теорема Остроградского-Гаусса для электростатического поля.

Вычисление напряженности поля системы электрических зарядов с помощью при­нципа суперпозиции электростатических полей можно значительно упростить, ис­пользуя выведенную немецким ученым К. Гауссом (1777—1855) теорему, опреде­ляющую поток вектора напряженности электрического поля через произвольную замкнутую поверхность.

В соответствии с формулой (79.3) по­ток вектора напряженности сквозь сфери­ческую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124),



Этот результат справедлив для замкнутой поверхности любой формы. Действитель­но, если окружить сферу (рис. 124) про­извольной замкнутой поверхностью, то каждая линия напряженности, пронизыва­ющая сферу, пройдет и сквозь эту по­верхность.

Если замкнутая поверхность произ­вольной формы охватывает заряд (рис. 125), то при пересечении любой вы­бранной линии напряженности с поверхно­стью она то входит в нее, то выходит из нее. Нечетное число пересечений при вы­числении потока в конечном счете сводит­ся к одному пересечению, так как поток считается положительным, если линии на­пряженности выходят из поверхности, и отрицательным для линий, входящих

в поверхность. Если замкнутая поверх­ность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в повер­хность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности лю­бой формы, если она замкнута и заключа­ет в себя точечный заряд Q, поток вектора Е будет равен Q/0, т. е.



Знак потока совпадает со знаком заряда Q. Рассмотрим общий случай произволь­ной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемо­го всеми зарядами, равна сумме напря-женностей Еi, создаваемых каждым за­рядом в отдельности:;. Поэтому


Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi/0. Следовательно,



Формула (81.2) выражает теорему Га­усса для электростатического поля в ваку­уме: поток вектора напряженности элек­тростатического поля в вакууме сквозь произвольную замкнутую поверхность ра­вен алгебраической сумме заключенных внутри этой поверхности зарядов, делен­ной на 0. Эта теорема выведена матема­тически для векторного поля любой при­роды русским математиком М. В. Остро­градским (1801 —1862), а затем неза­висимо от него применительно к электро­статическому полю — К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой

объемной плотностью =dQ/dV, различной

в разных местах пространства. Тогда сум­марный заряд, заключенный внутри замкнутой поверхности S, охватывающей не­который объем V,



Используя формулу (81.3), теорему Гаус­са (81.2) можно записать так:

6.Применение теоремы Гаусса для расчета полей.

Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотно­стью +  (=dQ/dS—заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим ци­линдр, основания которого параллельны заря­женной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cos=0), то поток вектора напряженности сквозь боковую повер­хность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с Е), т.е. равен 2ES. Заряд, заключенный внутри построенной цилин­дрической поверхности, равен S. Согласно теореме Гаусса (81.2), 2ES = S/0, откуда

E=/(20). (82.1)

Из формулы (82.1) вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, ины-

ми словами, поле равномерно заряженной плоскости однородно.

Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разнои­менными зарядами с поверхностными плотно­стями + и -. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верх­ние стрелки соответствуют полю от положитель­но заряженной плоскости, нижние — от отрица­тельной плоскости. Слева и справа от плоско­стей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E=0. В области между плоскостями E=E++E- (E+ и E-определяются по формуле (82.1)), поэтому ре­зультирующая напряженность

E=/0. (82.2)

Таким образом, результирующая напряжен­ность поля в области между плоскостями описы­вается формулой (82.2), а вне объема, ограни­ченного плоскостями, равна нулю.

Поле равномерно заряженной сфериче­ской поверхности. Сферическая поверхность ра­диуса R с общим зарядом Q заряжена равно­мерно с поверхностной плотностью +0. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией.
Поэтому линии напря­женности направлены радиально (рис. 128). Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R, то внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса (81.2), 4r2E=Q/0, откуда



При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. Гра­фик зависимости E от r приведен на рис. 129. Если r'<R, то замкнутая поверхность не со­держит внутри зарядов, поэтому внутри равно­мерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).




Поле объемно заряженного шара. Шар

радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью  (=dQ/dVзаряд, приходящийся на единицу объема). Учиты­вая соображения симметрии (см.п.3), можно показать, что для напряженности поля вне ша­ра получится тот же результат, что и в предыду­щем случае (см. (82.3)). Внутри же шара на­пряженность поля будет другая. Сфера радиуса r'<R охватывает заряд Q'=4/3r'3. Поэтому, согласно теореме Гаусса (81.2), 4r'2E=Q'/0=4/3r3/0. Учитывая, что =Q/(4/3R3), получим



Таким образом, напряженность ноля вне равно­мерно заряженного шара описывается форму­лой (82.3), а внутри его изменяется линейно с расстоянием r' согласно выражению (82.4). График зависимости E от r приведен на рис. 130.

Поле равномерно заряженного бесконеч­ного цилиндра (нити). Бесконечный цилиндр




радиуса R (рис. 131) заряжен равномерно с линейной плотностью  (=dQ/dt — заряд, приходящийся на единицу длины). Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сече­ний цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим ко­аксиальный с заряженным цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность -2rlЕ. По теореме Гаусса (81.2), при r>R 2rlE = l/0, от­куда



Если r<R, то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E=0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилинд­ра определяется выражением (82.5), внутри же его поле отсутствует.
7.Работа сил электростатического поля при перемещении зарядов. Циркуляция вектора напряженности.

Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль про­извольной траектории (рис. 132) переме­щается другой точечный заряд Q0, то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном переме­щении dl равна



Работа при перемещении заряда Q0 из точки 1 в точку 2



не зависит от траектории перемещения, а определяется только положениями на­чальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциаль­ным, а электростатические силы — консер­вативными (см. §12).

Из формулы (83.1) следует, что рабо­та, совершаемая при перемещении элек­трического заряда во внешнем электроста­тическом поле по любому замкнутому пути L, равна нулю, т. е.



Если в качестве заряда, переносимого в электростатическом поле, взять единич­ный точечный положительный заряд, то элементарная работа сил поля на пути dl равна Еdl=Eldl, где El=Ecos — про­екция вектора Е на направление элемен­тарного перемещения. Тогда формулу (83.2) можно записать в виде



Интеграл



называется циркуляцией вектора напряженности. Следо­вательно, циркуляция вектора напряжен­ности электростатического поля вдоль лю­бого замкнутого контура равна нулю. Силовое поле, обладающее свойством (83.3), называется потенциальным. Из об­ращения в нуль циркуляции вектора Е следует, что линии напряженности элек­тростатического поля не могут быть за­мкнутыми, они начинаются и кончаются на зарядах (соответственно на положи­тельных или отрицательных) или же ухо­дят в бесконечность.

Формула (83.3) справедлива только для электростатического поля. В дальней­шем будет показано, что для поля движу­щихся зарядов условие (83.3) не выпол­няется (для него циркуляция вектора на­пряженности отлична от нуля).
8.Потенциал и разность потенциалов точек электростатического поля. Потенциалы полей точечного заряда и системы зарядов.

Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. §12). Как из­вестно (см. (12.2)), работа консерватив­ных сил совершается за счет убыли по­тенциальной энергии. Поэтому работу

(83.1) сил электростатического поля мож­но представить как разность потенциаль­ных энергий, которыми обладает точечный заряд Q0 в начальной и конечной точках поля заряда Q:



откуда следует, что потенциальная энер­гия заряда Q0 в поле заряда Q равна



Она, как и в механике, определяется не однозначно, а с точностью до произволь­ной постоянной С. Если считать, что при удалении заряда в бесконечность (r->) потенциальная энергия обращается в нуль (U=0), то С=0 и потенциальная энергия заряда Q0, находящегося в поле заряда Q на расстоянии r от него, равна



Для одноименных зарядов Q0Q>0 и по­тенциальная энергия их взаимодействия (отталкивания) положительна, для разно­именных зарядов Q0Q<0 и потенциаль­ная энергия их взаимодействия (притяже­ния) отрицательна.

Если поле создается системой n точеч­ных зарядов Q1, Q2, ..., Qn, то работа электростатических сил, совершаемая над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым из за­рядов в отдельности. Поэтому потенциаль­ная энергия U заряда Q0, находящегося в этом поле, равна сумме его потенциаль­ных энергий Ui, создаваемых каждым из зарядов в отдельности:



Из формул (84.2) и (84.3) вытекает, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической харак­теристикой электростатического поля, на­зываемой потенциалом:

=U/Q0. (84.4)

Потенциал  в какой-либо точке элек­тростатического поля есть физическая ве­личина, определяемая потенциальной энергией единичного положительного за­ряда, помещенного в эту точку.

Из формул (84.4) и (84.2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен



Работа, совершаемая силами элек­тростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (84.1), (84.4), (84.5)), может быть представлена как

A12==U1-U2=Q0(1-2), (84.6)

т. е. равна произведению перемещаемого заряда на разность потенциалов в началь­ной и конечной точках. Разность потенци­алов двух точек 1 и 2 в электростатиче­ском поле определяется работой, соверша­емой силами поля, при перемещении единичного положительного заряда из точки 1 в точку 2.

Работа сил поля при перемещении за­ряда Q0 из точки 1 в точку 2 может быть записана также в виде



Приравняв (84.6) и (84.7), придем к вы­ражению для разности потенциалов:



где интегрирование можно производить вдоль любой линии, соединяющей началь­ную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.

Если перемещать заряд Q0 из произ­вольной точки за пределы поля, т. е. в бес­конечность, где по условию потенциал ра­вен нулю, то работа сил электростатиче­ского поля, согласно (84.6),

A=Q0,

Таким образом, потенциал — физическая величина, определяемая работой по пере­мещению единичного положительного за­ряда при удалении его из данной точки в бесконечность. Эта работа численно рав­на работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Из выражения (84.4) следует, что еди­ница потенциала — вольт (В): 1В есть потенциал такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1В=1Дж/Кл). Учиты­вая размерность вольта, можно показать, что введенная в § 79 единица напряжен­ности электростатического поля дейст­вительно равна 1 В/м: 1Н/Кл=1Н• м/(Кл•м)=1 Дж/(Кл•м)=1 В/м.

Из формул (84.3) и (84.4) вытекает, что если поле создается несколькими за­рядами, то потенциал поля системы за­рядов равен алгебраической сумме потен­циалов полей всех этих зарядов:


9.Эквипотенциальные поверхности и их свойства. Связь напряженности электрического поля с его потенциалом.

Найдем взаимосвязь между напряженно­стью электростатического поля, являю­щейся его силовой характеристикой, и по­тенциалом — энергетической характери­стикой поля.

Работа по перемещению единичного точечного положительного заряда из одной точки в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и x2-x1=dx, равна Exdx. Та же работа равна 1-2=-d Прирав­няв оба выражения, можем записать

Ex=-д/дx, (85.1)

где символ частной производной подчерки­вает, что дифференцирование производит-

ся только по х. Повторив аналогичные рассуждения для осей у и z, можем найти вектор Е:



где i, j, k — единичные векторы коорди­натных осей х, у, z.

Из определения градиента (12.4) и (12.6) следует, что



т. е. напряженность Е поля равна гради­енту потенциала со знаком минус. Знак минус определяется тем, что вектор на­пряженности Е поля направлен в сторону убывания потенциала.

Для графического изображения рас­пределения потенциала электростатиче­ского поля, как и в случае ноля тяготения (см. §25), пользуются эквипотенциальны­ми поверхностями — поверхностями, во всех точках которых потенциал  имеет одно и то же значение.

Если поле создается точечным заря­дом, то его потенциал, согласно (84.5),

=(1/40)Q/r. Таким образом, эквипотенциальные поверхности в данном случае — концентрические сферы. С дру­гой стороны, линии напряженности в слу­чае точечного заряда — радиальные пря­мые. Следовательно, линии напряженно­сти в случае точечного заряда перпенди­кулярны эквипотенциальным поверхно­стям.

Линии напряженности всегда нормаль­ны к эквипотенциальным поверхностям. Действительно, все точки эквипотенциаль­ной поверхности имеют одинаковый по­тенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна ну­лю, т. е. электростатические силы, дей­ствующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхно­стям. Следовательно, вектор Е всегда нор­мален к эквипотенциальным поверхно­стям, а поэтому линии вектора Е ортого­нальны этим поверхностям.

Эквипотенциальных поверхностей во­круг каждого заряда и каждой системы




зарядов можно провести бесчисленное множество. Однако их обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциаль­ными поверхностями были одинаковы. Тогда густота эквипотенциальных повер­хностей наглядно характеризует напря­женность поля в разных точках. Там, где эти поверхности расположены гуще, на­пряженность поля больше.

Итак, зная расположение линий на­пряженности электростатического поля, можно построить эквипотенциальные по­верхности и, наоборот, по известному рас­положению эквипотенциальных поверхностей можно определить в каждой точке поля величину и направление напряжен­ности поля. На рис. 133 для примера по­казан вид линий напряженности (штрихо­вые линии) и эквипотенциальных повер­хностей (сплошные линии) полей положи­тельного точечного заряда (а) и за­ряженного металлического цилиндра, име­ющего на одном конце выступ, а на другом—впадину (б).

Вычисление разности потенциалов по напряженности поля

Установленная в § 85 связь между напря­женностью поля и потенциалом позволяет по известной напряженности поля найти разность потенциалов между двумя про­извольными точками этого поля.

Поле равномерно заряженной бесконеч­ной плоскости определяется формулой (82.1): E=/(20), где  — поверхностная плотность заряда. Разность потенциалов между точками, лежащими на расстояниях х1, и x2 от плоскости

(используем формулу (85.1)), равна



Поле двух бесконечных параллельных разноименно заряженных плоскостей определя­ется формулой (82.2): Е=/0, где  — повер­хностная плотность заряда. Разность потенциа­лов между плоскостями, расстояние между ко­торыми равно d (см. формулу (85.1)), равна




10.Элекктроемкость проводников. Конденсаторы. Вывод форумулы емкости плоского конденсатора.Виды конденсаторов.

На практике, однако, необходимы устройства, обладающие способностью при малых раз­мерах и небольших относительно окружа­ющих тел потенциалах накапливать зна­чительные по величине заряды, иными сло­вами, обладать большой емкостью. Эти устройства получили название конденса­торов. Конденсатор состоит из двух провод­ников (обкладок), разделенных диэлект­риком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэ­тому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют (см. § 82): 1) две плоские пластины; 2) два коакси­альных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.

. Под емкостью конденсатора по­нимается физическая величина, равная отношению заряда Q, накопленного в кон­денсаторе, к разности потенциалов (1-2) между его обкладками:

C=Q/(1-2). (94.1)

Рассчитаем емкость плоского конден­сатора, состоящего из двух параллельных металлических пластин площадью 5 каж­дая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и

-Q. Если расстояние между пластинами мало по сравнению с их линейными разме­рами, то краевыми эффектами можно пре­небречь и поле между обкладками считать однородным. Его можно рассчитать ис­пользуя формулы (86.1) и (94.1). При наличии диэлектрика между обкладками разность потенциалов между ними, со-

гласно (86.1),

1-2=d/(0), (94.2)

где  — диэлектрическая проницаемость. Тогда из формулы (94.1), заменяя Q=S, с учетом (94.2) получим выражение для емкости плоского конденсатора:

C=0S/d. (94.3) Рассмотрим уединенный проводник, т. е. проводник, который удален от других проводников, тел и зарядов. Его потенци­ал, согласно (84.5), прямо пропорциона­лен заряду проводника. Из опыта следует, что разные проводники, будучи одинаково заряженными, принимают различные по­тенциалы. Поэтому для уединенного про­водника можно записать

Q=С.

Величину

C=Q/ (93.1)

называют электроемкостью (или просто емкостью) уединенного проводника. Ем­кость уединенного проводника определяет­ся зарядом, сообщение которого провод­нику изменяет его потенциал на единицу. Емкость проводника зависит от его размеров и формы, но не зависит от мате­риала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды

распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциа­ла. Сказанное не противоречит формуле (93.1), так как она лишь показывает, что емкость уединенного проводника прямо пропорциональна его заряду и обратно пропорциональна потенциалу.

Единица электроемкости — фарад (Ф): 1 Ф — емкость такого уединенного проводника, потенциал которого изменяет­ся на 1В при сообщении ему заряда в 1 Кл.
11.Энергия системы зарядов и заряженного проводника.

Энергия системы неподвижных точеч­ных зарядов. Электростатические силы взаимодействия консервативны (см. § 83); следовательно, система зарядов обладает

потенциальной энергией. Найдем потенци­альную энергию системы двух неподвиж­ных точечных зарядов Q1 и Q2, находя­щихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (см. (84.2) и (84.5)):

W1=Ql1, W2=Q221,

где 12 и 21 — соответственно потенциа­лы, создаваемые зарядом Q2. в точке на­хождения заряда q1 и зарядом Q1 в точке нахождения заряда Q2. Согласно (84.5),



поэтому

W1=W2=W и

W=Q112=Q221=1/2(Q112+Q221).

Добавляя к системе из двух зарядов по­следовательно заряды Q3, Q4, ..., можно убедиться в том, что в случае n непод­вижных зарядов энергия взаимодействия системы точечных зарядов равна



где i — потенциал, создаваемый в той точке, где находится заряд Qi, всеми за­рядами, кроме i-го.

Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, . Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный провод­ник, затратив на это работу, равную

dA=dQ=Cd.

Чтобы зарядить тело от нулевого потенци­ала до , необходимо совершить работу



. Энергия заряженного проводника рав­на той работе, которую необходимо со-

вершить, чтобы зарядить этот проводник: W=C2/2=Q/2=Q2/(2C). (95.3)

Формулу (95.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Полагая потенциал проводника равным , из (95.1) найдем


12.Энергия заряженного конденсатора. Энергия и плотность энергии электростатического поля.

Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (95.3) равна

W = C ()2/2=Q/2=Q2/(2C), (95.4)

где Qзаряд конденсатора, С — его ем­кость,  — разность потенциалов между обкладками.

Используя выражение (95.4), можно найти механическую (пондеромоторную) силу, с которой пластины конден­сатора притягивают друг друга. Для этого предположим, что расстояние х меж­ду пластинами меняется, например, на величину Ах. Тогда действующая сила со­вершает работу

dA=Fdx

вследствие уменьшения потенциальной энергии системы

Fdx=-dW,

откуда

F=dW/dx. (95.5)

Подставив в (95.4) выражение (94.3), по­лучим



Производя дифференцирование при кон­кретном значении энергии (см. (95.5) и (95.6)), найдем искомую силу:



где знак минус указывает, что сила F является силой притяжения.

Энергия электростатического поля.

Преобразуем формулу (95.4), выражаю­щую энергию плоского конденсатора по­средством зарядов и потенциалов, вос­пользовавшись выражением для емкости плоского конденсатора (C = 0/d) и раз­ности потенциалов между его обкладками ( =Ed). Тогда получим



где V=Sd — объем конденсатора. Форму­ла (95.7) показывает, что энергия кон­денсатора выражается через величину, ха­рактеризующую электростатическое по­ле,— напряженность Е.

Объемная плотность энергии электро­статического поля (энергия единицы объема)

w=W/V=0E2/2 = ED/2. (95.8)

Выражение (95.8) справедливо только для изотропного диэлектрика, для которого

выполняется соотношение (88.2): Р=0Е.

Формулы (95.4) и (95.7) соответствен­но связывают энергию конденсатора с за­рядом на его обкладках и с напряженно­стью поля. Возникает, естественно, вопрос о локализации электростатической энер­гии и что является ее носителем — заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. По­этому электростатика ответить на постав­ленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обо­собленно, независимо от возбудивших их зарядов, и распространяются в простран­стве в виде электромагнитных волн, спо­собных переносить энергию. Это убеди­тельно подтверждает основное положение теории близкодействия о локализации энергии в поле и что носителем энергии является поле.
13.Диэлектрики в электрическом поле. Поляризация диэлектрика. Вектор поляризации и его связь с напряженностью поля.

Диэлектрик (как и всякое вещество) со­стоит из атомов и молекул. Так как поло­жительный заряд всех ядер молекулы ра­вен суммарному заряду электронов, то молекула в целом электрически нейтраль­на. Первую группу диэлектриков (N2, H2, О2, СO2, СH4, ...) составляют вещества,

молекулы которых имеют симметричное строение, т. е. центры «тяжести» положи­тельных и отрицательных зарядов в отсут­ствие внешнего электрического поля со­впадают и, следовательно, дипольный мо­мент молекулы р равен нулю. Молекулы таких диэлектриков называются неполяр­ными. Вторую группу диэлектриков (H2O, NH3, SO2, CO, ...) составляют вещества, молекулы которых имеют асимметричное строение, т. е. центры «тяжести» положи­тельных и отрицательных зарядов не со­впадают. Таким образом, эти молекулы в отсутствие внешнего электрического по­ля обладают дипольным моментом. Моле­кулы таких диэлектриков называются по­лярными. Третью группу диэлектриков (NaCl, КСl, КВг,...) составляют вещества, моле­кулы которых имеют ионное строение. Ионные кристаллы представляют собой пространственные решетки с правильным чередованием ионов разных знаков. Таким образом, внесение всех трех групп диэлектриков во внешнее электриче­ское поле приводит к возникновению от­личного от нуля результирующего элек­трического момента диэлектрика, или, иными словами, к поляризации диэлектрика. Поляризацией диэлектрика называет­ся процесс ориентации диполей или по­явления под воздействием электрического поля ориентированных по полю диполей.

Соответственно трем группам диэлек­триков различают три вида поляризации:

электронная, или деформационная, по­ляризация диэлектрика с неполярными молекулами, заключающаяся в возникно­вении у атомов индуцированного дипольного момента за счет деформации элек­тронных орбит;

ориентационная, или дипольная, поля­ризация диэлектрика с полярными молеку­лами, заключающаяся в ориентации име­ющихся дипольных моментов молекул по полю. Естественно, что тепловое движение препятствует полной ориентации молекул, но в результате совместного действия обо­их факторов (электрическое поле и тепло­вое движение) возникает преимуществен­ная ориентация дипольных моментов мо­лекул по полю. Эта ориентация тем сильнее, чем больше напряженность элек­трического поля и ниже температура;

ионная поляризация диэлектриков с ионными кристаллическими решетками, заключающаяся в смещении подрешетки положительных ионов вдоль поля, а отри­цательных — против поля, приводящем к возникновению дипольных моментов.
14.Напряженность диэлектрического поля в диэлектрике. Относительная диэлектрическая проницаемость и ее связь с диэлектрической восприимчивостью.

При помещении диэлектрика во внешнее электростатическое поле он поляризуется, т. е. приобретает отличный от нуля дипольный момент, где рi — дипольный момент одной молекулы. Для ко­личественного описания поляризации ди­электрика пользуются векторной величи­ной — поляризованностью, определяемой как дипольный момент единицы объема ди­электрика:



Из опыта следует, что для большого класса диэлектриков (за исключением сег-

нетоэлектриков, см. §91) поляризованность Р линейно зависит от напряженно­сти поля Е. Если диэлектрик изотропный и Е не слишком велико, то



где  — диэлектрическая восприимчивость

вещества, характеризующая свойства ди­электрика;  — величина безразмерная; притом всегда >0 и для большинства диэлектриков (твердых и жидких) состав­ляет несколько единиц (хотя, например, для спирта 25, для воды =80).

Для установления количественных за­кономерностей поля в диэлектрике внесем в однородное внешнее электростатическое поле Е0 (создается двумя бесконечными параллельными разноименно заряженны­ми плоскостями) пластинку из однородно­го диэлектрика, расположив ее так, как показано на рис. 135. Под действием поля диэлектрик поляризуется, т. е. происходит смещение зарядов: положительные сме­щаются по полю, отрицательные — против поля. В результате этого на правой грани диэлектрика, обращенного к отрицатель­ной плоскости, будет избыток положитель­ного заряда с поверхностной плотностью +', на левой — отрицательного заряда с поверхностной плотностью -'. Эти не­скомпенсированные заряды, появляющие­ся в результате поляризации диэлектрика, называются связанными. Так как их по­верхностная плотность ' меньше плотно­сти а свободных зарядов плоскостей, то не
все поле Е компенсируется полем зарядов диэлектрика: часть линий напряжен­ности пройдет сквозь диэлектрик, другая же часть — обрывается на связанных за­рядах. Следовательно, поляризация ди­электрика вызывает уменьшение в нем поля по сравнению с первоначальным внешним полем. Вне диэлектрика Е=Е0. Таким образом, появление связанных зарядов приводит к возникновению допол­нительного электрического поля Е' (поля, создаваемого связанными зарядами), ко­торое направлено против внешнего поля Е0 (поля, создаваемого свободными за­рядами) и ослабляет его. Результирующее поле внутри диэлектрика

E=E0-E'.

Поле E'='/0 (поле, созданное двумя бесконечными заряженными плоскостями; см. формулу (82.2)), поэтому

E=E0-/0. (88.3)

Определим поверхностную плотность связанных зарядов '. По (88.1), полный дипольный момент пластинки диэлектрика pV=PV=PSd, где S — площадь грани пластинки, d — ее толщина. С другой сто­роны, полный дипольный момент, согласно (80.3), равен произведению связанного заряда каждой грани Q' = 'S на расстоя­ние d между ними, т. е. pV='Sd. Таким образом,

PSd='Sd,

или

'=Р, (88.4)

т. е. поверхностная плотность связан­ных зарядов ' равна поляризованности Р.

Подставив в (88.3) выражения (88.4) и (88.2), получим

Е=Е0-Е,

откуда напряженность результирующего поля внутри диэлектрика равна

E=E0/(1+)=E0/. (88.5) Безразмерная величина =1+ (88.6) называется диэлектрической проницаемо­стью среды. Сравнивая (88.5) и (88.6), видим, что  показывает, во сколько раз поле ослабляется диэлектриком, характе­ризуя количественно свойство диэлект­рика поляризоваться в электрическом поле.

15.Электростатическое поле на границе двух диэлектриков. Вектор электростатической индукции. Теорема Гаусса для электростатической индукции.

Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряжен­ность поля Е обратно пропорциональна . Вектор напряженности Е, переходя через границу диэлектриков, претерпевает скач­кообразное изменение, создавая тем са­мым неудобства при расчете электростати­ческих полей. Поэтому оказалось необхо­димым помимо вектора напряженности характеризовать поле еще вектором элек­трического смещения, который для элек­трически изотропной среды по определе­нию равен -

D = 0E. (89.1)

Используя формулы (88.6) и (88.2), век­тор электрического смещения можно вы­разить как

D=0E+P. (89.2)

Единица электрического смещения — кулон на метр в квадрате (Кл/м2).

Результирующее поле в диэлектрике описывается вектором на­пряженности Е, и потому он зависит от свойств диэлектрика. Вектором D описыва­ется электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вы­звать, однако, перераспределение свободных зарядов, создающих поле. Поэтому век­тор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распре­делении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е, поле D изо­бражается с помощью линий электриче­ского смещения, направление и густота которых определяются точно так же, как и для линий напряженности (см. § 79).

Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора Dтолько на свободных зарядах. Через области поля, где находят­ся связанные заряды, линии вектора D про­ходят не прерываясь.

Для произвольной замкнутой повер­хности 5 поток вектора D сквозь эту по­верхность



Теорема Гаусса для электростатиче­ского поля в диэлектрике:



т. е. поток вектора смещения электроста­тического поля в диэлектрике сквозь про­извольную замкнутую поверхность равен алгебраической сумме заключенных внут­ри этой поверхности свободных электриче­ских зарядов. В такой форме теорема Га­усса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума Dn=0Еn (=1), тогда поток вектора напряженности Е сквозь произвольную замкнутую поверхность (ср. с (81.2)) равен



Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно запи-

сать как



где



— соответственно ал-

гебраические суммы свободных и связан­ных зарядов, охватываемых замкнутой по­верхностью 5. Однако эта формула не­приемлема для описания поля Е в ди­электрике, так как она выражает свойства неизвестного поля Е через связанные за­ряды, которые, в свою очередь, определя­ются им же. Это еще раз доказывает целе­сообразность введения вектора электриче­ского смещения.

  1   2   3   4


1.Электрические заряды. Закон сохранения зарядов. Закон кулона.Электрическая постоянная
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации