Левченко Н.Б. Учебное пособие по выполнению расчетно-проектировочных работ. Часть 3 - файл n1.doc

приобрести
Левченко Н.Б. Учебное пособие по выполнению расчетно-проектировочных работ. Часть 3
скачать (3334 kb.)
Доступные файлы (1):
n1.doc3334kb.22.08.2012 11:25скачать

n1.doc

1   2   3   4   5   6   7   8   9

5.1. РАСЧЕТ БАЛКИ, ПОДВЕРЖЕННОЙ КОСОМУ

ИЛИ ПРОСТРАНСТВЕННОМУ ИЗГИБУ


Основные определения



Рис. 5.3. Косой изгиб


Рис. 5.4. Пространственный изгиб

Косым изгибом называется такой изгиб, при котором вся нагрузка на балку действует в одной плоскости, и эта плоскость не совпадает с плоскостями, в которых лежат главные центральные оси инерции сечения (плоскости и на рис. 5.3). При косом изгибе изогнутая ось представляет собой плоскую кривую, и плоскость, в которой она расположена, не совпадает с плоскостью действия нагрузки. При пространственном изгибе нагрузка приложена в разных плоскостях (рис. 5.4), деформированная ось является пространственной кривой.

При косом или пространственном изгибе в сечении стержня возникают четыре усилия: , , и . Нормальные напряжения в произвольной точке сечения определяются по формуле, полученной из (5.1) при ,

. (5.3)

Касательные напряжения от поперечных сил, если нельзя воспользоваться формулой Журавского, допустимо не учитывать.

Порядок проверки прочности балки, работающей в условиях косого или пространственного изгиба, тот же, что и для балки, работающей при плоском поперечном изгибе. Для этого необходимо:

Определение положения опасных точек в стержне произвольного поперечного сечения производится по схеме, описанной ранее во вступительной части разд. 5. Поскольку в уравнении нейтральной линии

(5.4)

отсутствует свободный член, то нейтральная линия проходит через центр тяжести сечения (рис.  5.5). Построив нейтральную линию и эпюру нормальных напряжений, найдем положение опасных точек. Допустим, что напряжение в точке 1 больше, чем в точке 1ў (это можно определить по масштабу, если построить сечение и эпюру напряжений в масштабе). Условие прочности в опасной точке 1, которая находится в линейном напряженном состоянии, записывается так:

(5.5)

Значение зависит от материала, из которого сделана балка, и для хрупкого материала необходимо учесть направление (растягивающее или сжимающее) .

Для некоторых форм сечений, а именно, прямоугольника, двутавра и других сечений, угловые точки которых находятся в углах прямоугольника, нет необходимости для записи условий прочности находить положение опасных точек. Для таких сечений положение опасных точек не зависит от угла наклона нейтральной линии, и опасные точки – это всегда угловые точки сечения. Условие прочности в этих точках записывается следующим образом:

, (5.6)

где и – моменты сопротивления поперечного сечения относительно главных центральных осей.




Рис. 5.5. Эпюра нормальных

напряжений и перемещение

точки О оси балки

Перемещения балки, работающей в условиях косого или пространственного изгиба, можно находить любым способом. Обычно это делают методом Максвелла – Мора, перемножая эпюры с помощью правила Верещагина. От вертикальной составляющей нагрузки точки оси балки перемещаются по вертикали (вдоль оси ). Вертикальная составляющая полного прогиба находится по формуле

. (5.7)

Перемещения точек оси балки вдоль оси , вызванные горизонтальной составляющей нагрузки, определяются аналогично

. (5.8)

Эти перемещения для точки оси балки показаны на рис. 5.5. Полное перемещение (отрезок на рис. 5.5) является геометрической суммой составляющих и . Отметим такую закономерность: при косом изгибе отрезок должен быть в точности перпендикулярен нейтральной линии [2], при пространственном изгибе этот угол, как правило, должен быть близок к . При косом изгибе плоскость, в которой лежит изогнутая ось стержня, не совпадает с плоскостью действия нагрузки. Это отличает косой изгиб от прямого, при котором плоскость действия нагрузки совпадает с одной из главных плоскостей осей инерции сечения, и изогнутая ось лежит в той же плоскости.

Пример расчета балки при пространственном изгибе (задача  28)

Условие задачи

Балка загружена нагрузкой, показанной на рис. 5.6. Сила  кН действует в вертикальной плоскости,  кН – в горизонтальной, пара сил  кНЧм – в плоскости, расположенной под углом к оси .

Требуется:

  1. из условия прочности подобрать номер двутавра;



  1. Рис. 5.6. Схема нагрузки на балку
    найти полное перемещение точки оси балки (см. рис. 5.6);

  2. нарисовать сечение балки в масштабе и показать на нем нейтральную линию и полное перемещение точки . Определить угол между нейтральной линией и полным перемещением3.

Решение

Разложим нагрузку на вертикальную (рис. 5.7, а) и горизонтальную (рис. 5.7, в) составляющие и построим эпюры и (рис. 5.7, б г). Чтобы правильно поставить знаки изгибающих моментов, необходимо на рисунках показывать направление осей и , так как в соответствии с правилом знаков для изгибающего момента в задачах сложного сопротивления знак момента зависит от направления осей. Эпюры моментов строим со стороны растянутых волокон в той плоскости, в которой действует нагрузка. По эпюрам выбираем опасные сечения. В рассматриваемом примере их два: сечение , в котором действуют кНЧм и кНЧм, и сечение с изгибающими моментами –  кНЧм и  кНЧм.



Рис. 5.7. Эпюры изгибающих моментов от:

а, б – вертикальной составляющей нагрузки;

в, г – горизонтальной составляющей нагрузки;

д, е – единичной силы


Условие прочности в опасных точках двутавра имеет вид (5.6). Поскольку отношение моментов сопротивления зависит от номера двутавра, а он неизвестен, примем это отношение условно4 равным 10. Тогда условие прочности (5.6) в опасных точках сечения примет вид:

,

где допускаемое напряжение для стали принято = 160 МПа, величины изгибающих моментов переведены из кНЧм в кНЧсм. Из написанного условия прочности найдем необходимый момент сопротивления

см3.

По сортаменту прокатной стали подбираем номер двутавра. Для двутавра № 50 с такими характеристиками: см3 и см3 условие прочности в опасных точках сечения

кН/см2

не выполняется, поэтому увеличиваем двутавр. Проверим прочность для двутавра № 55, у которого см3 и см3:

кН/см2.

Убедимся в том, что условие прочности выполняется и в опасных точках опасного сечения :

кН/см2.

Обратите внимание на величину напряжений от изгибающего момента , действующего в горизонтальной плоскости, которую показывает второй член в сумме. Видно, что, несмотря на то, что в рассмотренном примере существенно меньше , напряжения от больше чем напряжения от (или они примерно одинаковы). Это говорит об опасности изгиба в горизонтальной плоскости, особенно для двутавров, у которых .

Найдем перемещение точки . Будем искать по формуле (5.7) сначала вертикальную составляющую перемещения, вызванную вертикальной составляющей нагрузки. Формулу Максвелла – Мора (5.7) интегрируем по правилу Верещагина, перемножая эпюры и (рис. 5.7, бе). Если хотя бы одна эпюра на участке имеет форму трапеции, используем для перемножения правило трапеций [6].



кНЧм3.

Аналогично определим по (5.8) горизонтальную составляющую перемещения5, перемножая эпюры и (рис. 5.7, ге).

кНЧм3.

Положительные знаки перемещений свидетельствуют о том, что перемещения происходят по направлениям единичных сил, т. е. вертикальное перемещение – вниз (по направлению оси ), горизонтальное – по направлению оси . Сосчитаем найденные составляющие перемещения в "см", разделив их на соответствующие жесткости.

кНЧсм2,

кНЧсм2,

см,

см.

Из сравнения величин и видно, что горизонтальная составляющая перемещения, даже при небольшой горизонтальной нагрузке много больше (особенно для двутавра) вертикальной составляющей.




Рис. 5.8. Эпюра напряжений

в опасном сечении С

и перемещение точки С
Выполним последнюю часть задачи. Нарисуем сечение балки в масштабе, покажем на нем нейтральную линию и полное перемещение. Уравнение нейтральной линии (5.4) в опасном сечении С имеет вид6:



или . Нейтральная линия, построенная по этому уравнению, и эпюра нормальных напряжений в сечении показаны на рис. 5.8. Знаки напряжений соответствуют положительным знакам изгибающих моментов. Угловые точки 1, 1ў – это опасные точки сечения, в которых мы ранее находили напряжения.

Найдем угол (см. рис. 5.8) между нейтральной линией и осью :





Отложим в масштабе найденные ранее вертикальную и горизонтальную составляющие перемещения с учетом их направления. Полное перемещение точки – отрезок на рис. 5.8 равен геометрической сумме и . Угол между полным перемещением и осью



.

Таким образом, угол между полным перемещением и нейтральной линией , что близко к .
1   2   3   4   5   6   7   8   9


5.1. РАСЧЕТ БАЛКИ, ПОДВЕРЖЕННОЙ КОСОМУ
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации