Ответы по химии - файл n1.doc

приобрести
Ответы по химии
скачать (255.5 kb.)
Доступные файлы (1):
n1.doc256kb.22.08.2012 19:24скачать

n1.doc

  1   2
Вопрос 1

Строение атома.

В результате экспериментов, посвященных выяснению строения атома, было установлено, что атомы состоят из положительно заряженных ядер и электронной оболочки. Заряд ядра атома определяется находящимися в нем положительно заряженными частицами-протонами. Например, заряд ядра атома фтора равен +9. Из этого следует, что в состав ядра атома фтора входит девять протонов. Почему числом протонов в ядре отмечаются атомы разных элементов? По сравнению с протонами и нейтронами электроны имеют несравнимо меньшую массу, поэтому массу всего атома считают, принимая во внимание находящиеся в ядре нейтроны и протоны. При расчете числа протонов и нейтронов, находящихся в ядре протонов, необходимо учесть, что масса протона приблизительно равна массе нейтрона. Таким образом, масса атома считается равной суммарной массе находящихся в ядре протонов и нейтронов. Так если в состав атома кремния входит 14 нейтронов и 14 протонов то атомная масса кремния будет равна 28.Если известны заряд атома, то можно рассчитать, сколько нейтронов находится в ядре. Например, заряд ядра атома бора равен +5, а относительная атомная масса 11. Это означает, что в ядре находится, пять протонов и 11-5=6 нейтронов. Число электронов, составляющих электронную оболочку атома, равно числу протонов, входящих в состав атомного ядра (атом электронейтрален). Это следует из того, что заряд электрона численно равен заряду протона. Таким образом, атомный номер элемента показывает число электронов, составляющих электронную оболочку атома. Например, атомный номер кислорода равен 8. Электронную оболочку атома кислорода составляют восемь электронов. Необходимо помнить, что электроны располагаются в атоме не как угодно, а по слоям. Зная номер периода, можно определить число электронных слоев атома, на которых находятся электроны. Так, если рубидий находится в пятом периоде, то электроны этого элемента располагаются на пяти электронных слоях.

Модели атома(Морозова, Резерфорда, Бора) В 1900 г. М. Планк (Германия) высказал предположение, что вещества поглощают и испускают энергию дис­кретными порциями, названными им квантами. Энергия кванта Е пропорциональна частоте излучения (колебания) v:где h - постоянная Планка (6, 626*10"-34 Дж-с.); v = с /Лямбда, с — скорость света; X — длина волны.

В 1910 г. В лаборатории Э. Резерфорда (Англия) в опытах по бомбардировке металлической фольги ?-частицами было установлено, что некоторые ?-частицы рассеиваются фольгой. Отсюда Резерфорд заключил, что в центре атома существует положительно заряженное ядро малого размера, окруженное электронами. Наличие положительного ядра в атоме получило подтверждение в дальнейших экспериментах. Радиусы ядер лежат в пределах 10-14—10-15 м, т.е. в 104—105 раз меньше размера атома. Резерфорд предсказал существование протона и его массу, которая в 1800 раз превышает массу электрона. В этом же 1910 г Резерфорд предложил ядерную планетарную модель атома, состоящего из тяжелого ядра, вокруг которого двигаются по орбиталям электроны, подобно планетам солнечной системы. Однако, как показывает теория электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро.

В 1910 г. датский ученый Н.Бор, используя модель Резерфорда и теорию Планка, предложил модель строения атома водорода, соглас­но которой электроны двигаются вокруг ядра не по любым, а лишь по разрешенным орбитам, на которых электрон обладает определенны­ми энергиями. При переходе электрона с одной орбиты на другую атом поглощает или испускает энергию в виде квантов. Каждая орби­та имеет номер п (1, 2, 3, 4, ...), который назвали главным квантовым числом.

Вопрос 2. Постулаты Бора, радиус, энергия, уравнение Бора.

Бор вычислил радиусы орбит. Радиус первой орбиты был 5,29-10"13 м, радиус других орбит был равен: rn = n2(5,29-10-13).Энергия электрона (эВ) зависела от значения главного квантового числа п:

En=-13,6(1/n2).Отрицательный знак энергии означает устойчивость системы, ко­торая тем более устойчива, чем ниже (чем более отрицательна) ее энергия. Атом водорода обладает минимальной энергией, когда элек­трон находится на первой орбите (п=1). Такое состояние называется основным. При переходе электрона на более высокие орбиты атом становится возбужденным. Такое состояние атома неустойчиво. При переходе с верхней орбиты на нижнюю атом излучает квант света, что экспериментально обнаруживается в виде серий атомного спектра. Значения п и т в уравнении соответству­ют значениям главных квантовых чисел, с которых электрон перехо­дит (т) и на которые электрон пе­реходит (п).Теория Бора позволила рассчитать энергию электронов, значения квантов энергии, испускаемых при переходе электрона с одного уров­ня на другой. Теория Бора получила экспе­риментальное подтверждение, но она не смогла объяснить пове­дение электрона в магнитном поле и все атомные спектральные линии. Теория Бора оказалась не­пригодной для многоэлектронных атомов. Возникла необходимость в новой модели атома, основанной на открытиях в микромире.

Уравнение Бора E=h*v где h- постоянная Планка (6.626*10-34) v=с/?, с –скорость света ?-длина волны.

Вопрос 3. Квантово-механические представления об атоме.

В 1905г. А.Эйнштейн предсказал, что любое излучение представляет собой поток квантов энергии, называемых фотонами. Из теории Эйнштейна следует, что свет имеет двойственную (корпускулярно-волновую) природу. В 1924 г. Луи де Бройль (Франция) выдвинул предположение, что электрон также характеризуется корпускулярно-волновым дуализмом. Позднее это было подтверждено на опытах по дифракции на кристаллах. Де Бройль предложил уравнение, связывающее длину волны ? электрона или любой другой частицы с массой m и скоростью v, ?=h/(m*v). Волны частиц материи де Бойль назвал материальными волнами, Они свойственны всем частицам или телам, но как следует из уравнения

?=h/(m*v) для макротел длина волны настолько мала, что в настоящее время не может быть обнаружена.

Вопрос 4. Волновые и корпускулярные свойства микрочастиц, электрона.

Французский ученый Луи де Бройль (1882—1987) осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами.

Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики — энергия E и импульс p, а с другой стороны — волновые характеристики — частота и длина волны.

Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабриканту. Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других, возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов в десятки миллионов раз более интенсивных.

Современная трактовка корпускулярно-волнового дуализма может быть выражена словами физика В. А. Фока (1898—1974): «Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна — частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно»

Свойства волновой функции

Отметим свойства волновой функции ? в частном случае трёхмерного пространства в декартовых координатах. В этом случае ? зависит от трёх переменных (X,Y,Z) и имеет следующие свойства :

1. Импульс частицы в каждом из направлений (X,Y,Z) пропорционален первой производной волновой функции, делённой на саму волновую функцию, а именно

где — импулсы,.

2. Кинетическая энергия частицы пропорциональна второй производной, или кривизне волновой функции, деленной на саму волновую функцию.



3. Абсолютная величина квадрата функции (то есть сумма возведённых отдельно в квадрат мнимой и действительной частей функции ) равна вероятности нахождения частицы в точке с координатами . Это свойство противоречит законам классической механики, в которой положение частиц в данный момент времени фиксировано. Одно из мнимых ограничений квантовой механики состоит в том, что она с достоверностью определяет лишь время (или, точнее говоря, вероятность) нахождения частицы в данном положении . В квазиклассическом пределе волновые функции локализуются в дельта-функции, а центры их сосредоточения движутся по классическим траекториям согласно уравнениям Ньютона.

Вопрос 5. Принцип неопределенности Гейзенберга. Волновая функция. Волновое уравнение Шредингера.

В 1927 г. В. Гейзенберг (Германия) постулировал принцип неопределенности, согласно которому положение и импульс движения субатомной частицы (микрочастицы) принципиально невозможно определить в любой момент времени можно определить только лишь одно из этих свойств. Волновая функция есть трехмерная амплитуда ?(x,y,z)= a sin 2? l/?.

Физический смысл имеет квадрат волновой функции |?|2, что свидетельствует о нахождении в данной точке.

Э. Шредингер (Австралия) в 1926 г. Вывел математическое описание поведение электрона в атоме.



Вопрос 6. Квантовые числа и их физический смысл.

Квантовые числа. Для характеристики поведения электрона в атоме введены квантовые числа: главное, орбитальное, магнитное и спиновое. Главное квантовое число п определяет энергию и раз­меры электронных орбиталей. Главное квантовое число принимает значения I, 2, 3, 4, 5,... и характеризует оболочку или энергетический уровень. Чем больше n, тем выше энергия. Оболочки (уровни) имеют буквенные обозначения: К (п = 1), L (п = 2), М(п = 3), N(n = 4), Q (п = = 5), переходы электронов с одной оболочки (уровня) на другую со­провождаются выделением квантов энергии, которые могут про­явиться в виде линий спектров Орбитальное квантовое число / определяет форму атомной орбитали. Электронные оболочки расщеплены на подоболочки, поэтому орбитальное квантовое число также характеризует энергетические подуровни в электронной оболочке атома. Орбитальные квантовые числа принимают целочисленные значе­ния от 0 до (п — 1). Подоболочки также обозначаются буквами: Подоболочка (подуровень) s p d f Орбитальное квантовое число,l 0 1 2 3Электроны с орбитальным квантовым числом 0, называются s-электронами. Орбитали и соответственно электронные облака имеют сферическую форму. Электроны с орбитальным квантовым числом 1 называются р-электронами. Обитали и соответственно электронные облака имеют форму, напоминающую гантель. Электроны с орбитальным квантовым числом 2 называют d-электронами. Орбитали имеют более сложную форму, чем р-орбитали Наконец, электроны с орбитальным квантовым числом 3 получи­ли название f-электронов. Форма их орбиталей еще сложнее, чем форма d-орбиталей. В одной и той же оболочке (уровне) энергия подоболочек (подуровней) возрастает в ряду: В первой оболочке (п = 1) может быть одна (s-), во второй (n = 2) — две (s-, р-), в третьей (п = 3) — три (s-, p-, d-),в четвертой (п= 4) — четыре (s-, p-, d-, f-)-подоболочки. Магнитное квантовое число m характеризует ориента­цию, обитали в пространстве. В отсутствие внешнего
магнитного поля все обитали одного подуровня (подоболочки) имеют одинаковое значение энергии. Под воздействием внешнего маг­нитного поля происходит расщепление энергии подоболочек. Магнитное квантовое число принимает целочисленные значения от -l до +l, включая ноль. Например, для l= 3, магнитные квантовые числа имеют значения -3, -2, -1, 0, +1, +2, +3, т. е. в данной подоболочки (f-подоболочки) существует семь орбиталей. Соответственно в подоболочке s (l = 0) имеется одна орбиталь (т, -= 0), в подоболочке p (l = 1) — три обитали (т, = -1,0, +1), в подобо­лочке d(l = 2) пять орбиталей (m, = -2, -1, 0, +1, +2)


Вопрос 7.Атомный спектр водорода, связь с уравнением Н.Бора.

При нагреве вещество испускает лучи (излучение). Если излучение имеет одну длину волны, то оно называется монохроматическим. В большинстве же случаев излучение характеризуется несколькими длинами волн. При разложении излучения на монохроматические компоненты получают спектр излучения, где отдельные его составляющие выражаются спектральными линиями. Спектры, получающиеся при излучении свободными или слабо связанными атомами, называются атомными спектрами. Длины волн, соответствующие атомному спектру водорода, определяются уравнением Бальмера 1/?=R(1/n2-1/m2) где ? длина волны, R постоянная Ридберга (109678 см-1), n и m целые числа(n=1 для серии Лаймана, n=2 для серии Бальмера, n= для серии Пашена, m=2,3,4 дя серии Лаймана, M= 3,4,5 для серии Бальмера, m=4,5,6 для серии Пашена).

Вопрос 8. s p d f элементы

К s элементам относятся элементы 1А и 2А групп, у которых предыдущий слой все заполнены, а на внешнем слое 1 или 2 электрона. P элементы это элементы главных подгрупп с 3А-8А группы (в основном не металлы). К d элементам относятся металлы 4-7 груп главной А подгруппы и 1-2 побочной Б подгруппы. Побочная подгруппа это подгруппа элементов в которые не входят элементы малых периодов обозначается «Б» Например: 1 группы (1Б) т.е медь, серебро, золото. Также к d элементам относят металл второй группы (2Б) это цинк, кадмий, ртуть. К f элементам относятся 14 элементов под названием лантаноиды. от церия Се до лютеция Lu.

Вопрос 9 Периодическая система Д. И. Менделеева и электронная структура атомов.

В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого сле­дующая: свойство элементов, а также формы и свойства их соеди­нений находятся в периодической зависимости от заряда ядра их атомов. Наглядным выражением закона служит периодическая сис­тема Д. И. Менделеева. К настоящему времени предложено большое число вариантов системы. У каждого последую­щего элемента периодической системы на один электрон больше, чем у предыдущего. Первый период состоит из двух элементов: водорода и ге­лия. Атомом гелия заканчивается формирование K-оболочки атома, обозначим ее [Не]. Электрон, который последним заполняет орбитали атома, называется формирующим, и элемент относится к группе, называемой по формирующему электрону. В данном случае оба эле­мента имеют формирующие s-электроны и соответственно называют­ся s-элементами. У элементов второго периода формируется L-оболочка, заполняются s- и p-подоболочки. Формирующими электронами у первых двух элементов являются s-электроны, поэтому Li и Be отно­сятся к s-элементам. Остальные шесть элементов периода входят в число р-элементов, так как формирование их орбиталей заканчи вается p-электроном. У элемента Ne полностью заполнена 2р-подоболочка, обозначим его электронную конфигурацию как [Ne].Третий период начинается с натрия, электронная конфигу­рация которого 1s22s22p63s1 и заканчивается аргоном с электронной конфигурацией 1s22s22p63s2 3p6[Аr]. Хотя в третьем уровне (оболочка М) имеется подоболочка 3d которая остается незаполненной, в чет­вертом периоде начинает формироваться следующая оболочка N (n=4) и период начинается с s-элемента калия, [Аr]4s1. Это обу­словлено тем, что энергия подуровня 4s несколько ниже, чем энергия подуровня 3d (см. рис. 1.5). В соответствие с правилом Клечковского n+1 у 4s(4) ниже, чем n+1 у 3d(5). После заполнения 4s-подоболочки заполняется 3d-подоболочка. Элементы от Sc [Ar] 3d1 4s2 до Zn [Ar] 3d |04s2, имеющие формирующие d-электроны, относятся к d-элементам. У хрома на 4s-подоболочке остается один электрон, а на 3d-подоболочке вместо четырех оказывается пять d-электронов. Такое явление получило название «провала» электрона с s- на d-подоболочку. Это обусловлено более низкой энергией конфигурации 3d54s] по сравнению с конфигу­рацией 3d44s2. «Провал» электронов наблюдается и у других атомов, например у атомов Си, Nb, Mo, Pt, Pd Четвертый период завершается формированием подоболочки 4р у криптона [Аг] 3d 104s24p6 или [Кг]. Всего в четвертом периоде 18 элементов.Пятый период аналогичен четвертому периоду. Он начина­ется с s-элемента рубидия [Кг] 5s1 и заканчивается p-элементом ксеноном [Кr] 4d105s25p6 или [Хе] и включает в себя десять 4d-элементов от иттрия до кадмия. Всего в пятом периоде 18 элементов.В шестом периоде, как и в пятом, после заполнения s-подо-болочки начинается формирование d-подоболочки предвнешнего уровня у лантана. Однако, у следующего элемента энергетически выгоднее форми­рование 4f-подоболочки по сравнению с 5d-подоболочкой. Поэтому после лантана следует 14 лантаноидов с формирующими f-электронами, т.е.f-элементов от церия Се [Хе] 4f25d°6s2 до лютеция Lu [Хе] 4f145dl6s2. Затем продолжается заполнение оставшихся орбиталей в 5d-подоболочке и 6p-подоболочке. Период завершает радон [Хе] 4f145d°6s26p6 или [Rn]. Таким образом период имеет 32 элемента: два s-элемента, шесть p-элементов, десять d-элементов и четырнадцать/элементов.Седьмой период начинается и продолжается аналогично шестому периоду, однако формирование его не завершено. Он также имеет вставную декаду из d-элементов и четырнадцать 5/элементов (актиноидов). К настоящему времени известно 110 элементов, в том числе семь 6d-элементов.

Вопрос 10. Периодичность изменения свойств элементов, радиусов, потенциалов ионизации, восстановительная способность окислителей, сродство к электрону, электроотрицательность.

Вопрос 11. Ковалентная связь Механизм образования по Льюису.

Cвязь между атомами возникает при перекрывании их атомных орбиталей с образованием молекулярных орбиталей (МО). Различают два механизма образования ковалентной связи.

ОБМЕННЫЙ МЕХАНИЗМ - в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет в общее пользование по одному электрону:
ДOНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ - образование связи происходит за счет пары электронов атома-донора и вакантной орбитали атома-акцептора: \\


Характеристики ковалентной связи не зависят от механизма ее образования.


Вопрос 12. Свойства ковалентной связи: насыщаемость, направленность, гибридизация, кратность.

Особенностями ковалентной связи являются ее направленность и насыщаемость. Так как атомные орбитали пространственно ориентированы, то перекрывание электронных облаков происходит по определенным направлениям, что обусловливает направленность ковалентной связи. Количественно направленность выражается в виде валентных углов между направлениями химической связи в молекулах и твердых телах. Насыщаемость ковалентной связи вызывается ограничением числа электронов, находящихся на внешней оболочках, которые могут участвовать в образовании ковалентной связи.

Вопрос 13. Параметры химической связи: энергия, длина, валентный угол.

Количество энергии, выделяющееся при образовании химической связи, называется энергией химической связи Eсв. Она имеет единицу измерения кДж/моль. Для многоатомных соединений с однотипными связями за энергию связи принимается среднее ее значение, рассчитанное делением энергии образования соединения из атомов на число связей. Важной характеристикой химической связи является ее длина lсв, равная расстоянию между ядрами в соединении. Она зависит от размеров электронных оболочек и степени их перекрывания. Имеется определенная корреляция между длиной и энергией связи: с уменьшением длины связи обычно расчет энергии связи и соответственно устойчивость молекул. Количественно направленность выражается в виде валентных углов между направлениями химической связи в молекулах и твердых телах.

Вопрос 14. Дипольный момент связи. Дипольный момент молекулы.

Вследствие смещения электронной пары к одному из ядер повышается плотность отрицательного заряда у данного атома и соответственно атом получает заряд, называемый эффективным зарядом атома -?. У второго атома повышается плотность положительного заряда + ?. В следствие этого возникает диполь, представляющий собой электрически нейтральную систему с двумя одинаковыми по величине положительным и отрицательным зарядами, находящимися на определенном расстоянии (длина диполя) lд друг от друга. Мерой полярности связи служит электрический момент диполя ?св, равный произведению эффективного заряда ? на длину диполя lд ?св= ?* lд Электрический момент диполя имеет единицу измерения кулон на метр (Кл*м). В качестве единицы измерения используют также внесистемную единицу измерения Дебай D, равную 3,3*10-30Кл*м.

Вопрос 15. Неполярная связь, полярная связь.

Полярность ковалентной связи. Если ковалентная связь образо­вана одинаковыми атомами, например Н—Н, О=О, Сl—Сl, N=N, то обобществленные электроны равномерно распределены между ними. Такая связь называется ковалентной неполярной связью . Если же один из атомов сильнее притягивает электроны, то электронная пара смещается в сторону этого атома. В этом случае возникает полярная ковалентная связь. Критерием спо­собности атома притягивать электрон может служить электроотрица­тельность. Чем выше ЭО у атома, тем более вероятно смещение элек­тронной пары в сторону ядра данного атома. Поэтому разность электроотрицательности атомов характеризует полярность связи.

Ковалентная неполярная связь.

При взаимодействии атомов с одинаковой электроотрицательностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H2, F2, Cl2, O2, N2. Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодействием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и аммония.

Вопрос 16. ? и ? связи.

Связь, образованная перекрыванием АО по линии, соединяющей ядра взаимодействующих атомов, называется ? связью. Сигма-связь может возникать при перекрывании s орбиталей, а также d-s и d-p и f-f и f с другими орбиталями. Сигма-связь обычно охватывает два атома и не простирается за их пределы, поэтому является локализованной двухцентровой связью. Связь, образованная перекрыванием АО по обе стороны линии, соединяющей ядра атомов (боковые перекрывания), называется ? связью. Пи- связь может образовываться при перекрывании p-p; p-d; d-d; f-p;f-d;f-f орбиталей.
Вопрос 17. МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ

Рассмотренный метод ВС обладает многими достоинствами. Он относительно прост и нагляден и позволяет предсказывать свойства многих молекул, таких как пространственная конфигурация, поляр­ность, энергия и длина связей и др. Однако свойства некоторых мо­лекул и ионов метод ВС объяснить не в состоянии. В методе ВС по­стулируется участие в образовании связей пары электронов, в то же время существуют свободные радикалы, молекулярные ионы, такие как Н2, Не2, О2, которые имеют неспаренные электроны. О наличии неспаренных электронов можно судить по магнитным свойствам ве­ществ. Вещества, имеющие неспаренные электроны, парамагнитные, т.е. втягиваются в магнитное поле. Вещества, не имеющие неспарен­ных электронов, диамагнитные, т.е. выталкиваются из магнитного поля. Согласно методу ВС молекула кислорода не имеет неспарен­ных электронов, между тем кислород парамагнитен.

Более общим является метод молекулярных орбиталей (МО), по­зволяющий объяснить ряд явлений и фактов непонятных с точки зре­ния метода ВС.Основные понятия. Согласно методу МО электроны в молеку-. лах распределены по молекулярным орбиталям, которые подобно ( атомным орбиталям (АО) характеризуются определенной энергией (энергетическим уровнем) и формой. В отличие от АО молекулярные орбитали охватывают не один атом, а всю молекулу, т.е. являются двух- или многоцентровыми. Если в методе ВС атомы молекул со­храняют определенную индивидуальность, то в методе МО молекула рассматривается как единая система.

Наиболее широко в методе МО используется линейная комбина­ция атомных орбиталей (ЛКАО). При этом соблюдается несколько правил.

1. Число МО равно общему числу АО, из которых комбини­руются МО.Энергия одних МО оказывается выше, других — ниже энергии исходных АО. Средняя энергия МО, полученных из набора АО, при­близительно совпадает со средней энергией этих АО.

3. Электроны заполняют МО, как и АО, в порядке возрастания энер­гии, при этом соблюдается принцип запрета Паули и правило Гунда.

4. Наиболее эффективно комбинируются АО с теми АО, которые характеризуются сопоставимыми энергиями и соответствующей симметрией.5. Как и в методе ВС, прочность связи в методе МО пропор­циональна степени перекрывания атомных орбиталей.

Вопрос 18. Метод валентных связей.

Метод валентных связей впервые был использован в 1927 г. Немецким учеными В. Гейтлером и Ф. Лондоном, которые провели квантово-механический расчет атома водорода. В методе ВС предполагается, что атомы в молекуле сохраняют свою индивидуальность. Электронная пара заселяет орбиталь то одного, то другого атома. Гейтлер и Лондон показали, что при сближении двух атомов водорода с антипаралельными спинами происходит уменьшение энергии системы, что обусловлено увеличением электронной плотности в пространстве между ядрами взаимодействующих атомов. При сближении атомов с параллельными спинами энергия системы возрастает и молекула в этом случае не образуется. Метод ВС базируется на следующих основных положениях: 1) химическая связь между двумя атомами возникает как результат перекрывания АО с образованием электронных пар. 2) атомы, вступающие в химическую связь, обмениваются между собой электронами, которые образуют связывающие пары. Энергия обмена электронами между атомами вносит основной вклад в энергию химической связи. Дополнительный вклад дают кулоновские силы взаимодействия частиц. 3) в соответствии с принципом Паули химическая связь образуется лишь при взаимодействии электронов с антипаралельными спинами. 4) характеристики химической связи определяются типом перекрывания АО.

Вопрос 19. Ионная связь.

Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами. Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na2SO4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).­­­­­­­­­

Вопрос 20. Разновидность ковалентных связей и Водородная связь.

Ковалентная неполярная связь.При взаимодействии атомов с одинаковой электроотрица-тельностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H2, F2, Cl2, O2, N2. Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодей-ствием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.

Водородная связь.

Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H2­O, NH3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H2O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H2O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их «упаковки».

Вопрос 21. Донорно-акцепторная связь. Комплексообразователь, его заряд, заряд комплексного иона. Электролитическая диссоциация. Комплексные соединения.

Если одна из двух молекул имеет атом со свободными орбиталями, а другая-атом с парой неподеленных электронов, то между ними происходит донорно-акцепторное взаимодействие, которое приводит к образованию ковалентной связи. Сложные соединения, у которых имеются ковалентные связи, образованные по донорно-акцепторному механизму, получили название комплексных или координационных соединений. Внутренняя сфера, называется также комплексом, включает центральный ион или атом, вокруг которого координируются отрицательно заряженные ионы или нейтральные молекулы. При записи комплексного соединения внутреннюю сферу или комплекс заключают в скобки, например [Zn(CN)4]2-. Центральный ион или атом называется комплексообразователем, а координируемые им ионы или молекулы-лигандами. Число монодентных лигандов, координируемых комплексообразователем, называют координационным числом. В зависимости от заряда различают анионные комплексы, например [PF6]-, катионные комплексы, например [Cu(NH3)4]2+, и нейтральные комплексы, например [Ni(CO)4]. Нейтральные комплексы не имеют внешней сферы. Заряд комплекса численно равен алгебраической сумме заряда центрального иона и зарядов лигандов. Например, заряд Z комплекса [Zn(CN)4]2- равен Z=ZZn2++4ZCN-=2+4(-1)=-2. Комплексообразователями служат атомы или ионы, имеющие вакантные орбитали. Способность к комплексообразованию возрастает с увеличением заряда иона и уменьшением его размера. К числу лигандов относится простые анионы, например F-, Cl-, сложные анионы, например CN-, NCS-,молекулы, например H2O. В отличие от от того, какое число вакантных орбиталей у комплексообразователя занимают лиганды, они подразделяются на монодентатные (одна орбиталь), например NH3 бидентантные, например N2H4, и полидентантные, например этилендиаминтетрауксусная кислота (ЕДТА).

Вопрос 22. Термодинамические параметры. T,P,V. Внутренняя энергия.

Внутренняя энергия, теплота и работа. При проведении хим.реакции изм-ся внутр.энергия системы U.Внутр.энергия вкл. В себя все виды энергии системы (энергию движения и взаимодействия молекул, атомов, ядер и других частиц, внутриядерную и другие виды энергии), кроме кинетической энергии движения системы, как целого, и потенциальной энергии ее положе­ния. Как и любая характеристическая функция, внутренняя энергия зависит от состояния системы. Внутреннюю энергию нельзя изме­рить. Она представляет собой способность системы к совершению ра­боты или передаче теплоты. Однако, можно определить ее изменение dU при переходе из одного состояния в другое:dU=U2-U1, где U2 и U1 — внутренняя энергия системы в конечном и начальном состояниях. Значение dU положительно (dU > 0), если внутренняя энергия системы возрастает.Изменение внутренней энергии можно измерить с помощью ра­боты и теплоты, так как система может обмениваться с окружающей средой веществом или энергией в форме теплоты Q и работы W.Теплота Q представляет собой количественную меру хаотическо­го движения частиц данной системы или тела. Энергия более нагре­того тела в форме теплоты передается менее нагретому телу. При этом не происходит переноса вещества от одной системы к другой или от одного тела к другому.Работа W является количественной мерой направленного движе­ния частиц, мерой энергии, передаваемой от одной системы к другой за счет перемещения вещества от одной системы к другой под дейст­вием тех или иных сил, например гравитационных.Теплота и работа измеряются в джоулях (Дж), килоджоулях (кДж) и мегаджоулях (МДж) и т.д. Положительной (W> 0) считается работа, совершаемая системой против действия внешних сил, и теп­лота (Q > 0), подводимая к системе. В отличие от внутренней энер­гии, работа и теплота зависят от способа проведения процесса, т.е. они являются функциями пути.

Вопрос 23. Первый закон термодинамики в применении к изобарному, изохорному, изотермическому, адиабатическому процессам.

Количественное соотношение между изменением внутренней энергии, теплотой и работой устанавливает первый закон тер­модинамики:Q = dU+W.

Выражение означает, что теплота, подведенная к системе, расходуется на приращение внутренней энергии системы и на работу системы над окружающей средой.

Первый закон термодинамики является формой выражения законa сохранения энергии. Согласно этому закону, энергия не может ни создаваться, ни исчезать, но может превращаться из одной формы в другую. Его справедливость доказана многовековым опытом человечества. Итак, любая система характеризуется внутренней энергией, мера-ми измерения которой служат теплота и работа. Приращение внут­ренней энергии системы в любом процессе равно сумме теплоты, подведенной к системе, и работы, которую совершают внешние силы над системой.

Вопрос 24. Стандартная энтальпия образования вещества. Теплоемкость изобарная, изохорная, удельная.

Энтальпия. Характеристическая функция U+pV=HНазывается энтальпией системы. Это одна из термодинамических функций, характеризующих систему, находящуюся при посто­янном давлении. Qp = H2 —H1,= dH.Как видно из уравнения, в случае изобарического процесса(p=const), теплота, подведенная к системе, равна изменению энтальпии системы. Энтальпия зависит от кол-ва в-ва,поэтому ее изменение (dH),обычно относят к 1 моль и выражают в кДж\моль.Т.о.,изменение энергии системы при изобарических процессах,харак-ют через энтальпии этих процессов dH

Вопрос 25. Термохимические законы Гесса.

Закон Гесса. В 1841 году российский ученый Г.И.Гесс открыл за­кон, получивший его имя. Тепловой эффект реакции зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции, т.е. от числа и характера промежуточ­ных стадий. Закон Гесса лежит в основе термохимических расчетов. Однако рамки его действия ограничены изобарно-изотермическими и изохорно-изотермическими процессами. Проиллюстрируем закон Гесса на примере реакции сгорания метана:СН4 + 2О2 = СО2 + 2Н2О (г),dH = - 802,34 кДж.Эту же реакцию можно провести через стадию образованияСО:СН4 + 3/2О2 = СО + 2Н2О (г), dH°2 = - 519,33 кДж, СО + 1/2O2 = СО2,dH°з = - 283,01 кДж,dH=dH1 + dH°3 = (- 519,33) кДж + (- 283,01) кДж = - 802,34 кДж. тепловой эффект реакции, протекающей по двум путям, одинаков. Так как энтальпия зависит от со. стояния системы, но не зависит от пути процесса, то, если при проведе­нии процесса система вернулась в ис­ходное состояние, суммарное изме­нение энтропии системы равно нулю (dH = 0). Процессы, в которых сис­тема после последовательных пре­вращений возвращается в исходное состояние, называются круговыми процессами или циклами. Метод циклов широко используется в термодинамических расчетах. Рассмотрим использование метода циклов на примере реакции взаимодействия метана с водяным паром. Исходная система:СН4 + 2 Н2О (г), р = const, Т = 298 К: Сh4 + 2Н2О (г) = СО + ЗН2 + Н2О (г), dH1 ;СО + Н2О (г) = СО2 + Н2, dH2; СО2 + 4Н2 = СН4 + 2Н2О (г), dH3.В результате этих трех реакций система вернулась в исходное со стояние, поэтому: Если известны любые два значения dH данного уравнения, можно определить третье. Например, известно dH°2 = -41,2 кДж/моль, dH°3 = -164,9 кДж/моль, тогда dH1=-dH°2 - dH°3 = + 41,2 + 164,9= = +206,1 кДж/моль. Итак, закон Гесса показывает, что каким бы путем не протекала реакция, ее тепловой эффект будет одинаков, если при этом не меня­ется конечное и исходное состояния системы. Энтальпия химических реакций. Закон Гесса позволяет рассчитать энтальпию химических реакций. Согласно следствию из закона Гесса, энтальпия химической реакции равна сумме энтальпии образования продуктов реакций за вычетом суммы энтальпий образова­ния веществ исходных с учетом стехиометрических коэффициентов Стандартный тепловой эффект реакции получения водорода из природного газа:

СН4 + 2Н2О(г) = СО2 + 4Н2 определяется по уравнению:

∆H0298 =∆Hco2 298 +4∆HH2 - ∆HCH4 -2∆HH2O

Подставляя значения величин энтальпий образования из приложения 2 (в кДж/моль), получаем dH°298 = -1-393,51+4-0-1(-74,85)-2(241,82) = +164,98 кДж/моль. Как видно, данная реакция является эндотермической.

Вопрос 26Энтропия химической реакции. Мерой неупорядоченности состояния системы служит термодинамическая функция, получившая название энтропии.

Состояние системы можно характеризовать микросостояниями составляющих ее частиц, т.е. их мгновенными координатами и ско­ростями различных видов движения в различных направлениях. Чис­ло микросостояний системы называется термодинамической вероятностью системы W. Так как число частиц в системе огромно (например, в 1 моль имеется 6,02-1023 частиц), то термодинамическая вероятность системы выражается огромными числами. Поэтому пользуются логарифмом термодинамической вероятности In W. Величина, равная RlnW = S, называется энтропией системы. отнесенной к одному молю вещества. Как и молярная постоянная R, энтропия имеет единицу измерения Дж/(моль-К). Энтропия

вещества в стандартном состоянии называется стандартной энтропией S0. В справочниках обычно приводится стандартная энтропия S{0}<298> при 298,15 К

Вопрос 27Второй закон термодинамики для изолированных систем.

Второй закон термодинамики имеет несколько формулировок. Для систем, которые не обмениваются с окружающей средой ни энергией, ни веществом (изолированные системы), второй закон термодинамики имеет следующую формулировку: в изолированных системах самопроизвольно идут только такие процессы, которые сопровождаются возрастанием энтропии:. dS> 0. Второй закон термодинамики имеет статистический характер, т.е. справедлив лишь для систем, состоящих из очень большого числа частиц. Системы, в которых протекают химические реакции, не бывают изолированными, так как они сопровождаются изменением внутрен­ней энергии системы (тепловым эффектом реакции), т.е. система об­менивается энергией с окружающей средой. Химические реакции мо­гут протекать самопроизвольно и без возрастания энтропии, но при этом увеличивается энтропия окружающей среды. Например, хими­ческие реакции в организме любого существа сопровождаются уменьшением энтропии (происходит упорядочение системы). Однако организм получает энергию из окружающей среды (пища, воздух). Получение пищевых продуктов сопровождается возрастанием энтро­пии окружающей среды, т.е. жизнь каждого существа связана с воз­растанием энтропии. Однако, если в системе протекает химическая реакция, то система обменивается энергией с окружающей средой, т.е. не является изоли­рованной. Химические реакции обычно сопровождаются изменением. Как энтропии, так и энтальпии.

Вопрос 28. Самопроизвольное протекание процессов.

Многие процессы протекают без подвода энергии от внешнего источника. Такие процессы называют самопроизвольными. Примерами самопроизвольных процессов могут служить падение камня с высоты, течение воды под уклон, переход теплоты в помещение от более нагретого тела к менее нагретому. Многие химические процессы также протекают самопроизвольно например образование ржавчины на металле, растворение соли в воде. Одной из движущих сил химической реакции является энтальпия системы, т.е. экзотермический тепловой эффект реакции. Большинство экзотермических реакции протекают самопроизвольно. Кроме уменьшения энтальпии есть другая движущая сила самопроизвольного процесса. Такой силой является стремление частиц к хаотичному движению, а системы- к переходу от более упорядоченного состояния в менее упорядоченное. Например если два сосуда с индивидуальными жидкостями соединить друг с другом , через отверстие например, то через некоторое время произойдет смешение жидкостей система из более упорядоченного состояния перейдет в менее упорядоченное.

Вопрос 29. 3 закон термодинамики. Взаимосвязь законов термодинамики.

Максимальная работаWmaxv, которую может совершить система при равновесном проведении процесса в изохорно-изотермических условиях, равна изменению энергии Гельмгольца системы /\F. Wmaxv= -/\FT. Взаимосвязь законов /\Н=/\U+p/\V /\G=/\H-T/\S /\F=/\U-T/\S /\U=/\F+T/\S

Вопрос 36. Концентрация. Скорость прямой и обратной реакции по закону действия масс (гомогенные, гетерогенные системы).

Скорость химической реакции равна изменению количества вещества в единицу времени в единице реакционного пространства. Гомогенной называется реакция протекающая в однородной среде. Гетерогенной называется реакция, протекающая на границе раздела фаз, например твердой и жидкой, твердой и газообразной. Vпрям= -dc\d? Vобр= dc\d?. Vпрям=Кпр[А]а*[В]в Vобр= Кобр[D]d*[L]l. Скорость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ равных в коэффициентах перед формулами. Концентрация-это количество вещества в единице массы или объема.

Вопрос 37. Влияние температуры на скорость реакции, правило Вант-Гоффа, уравнение Аррениуса, теория столкновений Алексеева.

Повышение температуры ускоряет большинство реакций. Согласно правилу Вант-Гоффа при увеличении температуры на 10 К скорость многих реакций увеличивается в 2-4 раза V2 = V1T/ 10

Где V2 и V1 – скорость реакции при температурах Т2 и Т1 , ? – коэффициент, значение которого для эндотермической реакции выше, чем для экзотермической реакции. Для многих реакций ? лежит в пределах 2-4.

В 1889 г. Шведский учёный С. Аррениус на основании экспериментов вывел уравнение, которое носит его имя: K = K0e(-Ea/RT), K – константа скорости реакции, K0 – предэкспотенциальный множитель, e – это e. Ea – энергия активации.

Если при изменении температуры, концентрация реагентов остаётся постоянной то:

V = V0exp[-Ea/(RT)]

Ea/(2,3RT)=lgk/(1/T)

Вопрос 38. Энергия активации, понятие о промежуточном активированном комплекс.

Энергия, необходимая для перехода вещества в состояние активированного комплекса, называется энергией активации. Возможность образования активированного комплекса, а соответственно и хим. взаимодействия, определяется энергией молекул. Молекула, энергия которой достаточна для образования активированного комплекса, называется активной. С ростом температуры растёт доля этих частиц и соответственно скорость реакции. С увеличением энергии активации уменьшается доля активных молекул и скорость реакции

Вопрос 39. Влияние катализаторов на скорость химической реакции.

Катализаторы вещества которые активнейшим образом участвуют в химическом процессе изменяют скорость реакции но в результате хода реакции выходит в неизменном виде. Гетерогенный катализ- реагирующие вещества адсорбируются на поверхности катализатора. Кроме способности ускорять реакции, многие катализаторы обладают селективностью. Под влиянием катализаторов реакции могут протекать избирательно, т.е с увеличением выхода определенных продуктов. Каталитическая активность, т.е способность ускорения реакции, многих катализаторов возростает при добавлении небольших количеств некоторых веществ, называемых промоторами, которые без катализатора могут быть каталитически неактивными. В тоже время имеются вещества, которые ухудшают каталитическую активность. Их называют каталитическими ядами. Например ядами для платиновых катализаторов являются соединения серы, мышьяка, ртуть. Катализаторы не влияют на термодинамику реакции., т.е не изменяют энтальпию и энергию Гиббса реакции. Катализаторы могут ускорять наступление химического равновесия, но не влияют на константу равновесия. Катализатор увеличивает константу скоростей хим реакции. Гомогенный катализ катализаторы находятся в том же фазовом состоянии что и реагенты.

Вопрос 40. Цепные реакции.

Некоторые химические реакции протекают необычно. Скорость их зависит от природы и объёма сосуда, для некоторых из них характерен порог давления, ниже которого реакция не идёт. При определённых условиях реакция ускоряется лавинообразно. Механизм этих реакций стал понятен после разработки теории цепных реакций. Впервые идею о возможности цепного механизма реакций высказал русский учёный Н.А. Шилов в 1905 г. Большой вклад в разработку теории цепных реакций внесли Н.Н. Семёнов (Россия) и С. Хиншельвуд (Великобритания). Цепные реакции начинаются со стадии инициирования, т.е. образования активных частиц – свободных радикалов. Свободные радикалы представляют собой осколки молекул, имеющие неспаренные электроны. Некоторые свободные радикалы являются свободными при обычных условиях, например ClO2? Другие - при повышенных температурах, например, атомы галогенов, щелочных металлов, третьи – не существуют в виде свободных веществ, например, OH, CH3. Свободные радикалы принято обозначать точкой, поставленной рядом с химическими символами. Образование свободных радикалов (инициирование) происходит в результате воздействия на систему светом, излучением высокой энергии, теплом и т.д. Свободные радикалы могут зарождаться и в результате протекания экзотермических хим. реакций. Стадию возникновения радикалов ещё называют зарождением цепи. Потребление энергии на инициирование в цепных реакциях невелико, т.к. активируются не все молекулы, а только небольшая их доля. В следующей стадии цепной реакции происходит рост цепи. В результате взаимодействия радикалов с молекулами образуются продукты реакции и новые радикалы, т.е. реакции протекают через цепь последовательных стадий с образованием интемедиатов-радикалов. Свободные радикалы весьма реакционноактивны. И энергия активация цепных реакций невелика (0-40 кДж/моль). Третьей стадией цепной реакции является обрыв цепи. В результате взаимодействия радикалов на стенках сосудов или на инертных молекулах образуются нейтральные молекулы.

Вопрос 41 Химическое равновесие имеет динамический характер. Скорость реакции (число частиц, образующихся в единицу времени и единице объема) в прямом направлении равна скорости реакции в обратном направлении. В условиях химического равновесия концентрации (или парциальные давления в случае газов) исходных веществ и продуктов реакции не изменяются во времени и называются равновесными концентрациями (или парциальными давлениями) веществ. В дальнейшем равновесные концентрации будем обозначать символом вещества в квадратных скобках. Например, равновесные концентарции водорода и аммиака будут обозначаться [Н2] и [NH3].Равновесное парциальное давление будем обозначать индексом р.

Итак, термодинамическим условием химического равновесия является равенство энергии Гиббса химической реакции нулю, т.е. dG = 0 Константа химического равновесия. dG° = -RT ln([L]l [M]m / [D]d [В]b),[L], [M], [D], [В]равновесные концентрации соответствующих веществ; l, т, d и b показатели степени, равные стехиометрическим коэффициентам. Эти уравнения являются вариантами математического выражения закона действующих масс, открытого норвежскими учены­ми К.Гульдбергом и П.Вааге (1867). Закон действующих масс может быть сформулирован в следующем виде: отношение произведения равновесных концентраций продуктов реакции в степенях, равных стехиометрическим коэффициентам, к произведению равновесных концентраций исходных веществ в степенях, равных стехиометрическим коэффициентам, при Т = const является величиной постоянной. Например, для реакции синтеза аммиака: закон действующих масс имеет вид: Kc= [NH3]2/[N2][H2]3

Вопрос 42. Ле Шателье - Брауна принцип (принцип смещения равновесия), устанавливает, что внешнее воздействие, выводящее систему из состояния термодинамического равновесия, вызывает в системе процессы, стремящиеся ослабить эффект воздействия. Так, при нагревании равновесной системы в ней происходят изменения (например, химические реакции), идущие с поглощением теплоты, а при охлаждении - изменения, протекающие с выделением теплоты. При увеличении давления смещение равновесия связано с уменьшением общего объёма системы, а уменьшению давления сопутствуют физические или химические процессы, приводящие к увеличению объема.Принцип смещения равновесия в зависимости от температуры высказал Вант-Гофф (1884). В общем виде принцип смещения равновесия установлен А. Ле Шателье (1884) и термодинамический обоснован К. Брауном (1887). Исторически Ле Ш. - Б. п. был сформулирован по аналогии с правилом индукции Ленца (см. Ленца правило); вполне строго принцип выводится из общего условия термодинамического равновесия (максимальности энтропии). Ле Ш. - Б. п. позволяет определять направление смещения равновесия термодинамических систем без детального анализа условий равновесия.

Способы смещения равновесия

Принцип Ле-Шателье. Если на систему, находящуюся в равновесии, производится внешнее воздействие (изменяются концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет это воздействие


 

V1

 

A + Б



В

 

V2

 

 

1.    Давление. Увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т.е. к образованию меньшего числа молекул).

 

 

V1

 

 

A + Б



В

; увеличение P приводит к V1 > V2

 

V2

 

 

2

 

1

 

 

2.      Увеличение температуры смещает положение равновесия в сторону эндотермической реакции (т.е. в сторону реакции, протекающей с поглощением теплоты)

 

 

V1

 

A + Б



В + Q, то увеличение tC приводит к V2 > V1

 

V2

 

 

 

V1

 

A + Б



В - Q, то увеличение tC приводит к V1 > V2

 

V2

 

 

3.      Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции. Увеличение концентраций исходных веществ [A] или [Б] или [А] и [Б]: V1 > V2.

  Катализаторы не влияют на положение равновесия

Вопрос 43. Свойство растворов.

Общими являются свойства растворов, которые зависят от концентрации и практически не зависят от природы растворенных веществ. Они также называются коллигативными. Такие свойства могут появлятся в полной мере в идеальных растворах. Идеальным называют раствор, в котором не происходят химические реакции между компонентами, а силы межмолекулярного взаимодействия между компонентами одинаковы. Соответственно, образование этих растворов не сопровождается тепловым эффектом (/\Н=0) и каждый компонент ведет себя в растворе независимо от других компонентов. К идеальным растворам относятся лишь очень разбавленные растворы, т.е. растворы с очень низкой концентрацией растворенного вещества. К общим свойствам растворов относится понижение давления насыщенного пара растворителя над раствором и температуры замерзания, повышение температуры кипения и осмотическое давление. Эти свойства проявляются в случае растворов нелетучих растворенных веществ, т.е. веществ, давлением паров которых можно пренебречь.

Вопрос 44. Способы выражения концентраций растворов.

Отношение количества или массы вещества, содержащегося в системе, к объёму или массе этой системы называется концентрацией.

Молярная концентрация вещества В, св – отношение количества вещества (в молях), содержащегося в системе, к объёму этой системы. Единица измерения молярной концентрации моль/м3 (дольная производная СИ – моль/л)

Молярная доля вещества В, xв – отношение количества вещества данного компонента (в молях), содержащегося в системе, к общему количеству вещества (в молях). Молярная доля может быть выражена в долях единицы (xв), в процентах (%) – сотая доля,

промилле (‰) – тысячная часть и в миллионных долях (млн-1) или ppm.

Массовая доля вещества В, wв – отношение массы данного компонента, содержащегося в системе, к общей массе этой системы. Массовая доля может быть выражена в долях единицы, процентах, промилле и миллионных долях.

Вопрос 45. Закон Рауля. Давление пара над раствором.

Французский ученый открыл закон согласно которому понижение давления насыщенного пара растворителя А над раствором ?рА пропорционально молярной доле растворенного нелетучего вещества хв: р0А-рА= ?рА= р0АхВ где р0А рА давление насыщенного пара растворителя соответственно над чистым растворителем и над раствором, ?рА разность между давлениями насыщенного пара растворителя над раствором, рА и растворителя р0А из уравнения следует что увеличение содержания нелетучего растворенного компонента давление пара растворителя над раствором уменьшается.
  1   2


Вопрос 1 Строение атома
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации