Биохимические методы очистки сточных вод - файл n1.doc

приобрести
Биохимические методы очистки сточных вод
скачать (111 kb.)
Доступные файлы (1):
n1.doc111kb.22.08.2012 21:47скачать

n1.doc



Содержание


1. Биохимические методы очистки сточных вод. Сущность метода.



3

2. Закономерности распада органических веществ

5

3. Влияние различных факторов на процесс биохимической очистки



6

4. Классификация биохимических методов

8

4.1. Аэробные методы очистки

9

4.2. Анаэробные методы очистки

15

Список литературы

17



















1. Биохимические методы очистки сточных вод. Сущность метода.

Биологическое окисление – широко применяемый на практике метод очистки сточных вод, позволяющий удалить из них многие органические и некоторые неорганические (сероводород, сульфиды, аммиак, нитриты и др.) вещества. Биохимическая очистка сточных вод основана на способности микроорганизмов использовать растворенные и коллоидные органические загрязнения в качестве источника питания в процессах своей жизнедеятельности. Биологическим путем обрабатываются, подвергаясь частичной или полной деструкции, многие виды органических загрязнений городских и производственных сточных вод. Контактируя с органическими веществами, микроорганизмы частично разрушают их, превращая в воду, диоксид углерода, нитрит- и сульфат-ионы и др. Другая часть вещества идет на образование биомассы. Некоторые органические вещества способны легко окисляться, а некоторые не окисляются совсем или очень медленно.

Широкое использование биохимического метода обусловлено его достоинствами: возможностью удалять из сточных вод разнообразные органические и некоторые неорганические соединения, находящиеся в воде в растворенном, коллоидном и нерастворенном состоянии, в том числе токсичные; простотой аппаратурного оформления, относительно невысокими эксплуатационными затратами, глубиной очистки. К недостаткам следует отнести высокие капитальные затраты, необходимость строгого соблюдения режима очистки, токсичное действие на микроорганизмы ряда органических и неорганических соединений, необходимость разбавления сточных вод в случае высокой концентрации примесей.

Для определения возможности подачи промышленных сточных вод на биохимические очистные сооружения устанавливают максимальные концентрации токсичных веществ, которые не влияют на процессы биохимического окисления (МКб) и на работу очистных сооружений (МКбос). При отсутствии таких данных возможность биохимического окисления устанавливается по биохимическому показателю БПКп/ХПК. Для бытовых сточных вод это отношение составляет при­мерно 0,86, а для производственных изменяется в очень широких пре­делах: от 0 до 0,9. Сточные воды с низким отношением БПКп/ХПК, как правило, содержат токсичные примеси, предварительное извлечение которых может повысить это отношение, т.е. обеспечить возможность биохимического окисления. Поэтому сточные воды не должны содержать ядовитых веществ и примесей солей тяжелых металлов. Биохимическую очистку считают полной, если БПКп очищенной воды составляет менее 20 мг/л и неполной, если БПКп > 20 мг/л. Такое определение условно, так как даже при полной биохимической очистке происходит лишь частичное освобождение воды от суммы находящихся в ней примесей.

Биологическое окисление осуществляется сообществом микроорганизмов (биоценозом), включающим множество различных бактерий, простейших, а также водорослей, грибов и т.д., связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антагонизма). Главенствующая роль в этом сообществе принадлежит бактериям, число которых варьируется от 106 до 10 14 клеток на 1 г сухой биомассы. В процессе биохимического окисления при аэробных условиях сообщество микроорганизмов носит название активного ила или биопленки. Активный ил состоит из живых микроорганизмов и твердого субстрата и по внешнему виду напоминает хлопья коагулянта с цветом от белесо-коричневого до темно-коричневого. Скопления бактерий в активном иле окружены слизистым слоем (капсулами) и называются зооглеями. Они способствуют улучшению структуры ила, его осаждению и уплотнению.

Активный ил представляет собой амфотерный коллоид, имеющий в интервале значений рН=4-9 отрицательный заряд, и обладающий большой адсорбционной способностью за счет развитой суммарной поверхности бактериальных клеток. Адсорбционная способность активного ила с течением времени понижается из-за насыщения загрязнениями сточной воды. Процесс восстановления идет за счет жизнедеятельности микроорганизмов, заселяющих активный ил, и называется регенерацией. Несмотря на существенные различия очищаемых сточных вод, элементарный химический состав активных илов достаточно близок, хотя и неидентичен. Это сходство есть результат общности его основы - бактериальных клеток. В состав клеток входят Н, N, S, С, О, Р, зола, белок, а также различные микроэлементы - В, V, Fe, Co, Мn, Мо, Сu и др. Н, N, С и О образуют группу органогенных веществ, эти элементы входят в бактериальные клетки в виде воды, белков, жиров и углево­дов; 80-85 % веса микробов составляет вода.

Сухое вещество активного ила представляет собой комплекс минеральных (10-30 %) и органических (70-90 %) веществ. Основную массу органических соединений составляют белки. В состав зольных частей клеток входят микроэлементы - Са, К, Mg, S, Мn, Сu, Na, Fe, Zn и др. Кроме того для построения бактериальной клетки необходимы биогенные элементы - фосфор, азот, калий. Качество ила определяется скоростью его осаждения и степенью очистки воды. Состояние ила характеризует иловый индекс, представляющий собой отношение объема осаждаемой части активного ила к массе высушенного осадка (в граммах) после отстаивания в течение 30 минут. Чем больше иловый индекс, тем хуже оседает ил.

2.Закономерности распада органических веществ

Механизм изъятия веществ из сточных вод и их потребление микроорганизмами весьма сложен. В целом этот процесс может быть условно разделен на три стадии:

1) массопередача вещества из жидкости к поверхности клетки, за счет молекулярной и конвективной диффузии;

2) диффузия вещества через полупроницаемую мембрану поверхности клетки, возникающая вследствие разности концентраций вещества в клетке и вне ее;

3) процесс превращения вещества (метаболизм), протекающий внутри клетки, с выделением энергии и синтезом нового клеточного вещества.

Скорость протекания первой стадии определяется законами диффузии и гидродинамическими условиями в сооружении биохимической очистки. Турбулентность потока вызывает распад хлопьев активного ила на мельчайшие колонии микробов и приводит к быстрому обнов­лению поверхности раздела между микроорганизмами и средой.

Процесс переноса вещества через полупроницаемые мембраны клеток может быть осуществлен двумя путями: растворением диффундирующего вещества в материале мембраны, благодаря чему оно проходит внутрь клетки или присоединением проникающего вещества к специфическому белку-переносчику, растворением образующегося комплекса и диффузией его внутрь клетки, где комплекс распадается и белок-переносчик высвобождается для совершения нового цикла.

Основную роль в очистке сточных вод играют процессы превращения вещества внутри клеток микроорганизмов, в результате чего происходит окисление вещества с выделением энергии (катаболические превращения) и синтез новых белковых веществ, который проте­кает с затратой энергии (анаболические превращения).

Скорость химических превращений и их последовательность определяют ферменты, выполняющие роль катализаторов и представляющие собой сложные белковые соединения с молекулярной массой до сотен тысяч и миллионов. Их активность зависит от температуры, рН и присутствия в сточной воде различных веществ.

Суммарные реакции биохимического окисления в аэробных условиях можно представить в следующем виде:

окисление органического вещества

CxHyOz(х + 0,25у - 0,5z)O2 ? хС02 + 0,5уН2О + ?Н;

синтез бактериальных клеток

CxHyOz + nNH3 + n(x + 0,25у - 0,5z - 5)02? n(C5H7N02) + n(x-5)C02 + 0,5n(y-4)H2O - ?Н;

окисление клеточного материала

n(C5H7N02) + 5n02 ? 5nC02 + 2nH20 + nNH3 + ?Н.

Химические превращения являются источником необходимой для микроорганизмов энергии. Живые организмы способны использовать только связанную химическую энергию. Универсальным переносчиком энергии в клетке является аденозинтрифосфорная кислота (АТФ).

Микроорганизмы способны окислять многие органические вещества, но для этого требуется различное время адаптации. Легко окисляются многие спирты, гликоли, бензойная кислота, ацетон, глицерин, сложные эфиры и др. Плохо окисляются нитросоединения, некоторые ПАВ и хлорпроизводные органические соединения.

В процессе аэробного окисления потребляется кислород, растворенный в сточной воде. Для насыщения сточной воды кислородом проводят процесс аэрации, разбивая воздушный поток на пузырьки, которые, по возможности, равномерно распределяются в сточной воде. Из пузырьков воздуха кислород абсорбируется водой, а затем переносится к микроорганизмам. Этот процесс происходит в два этапа. На первом идет перенос кислорода из воздушных пузырьков в основную массу жидкости, на втором - перенос абсорбированного кислорода из основ ной массы жидкости к клеткам микроорганизмов, в основном под действием турбулентных пульсаций.

Наиболее надежный способ увеличения подачи кислорода в сточную воду - повышение интенсивности дробления газового потока, т.е. уменьшение размеров газовых пузырьков. Скорость потребления кислорода зависит от многих взаимосвязанных факторов: величины биомассы, скорости роста и физиологической активности микроорганизмов, вида и концентрации питательных веществ, накопления токсичных продуктов обмена, количества и природы биогенных элементов, со держания кислорода в воде.
3. Влияние различных факторов на процесс биохимической очистки

Эффективность биологической очистки зависит от целого ряда факторов, одни из которых поддаются изменению и регулированию в широких диапазонах, регулирование же других, таких, как например, состав поступающих на очистку сточных вод, практически исключено. К основным факторам, определяющим пропускную способность системы и степень очистки сточной воды, относятся: наличие кислорода в воде, равномерность поступления сточной воды и концентрация в ней примесей, температура, рН среды, перемешивание, присутствие токсичных примесей и биогенных элементов, концентрация биомассы и др.

Наиболее благоприятные условия очистки заключаются в следующем. Концентрация в очищаемых сточных водах биохимически окисляемых веществ не должна превышать допустимую величину МКб или МКбос, которая устанавливается обычно опытным путем. Сточные воды с более высокой концентрацией необходимо подвергать разбавлению. ПДК веществ при поступлении на сооружения биологической очистки приведены в справочной литературе.

Снабжение сооружений биохимической очистки кислородом воздуха должно быть непрерывным и в таком количестве, чтобы в очищенной сточной воде, выходящей из вторичного отстойника, его было не менее 2 мг/л. Скорость растворения кислорода в воде не должна быть ниже скорости его потребления микроорганизмами. В начальный период окисления скорость потребления кислорода может в десятки раз превышать ее в конце процесса, она зависит от характера загрязнения воды и пропорциональна количеству биомассы.

Оптимальной температурой для аэробных процессов, происходящих в очистных сооружениях, считается 20-30 °С, хотя температурный оптимум бактерий различных групп варьируется в широких пределах, от -8 °С до +85 °С. Повышение температуры за пределы физиологической нормы микроорганизмов приводит к их гибели, а понижение лишь снижает активность микроорганизмов. С повышением температуры уменьшается растворимость кислорода в воде, поэтому в теплое время года надо проводить более интенсивную аэрацию, а в зимнее - поддерживать более высокую концентрацию микроорганизмов в циркулирующем иле и увеличивать продолжительность аэрации.

Оптимальной реакцией среды для значительной части бактерий является нейтральная или близкая к ней, хотя есть виды, хорошо развивающиеся в кислой (грибы, дрожжи) или слабощелочной среде (актиномицеты).

Для нормального процесса синтеза клеточного вещества, а следовательно, и для эффективного процесса очистки сточных вод должна быть достаточная концентрация всех элементов питания - органического углерода (БПК), азота, фосфора.

Кроме основных элементов клетки (С, О, N, Н) для ее построения необходимы в незначительных количествах и другие компоненты - микроэлементы (Mn, Cu, Zn, Mo, Mg, Co и др.). Содержание указанных элементов в природных водах, из которых образуются сточные воды, обычно достаточно для биохимического окисления. Недостаток азота тормозит окисление органических загрязнений и приводит к образованию трудно оседающего ила. Недостаток фосфора инициирует развитие нитчатых бактерий, что является основной причиной вспухания активного ила, плохого оседания и выноса его из очистных сооружений, замедления роста ила и снижения интенсивности окисления. Биогенные элементы лучше всего усваиваются в форме соединений, в которой они находятся в микробных клетках: азот - в форме NH 4 , а фосфор - в виде солей в фосфорных кислотах. При нехватке азота, фосфора, калия в сточную воду вносят различные азотные, калийные и фосфорные удобрения. Эти элементы содержатся в бытовых сточных водах, поэтому многие химические вещества могут оказывать на микроорганизмы токсичное воздействие, нарушающее их жизнедеятельность. Такие вещества, попадая в бактериальную клетку, взаимодействуют с ее компонентами и нарушают их функции, среди них: Sв, Ag, Cu, Co, Hg, Рв и др. Количество взвешенных частиц не должно быть более 100 мг/л для биологических фильтров и 150 мг/л для аэротенков.

Интенсивность и эффективность очистки сточных вод зависят не только от условий обитания микроорганизмов, но и от их количества, т.е. дозы активного ила, которая поддерживается в аэротенках обычно равной 2-4 г/л. Повышение концентрации микроорганизмов в сточной воде позволяет ускорить процесс биологической очистки, но при этом одновременно необходимо увеличивать количество растворенного в воде кислорода, что ограничено состоянием насыщения, и улучшать условия массообмена. При биологической очистке необходимо применять "молодой" активный ил с возрастом 2-3 суток. Он не вспухает, более вынослив к колебаниям температуры, рН среды, мелкие хлопья его лучше осаждаются. Важным условием улучшения биологической очистки и уменьшения объема очистных сооружений является регенерация активного ила, заключающаяся в его аэрации при отсутствии питательного субстрата.

Для создания наиболее благоприятных условий массопередачи питательных веществ и кислорода к поверхности микробных клеток необходимо перемешивание сточной воды и активного ила. При этом турбулизация жидкости приводит к разрушению хлопьев активного ила, обновлению их поверхности, лучшему снабжению клеток питательными веществами и кислородом, создает более благоприятные условия обитания микроорганизмов.
4. Классификация биохимических методов

Известны аэробные и анаэробные методы биохимической очистки. Аэробные методы основаны на использовании аэробных групп микроорганизмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40 °С. При изменении температурного и кислородного режимов состав и число микроорганизмов меняется, они культивируются в активном иле или биопленке. Анаэробные методы протекают без доступа кислорода, их используют главным образом для обработки осадков. Всю совокупность сооружений биологической очистки можно разделить на три группы по признаку расположения в них активной биомассы:

1) активная биомасса закреплена на неподвижном материале, а сточная вода тонким слоем скользит по материалу загрузки - биофильтры;

2) активная биомасса находится в воде в свободном (взвешенном) состоянии - аэротенки, циркуляционные окислительные каналы, окситенки;

3) сочетание обоих вариантов расположения биомассы - погружные биофильтры, биотенки, аэротенки с заполнителями.

Биологическая очистка может также осуществляться в естественных условиях на сооружениях почвенной очистки и в биологических прудах.
4.1. Аэробные методы очистки.

Очистку на полях орошения, полях фильтрации и биологических прудах - отличают сравнительно низкие строительные и эксплуатационные затраты, буферная способность при залповых сбросах сточных вод, колебаниях рН, температуры, достаточную степень изъятия из воды биогенных элементов. К недостаткам относится сезонность работы, низкая скорость окисления загрязнений. Поля орошения и поля фильтрации относятся к почвенным методам очистки.

Поля орошения являются сельскохозяйственными угодьями, специально предназначенными для очистки сточных вод и одновременного выращивания растений. На полях фильтрации очистка производится без участия растений. Очистка сточных вод на полях орошения основана на воздействии почвенной микрофлоры, кислорода воздуха, солнца и жизнедеятельности растений. В очистке сточных вод в той или иной степени участвует активный слой грунта толщиной 1,5-2 м. Минерализация органического вещества происходит в основном в верхнем полуметровом слое почвы. При этом повышается плодородие почвы, что связано с обогащением почвы нитратами, фосфором и калием. Однако общий солевой состав стоков не должен превышать 4-6 г/л для предотвращения засоления почвы. Сточные воды подаются на поля орошения периодически с интервалом 5 дней. В зимний период для местностей с холодной зимой на них производится намораживание сточных вод. Для сбора сточной воды, используемой на полях орошения, служат пруды-накопители вместимостью, равной шестимесячному накоплению в них воды.

Биологические пруды - искусственно созданные или естественные водоемы, в которых очистка сточных вод идет под воздействием природных процессов самоочищения. Они могут применяться как для самостоятельной очистки, так и для глубокой доочистки сточных вод, прошедших биологическую очистку. Представляют собой неглубокие водоемы (0,5-1 м), хорошо прогреваемые солнцем и заселенные водными организмами.

В процессах, протекающих в биопрудах, наблюдается полный природный цикл разрушения органических загрязнений. Воздействие на работу прудов различных факторов может создавать в них как аэробные, так и аэробно-анаэробные условия. Пруды, постоянно работающие в аэробных условиях, называются аэрируемыми, а пруды с переменными условиями - факультативными.

Аэробные условия в прудах могут поддерживаться либо за счет естественного поступления кислорода из атмосферы и фотосинтеза, либо за счет принудительной подачи воздуха в воду. Поэтому различают пруды с естественной и искусственной аэрацией. Время пребывания воды в прудах с естественной аэрацией составляет от 7 до 60 суток. Вместе со сточными водами из вторичных отстойников выносится активный ил, который является посевным материалом. Эффективность очистки в прудах определяется временем года, в холодный период она резко снижается.

Пруды с искусственной аэрацией имеют значительно меньший объем и требуемая степень очистки в них обычно достигается за 1-3 суток.

Биофильтры - искусственные сооружения биологической очистки - представляют собой круглые или прямоугольные в плане сооруже­ния из кирпича или железобетона, загруженные фильтрующим материалом, на поверхности которого развивается биопленка. Сточная вода фильтруется через слой загрузки, покрытой пленкой из микроорганизмов, за счет жизнедеятельности которых осуществляется очистка. Отработанная (омертвевшая) биопленка смывается протекающей сточной водой и выносится из биофильтра.

По типу загрузочного материала биофильтры делятся на две категории: с объемной (зернистой) и плоской загрузкой. В качестве зернистой загрузки используют щебень, гравий, гальку, шлак, керамзит, керамические и пластмассовые кольца, кубы, шары, цилиндры и т.п. Плоская загрузка - это металлические, тканевые и пластмассовые сетки, решетки, блоки, гофрированные листы, пленки и т.п., нередко свернутые в рулоны.

Биофильтры с объемной загрузкой подразделяются на капельные, высоконагружаемые, башенные. Капельные биофильтры наиболее просты по конструкции, загружаются материалом мелких фракций высотой 1-2 м и имеют производительность до 1000 м3/сут, на них достигается высокая степень очистки. В высоконагружаемых фильтрах применяется больший размер кусков загрузки, а ее высота составляет 2-4 м. Высота загрузки в башенных фильтрах достигает 8-16 м. Два последних вида фильтров применяются при расходах сточных вод до 50 тыс.м3/сут как для полной, так и неполной биологической очистки.

Биологические фильтры с плоской загрузкой обладают значительно более высокой окислительной способностью, чем фильтры с объемной загрузкой. Окислительная способность - это скорость растворения кислорода в процессе аэрации полностью обескислороженной воды при атмосферном давлении и температуре 20 °С (г О2/ч)); к ней близко понятие окислительной мощности - скорости реакций окисления загрязнений (г О2/(м3ч)).

Промежуточное положение между аэротенками и биофильтрами занимают погружные биофильтры и биотенки-биофильтры.

Погружные (дисковые) биофильтры представляют собой резервуар, в котором имеется вращающийся вал с насаженными на него дисками, попеременно контактирующими со сточной водой и воздухом. Размер дисков 0,5-3 м, расстояние между ними 10-20 мм, они могут быть металлическими, пластмассовыми и асбестоцементными, число дисков на валу от 20 до 200. Биотенк-биофильтр представляет собой корпус, в котором заключены лотковые элементы загрузки, расположенные в шахматном порядке. Эти элементы орошаются сверху водой, которая наполняя их стекает через края вниз. На наружных поверхностях элементов образуется биопленка, внутри - биомасса, напоминающая активный ил. Конструкция обеспечивает высокую производительность и эффективность очистки.

По принципу поступления воздуха в толщу аэрируемой загрузки биофильтры могут быть с естественной и принудительной аэрацией.

В пусковой период биологических фильтров на кусках загрузки выращивается биологическая пленка. Основным агентом этой пленки является микробное население. Микроорганизмы биопленки используют органические примеси сточных вод как источники питания и дыхания, при этом масса биопленки увеличивается. По мере увеличения толщины пленки происходит ее отмирание и смыв протекающей сточной водой. Очищенная в биофильтре вода вместе с частицами отмершей биопленки поступает во вторичный отстойник. Рециркуляцию биологически активного материала обычно не предусматривают, что обусловлено высокой удерживающей способностью сооружения массы биопленки.

При поступлении сточных вод с БПКп > 300 мг/л во избежание частого заиливания поверхности биофильтра предусматривается рециркуляция - возврат части очищенной воды для разбавления исходной сточной воды. Рециркуляция очищенной воды увеличивает содержание растворенного кислорода в смеси, поддерживается более равномерная гидравлическая нагрузка, выравнивается концентрация биопленки по высоте сооружения. Однако при этом возрастает потребность в объемах отстойников, увеличивается расход энергии на перекачивание воды.

Распределение сточных вод по поверхности биофильтра произво­дится стационарными разбрызгивающими оросителями (спринклерами) или вращающимися реактивными оросителями с циклической подачей воды в течение 5-10 минут.

Применение биофильтров ограничивается возможностью их заи­ливания, снижением окислительной мощности в процессе эксплуатации, появлением неприятных запахов, трудностью равномерного нара­щивания пленки.

Очистка в аэротенках. Аэробная биологическая очистка больших объемов сточных вод осуществляется в аэротенках - железобетонных аэрируемых сооружениях со свободно плавающим в объеме обрабатываемой воды активными илом, бионаселение которого использует загрязнения сточных вод для своей жизнедеятельности.

Аэротенки можно классифицировать по следующим признакам:

1) по структуре потока - аэротенки-вытеснители, аэротенки-смесители и аэротенки с рассредоточенным впуском сточной жидкости (промежуточного типа);

2) по способу регенерации активного ила - аэротенки с отдельно стоящими или совмещенными регенераторами ила;

3) по нагрузке на активный ил - высоконагружаемые (для неполной очистки), обычные и низконагружаемые (с продленной аэрацией);

4) по числу ступеней - одно-, двух- и многоступенчатые;

5) по режиму ввода сточных вод - проточные, полупроточные, с переменным рабочим уровнем, контактные;

6) по типу аэрации - с пневматической, механической, комбинированной гидродинамической или пневмомеханической;

7) по конструктивным признакам - прямоугольные, круглые, комбинированные, шахтные, фильтротенки, флототенки и др.

Аэротенки используются в чрезвычайно широком диапазоне расходов сточных вод от нескольких сот до миллионов кубометров в сутки.

В аэротенках-смесителях нагрузка на ил и скорость окисления загрязнений практически неизменны по длине сооружения. Они наиболее пригодны для очистки концентрированных (БПКп до 1000 мг/л) производственных сточных вод при значительных колебаниях их расхода и концентрации загрязнений. В аэротенках-вытеснителях на­грузка загрязнений на ил и скорость их окисления изменяются от наибольших значений в начале сооружения до наименьших в его конце. Такие сооружения применяются в том случае, если обеспечивается достаточно легкая адаптация активного ила. В аэротенках с рассредоточенной подачей воды по его длине единичные нагрузки на ил уменьшаются и становятся равномерными. Такие сооружения используются для очистки смесей промышленных и городских сточных вод. Работа аэротенка неразрывно связана с нормальной работой вторичного отстойника, из которого возвратный активный ил непрерывно перекачивается в аэротенк. Вместо вторичного отстойника для отделения ила от воды может быть использован флотатор.

В одноступенчатой схеме без регенератора нельзя интенсифици­ровать процесс очистки стоков. При наличии регенератора в нем заканчиваются процессы окисления и ил приобретает первоначальные свойства. Одноступенчатые схемы без регенерации ила применяют при БПКп < 150 мл/л, с регенерацией - БПКп > 150 мг/л. Двухступенчатая схема используется при высокой исходной концентрации органических загрязнений в воде, а также при наличии в воде веществ, скорость окисления которых резко различается. На первой ступени очистки БПКп сточных вод снижается на 50-70 %.

Для обеспечения нормального хода процесса биологического окисления в аэротенк необходимо непрерывно подавать воздух. Система аэрации представляет собой комплекс сооружений и специального оборудования, обеспечивающего снабжение жидкости кислородом, поддержание ила во взвешенном состоянии и постоянное перемешивание сточной воды с илом. Для большинства типов аэротенков система аэрации обеспечивает одновременное выполнение этих функций. По способу диспергирования воздуха в воде на практике применяются следующие системы аэрации: пневматическая, механиче­ская, пневмомеханическая и струйная. В нашей стране большее распространение получила пневматическая система аэрации.

Современный аэротенк - это гибкое в технологическом отношении сооружение, представляющее собой железобетонный резервуар коридорного типа, оборудованный аэрационной системой. Рабочую глубину аэротенков принимают от 3 до 6 м, отношение ширины коридора к рабочей глубине от 1:1 до 2:1. Для аэротенков и регенераторов количество секций должно быть не менее двух; при производительно­сти до 50 тыс.м3/сут назначается 4-6 секций, при большей производи­тельности 8-10 секций, все они рабочие. Каждая секция состоит из 2-4 коридоров.

Аэротенки-вытеснители - длинные коридорные сооружения, в которых вода и активный ил подаются в начало сооружения, а иловая смесь отводится в конце его. При этом практически не происходит перемешивание поступающей воды с ранее поступившей. Такие аэротенки состоят из нескольких коридоров и могут быть со встроенным регенератором и без него. Длина таких аэротенков достигает 50-150 м и объем от 1,5 до 30 тыс.м3. В большой степени режиму вытеснения соответствуют конструкции аэротенков ячеистого типа. Они представляют собой прямоугольные в плане сооружения, разделенные на ряд отсеков поперечными перегородками. Смесь из первого отсека поступает во второй (снизу), из второго в третий переливается через перегородку (сверху) и т.д. В каждой ячейке устанавливается режим полного смешения, а сумма ряда последовательно расположенных смесителей составляет практически идеальный вытеснитель. При этом предотвращается возвратное движение воды, отсутствует продольное перемешивание.

Сточная вода и ил в аэротенках-смесителях подводится и отводится равномерно вдоль длинных сторон сооружения. Считается, что поступающая смесь очень быстро (в расчетах мгновенно) смешивается с содержимым всего аэротенка. Это позволяет равномерно распределять органические загрязнения и растворенный кислород и обеспечи­вать работу сооружения при постоянных условиях и высоких нагрузках. Ширина коридора аэротенка-смесителя составляет 3-9 м, число коридоров 2-4, длина до 150 м.

По сравнению с аэротенками-вытеснителями в аэротенках-смесителях высокая остаточная концентрация примесей в очищенной воде. Поэтому их целесообразно применять для очистки концентрированных сточных вод на первой ступени, а аэротенки-вытеснители – на второй ступени.

Аэротенки - смесители могут быть сблокированы со вторичными отстойниками и выполнены отдельно от них. Аэротенки-отстйники (аэроакселаторы) компактны, позволяют увеличить рециркуляцию иловой смеси без применения специальных насосных станций, улучшить кислородный режим отстойника и повысить дозу ила до 3-5 г/л, соответственно увеличив окислительную мощность.

Аэротенки промежуточного типа совмещают элементы аэротенков-вытеснителей и аэротенков-смесителей. К ним относятся аэротенки с рассредоточенной подачей воды и сосредоточенной подачей активного ила, а также каскад аэротенков-смесителей. В них создаются условия для более высокой средней концентрации активного ила, чем в аэротенках-вытеснителях, и обеспечивается более высокое качество очистки, чем в аэротенках-смесителях. Выполняются они в виде двух- или четырехкоридорных сооружений. Капитальные затраты на строительство таких аэротенков снижаются не менее чем на 15 % по сравне­нию с рассмотренными выше, при этом сохраняется высокое качество очистки.

Окситенки предназначены для биохимической очистки сточных вод, где вместо воздуха применяется технический кислород. Благодаря этому создаются условия для повышения дозы активного ила (до 6-10 г/л), снижаются энергозатраты на аэрацию, увеличивается окисли­тельная мощность (в 5-10 раз выше, чем у аэротенков), эффективность использования кислорода составляет 90-95 %.

Типовые схемы биохимической очистки включают, как правило, целый ряд установок по усреднению стоков, их механической очистки, собственно сооружения биологической очистки, устройства для приготовления и дозирования реагентов, доочистки сточных вод и обработки осадков. Схемы могут быть одноступенчатыми и многоступенчатыми. По приведенной схеме осуществляется совместная очистка промышленных и бытовых сточных вод. При такой очистке процесс протекает более устойчиво и полно, т.к. бытовые стоки содержат биогенные элементы, а также разбавляют производственные сточные воды. Сточные воды, предварительно очищенные на сооружениях механической очистки, направляются на биологическую очистку в аэротенках с регенераторами. Выделенный во вторичных отстойниках активный ил делится на два потока: циркулирующий с помощью насосной станции перекачивается в регенератор, а затем в аэротенк, избыточный поступает на осветление в первичные отстойники. Очищенная вода хлорируется и направляется в водоем или возвращается в производство. Выделенный осадок обрабатывается в метантенках и обезвоживается на иловых площадках, Выделяющийся при сбраживании газ идет на сжи­гание в котельную.
4.2. Анаэробные методы очистки.

Для обезвреживания осадков сточных вод и предварительной очистки концентрированных сточных вод может использоваться про­цесс анаэробного сбраживания. В зависимости от конечного вида про­дукта различают следующие виды брожения: спиртовое, пропионово-кислое, молочнокислое, метановое и др. Конечными продуктами бро­жения являются спирты, кислоты, ацетон, газы брожения (СO2, Н2, СН4).

Для очистки сточных вод используют метановое брожение. Процесс этот сложен и состоит из многих стадий, в метановом брожении различают две фазы. В первой фазе брожения (кислой) расщепляются сложные органические вещества с образованием органических кислот, а также спиртов, аммиака, ацетона, H2S, CO2, Н2 и др., в результате чего сточные воды подкисляются до рН=5-6. Затем под действием метановых бактерий (щелочная фаза) кислоты разрушаются с образованием СН4 и СO2. Считается, что скорости превращения в обеих фазах одина­ковы. В среднем степень распада органических соединений составляет 40 %.

Процессы метанового брожения осуществляют в метантенках - герметически закрытых резервуарах, оборудованных приспособления­ми для ввода обрабатываемого и отвода сброженного осадка.

Процессы сбраживания ведут в мезофильных (30-35 °С) и термофильных (50-55 °С) условиях. В термофильных условиях разрушение органических соединений происходит более интенсивно. Метантенк представляет собой железобетонный резервуар с коническим днищем, снабженный устройством для улавливания и отвода газа, а также оборудованный подогревателем и мешалкой. Применяются метантенки диаметром до 20 м и полезным объемом до 4000 м3.

Процесс брожения сточных вод ведут в две ступени. При этом часть осадка из второго метантенка возвращается в первый, где обеспечивается хорошее перемешивание. При сбраживании выделяются газы со средним содержанием СН4 - 63-65 %, СO2 - 32-34 %. Теплотворная способность газа 23 МДж/кг, он сжигается в топках паровых котлов. Полученный при этом пар используется для нагрева осадков в метантенках или для других целей.

Список литературы



  1. Техника защиты окружающей среды /Родионов А.И., Клушин В.Н., Торочешников Н.С. Учебное пособие для вузов. – М.: Химия, 1989.




  1. КомароваЛ.Ф., Кормина Л.А. Инженерные методы защиты окружающей среды. Техника защиты атмосферы и гидросферы от промышленных загрязнений: Учебное пособие. – Барнаул, 2000.




Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации