Левченко Н.Б. Учебное пособие по выполнению расчетно-проектировочных работ. Часть 1 - файл n1.doc

приобрести
Левченко Н.Б. Учебное пособие по выполнению расчетно-проектировочных работ. Часть 1
скачать (3720 kb.)
Доступные файлы (1):
n1.doc3720kb.22.08.2012 11:23скачать

n1.doc

1   2   3   4   5   6   7   8

1.2. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ

СТЕРЖНЕВЫХ СИСТЕМ

Основные определения


Статически неопределимая система – система, в которой количество неизвестных (опорных реакций, внутренних усилий) больше числа независимых уравнений статики, составляемых для рассматриваемой системы (конструкции). Таким образом, в статически неопределимой системе невозможно найти все неизвестные, пользуясь только уравнениями равновесия. Разность между количеством неизвестных и числом уравнений статики называется степенью статической неопределимости.

Конструкции, состоящие из стержней, соединенных шарнирами, называются шарнирно-стержневыми. В этих конструкциях есть стержни, которые обеспечивают геометрическую неизменяемость конструкции и при удалении которых система превращается в механизм. Такие стержни будем называть необходимыми. Если же при удалении некоторых стержней геометрическая неизменяемость конструкции не нарушается, то такие стержни назовем лишними. В статически определимой системе есть только необходимые стержни, в статически неопределимой – число лишних стержней равно степени статической неопределимости.

Порядок определения всех неизвестных в статически неопределимых конструкциях (раскрытия статической неопределимости) следующий:

  1. записываем необходимые уравнения равновесия;

  2. составляем уравнения совместности деформаций (геометри-ческие уравнения). Количество уравнений совместности деформаций равно степени статической неопределимости;

  3. записываем физические уравнения;

  4. решая полученную систему уравнений, находим все неизвестные.

Если в качестве физических уравнений используется закон Гука, то такой способ расчета носит название расчета по упругой стадии деформаций. После определения внутренних усилий – продольных сил в стержнях статически неопределимой системы – встает задача обеспечения ее прочности. При расчете по упругой стадии деформаций считается, что предельное состояние конструкции наступает тогда, когда один, наиболее напряженный, стержень переходит в предельное состояние (разрушится или потечет). Поэтому после определения усилий по этому способу находим напряжения в стержнях и выбираем стержень, в котором действует максимальное напряжение. Из условия прочности этого наиболее напряженного стержня либо вычисляем допускаемую нагрузку, либо подбираем сечения стержней. Следует отметить, что в большинстве статически неопределимых конструкций в результате расчета по этому способу только в одном стержне напряжения будут равны допускаемым, остальные же стержни будут недогружены. Достичь равенства напряжений во всех элементах конструкции и, следовательно, добиться выполнения требования, чтобы напряжения во всех стержнях равнялись допускаемым, в общем случае невозможно.

Второй способ расчета статически неопределимых стержневых систем носит название расчета по предельному пластическому состоянию.2 Благодаря наличию лишних стержней в статически неопределимой системе, наступление состояния текучести в одном (наиболее напряженном) стержне еще не приводит к нарушению геометрической неизменяемости всей конструкции. Остальные стержни, оставаясь упругими, препятствуют пластическим деформациям этого стержня. Конструкция продолжает выполнять свое назначение, перейдя из упругой стадии работы в упругопластическую. При увеличении нагрузки в пластическую стадию работы вовлекаются все новые стержни. И только тогда, когда в системе потекут все лишние стержни и хотя бы один необходимый, конструкция превращается в механизм и не может выполнять свои функции. Это состояние и считается предельным при расчете по предельному пластическому состоянию. Таким образом, расчет по предельному пластическому состоянию сводится к следующему:

  1. определяем, сколько стержней должно потечь, чтобы конструкция превратилась в механизм. Дальнейший расчет возможен по двум вариантам:

2) из условия прочности конструкции по предельному состоянию либо вычисляем допускаемую нагрузку, либо подбираем сечения стержней.

Отметим, что расчет по предельному пластическому состоянию является более экономичным, чем расчет по упругой стадии деформаций. Поэтому при сравнении результатов расчета по двум способам должно получиться, что допускаемая нагрузка, найденная расчетом по предельному пластическому состоянию, всегда не меньше нагрузки, полученной расчетом по упругой стадии деформации. Соответственно площади сечений стержней, найденные расчетом по предельному состоянию, должны быть не больше площадей сечений, полученных расчетом по упругой стадии деформаций.

Примеры решения задач

1.2.1. Расчет статически неопределимого составного стержня, работающего на растяжение-сжатие

(задача № 4)

Условие задачи



Рис. 1.8. Схема нагрузки на стержень

в задаче № 4
Стержень переменного сечения с заданным соотношением площадей поперечного сечения , выполненный из разного материала, загружен силой F (рис. 1.8). Между правым концом стержня и стенкой существует зазор .

Требуется:

  1. определить продольные силы, напряжения на каждом участке и проверить прочность стержня от действия заданной нагрузки F.

  2. найти дополнительные напряжения, возникающие в стержне при его нагревании на температуру и проверить прочность стержня от температурного воздействия.
Решение

  1. Определение напряжений от заданной нагрузки

Прежде всего надо убедиться, что заданная система является статически неопределимой. Найдем абсолютную деформацию стержня, показанного на рис. 1.8, предполагая сначала, что правая стенка отсутствует. Тогда, используя метод сечений, определим продольные силы на трех участках стержня:

на первом участке длиной ;

на втором и третьем участках .

Полное удлинение стержня, равное в общем случае , в данной задаче равно удлинению первого участка и, следовательно, по (1.3)

.




Рис. 1.9. К решению задачи № 4:

а – план сил от действия F,

б – эпюры продольной силы и напряжений от F
Если под действием нагрузки абсолютная деформация стержня будет больше заданного зазора , то стержень упрется правым концом в стенку и возникнут опорные реакции как в левом защемлении (), так и в правом опорном закреплении () (рис. 1.9, а). Для заданной системы можно составить только одно независимое уравнение статики . Таким образом, две неизвестные опорные реакции нельзя найти из одного уравнения, и система в процессе деформации становится один раз статически неопределимой.

Для раскрытия статической неопределимости используем расчет по упругой стадии деформаций и запишем три группы уравнений:

  1. уравнения равновесия. Из них получим:

  1. уравнение совместности деформаций, смысл которого в данной задаче очень простой: полная деформация стержня равна заданному зазору. При составлении уравнения совместности деформаций важно, чтобы знаки абсолютных деформаций соответствовали сделанным предположениям о направлении усилий. В нашем примере ;

  2. физические уравнения

.

Решив полученную систему уравнений, найдем продольные силы, а затем напряжения в разных частях стержня и построим эпюры их распределения по длине стержня (рис. 1.9, б). Если знак усилия после решения системы уравнений получился отрицательным, это означает, что сделанное предположение о направлении продольной силы не подтвердилось. В рассмотренной задаче отрицательным должно получиться усилие , т. е. второй участок длиной b не растянут, а сжат. Знаки N и s на эпюрах ставим в соответствии с правилом знаков для продольной силы.

После определения напряжений производим проверку прочности по формулам (1.5) или (1.7) так же, как в статически определимой системе. Если условие прочности на каком-нибудь участке стержня не будет выполняться, измените значение F так, чтобы условие прочности соблюдалось.

  1. Определение температурных напряжений

Найдем удлинение стержня от температурного воздействия и убедимся в том, что это удлинение больше заданного зазора .

.




Рис. 1.10. К решению задачи № 4: а – план сил от действия ,

б – эпюры продольной силы и напряжений от
Если >, то система является один раз статически неопределимой и раскрытие статической неопределимости производим по той же схеме, что и в предыдущей части задачи:

Из уравнений равновесия следует, что и . Здесь в соответствии с рис. 1.10, а предполагаем, что стержень всюду сжат. (Силу F при определении температурных напряжений считаем равной нулю.)

Уравнение совместности деформации показывает, что абсолютная деформация стержня, равная разности удлинения стержня от температурного воздействия и укорочения от действия сжимающих продольных сил не может быть больше заданного зазора :

,

где .

Укорочение стержня от действия продольных сил найдем, используя физические уравнения (закон Гука):

и .

После решения полученной системы уравнений найдем усилия в обеих частях стержня. Полученный положительный знак должен подтвердить предположение о том, что стержень сжат. Строим эпюры продольной силы и напряжений (рис. 1.10, б) от температурного воздействия.

Проверяем прочность стержня и в случае невыполнения условия прочности на каком-нибудь участке находим новое значение , при котором условие прочности будет соблюдаться на всех участках.

1.2.2. Расчет статически неопределимой стержневой конструкции, работающей на растяжение-сжатие (задача № 5)

Условие задачи

Стержневая конструкция, состоящая из абсолютно жесткого диска и двух деформируемых стержней длиной l1 и l2, соединенных шарнирами, подвержена действию силы F (рис. 1.11).

Расчет этой конструкции состоит из трех частей:

Часть 1. Расчет по упругой стадии деформации. В зависимости от исходных данных, выписанных из таблицы и являющихся индивидуальными для каждого студента, надо либо определить грузоподъемность конструкции, либо подобрать размеры поперечного сечения расчетом по допускаемым напряжениям.

Часть 2. Расчет по предельному пластическому состоянию. Требуется найти грузоподъемность (или подобрать сечения стержней) расчетом по предельному состоянию.




Рис. 1.11. Схема конструкции в задаче № 5

Часть 3. Определение дополнительных напряжений, связанных с изменением температуры на DT или неточностью изготовления D одного из стержней. Допустим, что в рассматриваемой задаче стержень 1 охлаждается (DT1 < 0), и найдем возникающие в стержнях конструкции температурные напряжения.
Решение

Прежде всего убедимся, что рассматриваемая конструкция является статически неопределимой. Сосчитаем число неизвестных: ими являются продольные силы в двух деформируемых стержнях и две опорные реакции в шарнирно неподвижной опоре в точке А. Таким образом, имеем 4 неизвестные, а число независимых уравнений статики для данной системы равно 3. Система является один раз статически неопределимой.

Часть 1. Для расчета конструкции по упругой стадии деформации необходимо составить три группы уравнений:

Чтобы составить уравнения равновесия, нарисуем план сил. Для этого рассечем стержни и, отбросив части стержней, заменим их внутренними усилиями – продольными силами N1 и N2 (рис. 1.12, а). Важно, чтобы на плане сил направления усилий соответствовали плану перемещений. Для того, чтобы выяснить как направлены продольные силы в стержнях, нарисуем приближенный план перемещений (рис. 1.12, б), пользуясь принципами, описанными при решении задачи № 3. Точки В и С жесткого диска поворачиваются с радиусами AB и АС вокруг неподвижной точки А на один и тот же угол g и перемещаются по дугам, которые заменяем перпендикулярами и Для того, чтобы найти абсолютные деформации стержней, надо из точек и (новые положения узлов В и С) опустить перпендикуляры на направления стержней. Как видно из рис. 1.12, б стержень 1 укорачивается на (выделенный жирным отрезок), и поэтому на плане сил усилие N1 показано сжимающим. Стержень 2 согласно плану перемещений удлиняется на, и на рис. 1.12, а продольная сила N2 нарисована растягивающей.



Рис. 1.12. К решению задачи № 5:

а – план сил от действия F;

б – план перемещений от действия F

Теперь составим три уравнения равновесия:

; ;

; ;

; .

Запишем вторую группу уравнений – уравнения совместности деформаций. Поскольку данная система является один раз статически неопределимой, необходимо составить одно уравнение совместности деформаций. Это геометрическое уравнение, связывающее абсолютные деформации стержней, и его мы получим на основании плана перемещений. Из подобия треугольников ABBў и ACCў на рис. 1.12, б. Связывая отрезки BBў и CCў с деформациями стержней и и учитывая, что AB = a, а , получим окончательно уравнение совместности деформаций

.

Теперь надо связать деформации стержней с внутренними усилиями. Предполагая, что материал подчиняется закону Гука (расчет по упругой стадии деформаций), запишем третью группу уравнений

и .

Мы получили полную систему уравнений для определения всех неизвестных (). Как правило, нас интересуют только продольные силы в стержнях, поэтому из уравнений равновесия при решении системы используется только последнее уравнение, в которое не входят опорные реакции. Решая полученную систему уравнений, найдем внутренние усилия в стержнях:

;

.

Здесь введено обозначение – погонная жесткость i-го стержня.

Заметим, что, как видно из полученных формул, усилия зависят не только от величины нагрузки и геометрических размеров конструкции, как в статически определимых системах, но и от отношения погонных жесткостей стержней. Эта важная закономерность справедлива для любой статически неопределимой конструкции и позволяет влиять на распределение усилий в стержнях без изменения ее геометрической схемы.

Определив внутренние усилия в стержнях, находим напряжения и выбираем наиболее напряженный стержень. Из условия прочности этого (наиболее напряженного) стержня либо определяем допускаемую нагрузку, либо подбираем размеры поперечных сечений стержней (заданное отношение площадей сечения необходимо сохранить). Например, если в заданной схеме задаться следующими данными:

м, м, , , м, м, то и , а . Напряжения в стержнях , . Из сравнения видно, что наиболее напряженным является стержень 2. Из условия прочности этого стержня



находим либо значение F, либо А1 (А2 по заданному отношению равно А1/2).

Для проверки рекомендуем после определения допускаемой нагрузки (либо размеров площадей сечения) еще раз найти напряжения в стержнях и убедиться в том, что условие прочности выполняется в обоих стержнях.

Часть 2. Сделаем расчет конструкции по предельному пластическому состоянию. Поскольку заданная система является один раз статически неопределимой, то в предельном состоянии должны потечь два стержня, то есть все деформируемые стержни конструкции. Для определения предельной нагрузки нарисуем план сил в предельном состоянии (рис. 1.13). Направления усилий снова должны соответствовать плану перемещений. Составим одно уравнение равновесия в предельном состоянии (такое уравнение, в которое не входят неизвестные опорные реакции):
; .

Из этого уравнения можно найти значение предельной нагрузки. Для конкретных исходных данных, использованных в первой части задачи, получим:

.



Рис. 1.13. План сил в предельном состоянии
Из условия прочности конструкции по предельному состоянию либо находим значение допускаемой нагрузки, либо подбираем размер А1.

Сравним величины допускаемых нагрузок, найденных разными методами для рассмотренного примера. Допускаемая нагрузка, определенная расчетом по упругой стадии деформации

,

оказалась меньше допускаемой нагрузки, полученной расчетом по предельному пластическому состоянию , на 56%.

Часть 3. Найдем дополнительные напряжения в стержнях конструкции, связанные с охлаждением стержня 1 на градусов. Предполагая, что в процессе деформации материал стержней остается упругим, расчет ведем по той же схеме, что и в первой части задачи, т. е. составляем три группы уравнений:




Рис. 1.14. К решению задачи № 5:

а – план сил от температурного воздействия;

б – план перемещений от температурного воздействия




Уравнения равновесия составляем по плану сил (рис. 1.14, а), уравнения совместности деформаций – по плану перемещений (рис. 1.14, б). План сил и план перемещений, как и раньше, должны соответствовать друг другу. Поясним особенности построения плана перемещений от температурного воздействия. Если бы конструкция была статически определимой, т. е. стержень 2 отсутствовал, то стержень 1 при охлаждении уменьшил бы свою длину на величину , жесткий диск повернулся бы на угол gў и узел В переместился в положение Вўў. Поскольку конструкция статически неопределима, то лишний стержень 2 препятствует такой деформации. В результате жесткий диск повернется только на угол g, точка В перейдет в положение Вў. Стержень 1 окажется растянутым на величину (выделенный жирным отрезок на плане перемещений рис. 1.14, б) и в нем возникнет растягивающее усилие N1. В свою очередь стержень 2 в процессе деформации также будет растянут на величину продольной силой N2. В соответствии с планом перемещений на плане сил (см. рис. 1.14, а) оба стержня показаны растянутыми.

Теперь запишем систему уравнений для определения внутренних усилий в заданной конструкции:

уравнение равновесия

; ;

уравнение совместности деформации 3



и физические уравнения

; ; .

Решая эту систему уравнений, найдем усилия в стержнях системы, а далее по формуле (1.1) температурные напряжения. Заметим, что отрицательный знак используется только при построении плана перемещений (стержень укорачивается от действия температуры), при решении системы уравнений величину следует принять положительной.

Примечание. Определение монтажных напряжений, связанных с неточностью изготовления одного из стержней , производится так же, как температурных напряжений. Например, если в рассмотренном примере стержень 1 будет изготовлен короче, чем требуется, на величину (эта величина в таблице исходных данных [4] задана отрицательной), то при сборке конструкции стержень 1 надо будет растянуть и при этом стержень 2 тоже растянется. На плане перемещений отрезок заменим на и решение задачи будет справедливо, если в полученной системе уравнений всюду заменить на заданную величину .(Отрицательный знак при решении системы уравнений не учитывается.)

1.2.3. Определение грузоподъемности статически

неопределимой шарнирно-стержневой конструкции (задача № 6)

Условие задачи




Рис. 1.15. Схема конструкции

в задаче № 6
Имеется шарнирно-стержневая система, состоящая из трех деформируемых стержней, загруженная силой (рис. 1.15). Заданы: геометрические характеристики системы (, , ); площади поперечных сечений стержней , , ; материал конструкции - пластичный. Требуется4:

  1. определить грузоподъемность системы тремя способами:

2*) определить остаточные напряжения в стержнях системы при полной разгрузке из положения предельного равновесия.
Решение

  1. Определение грузоподъемности системы расчетом

по упругой стадии деформаций

Найдем степень статической неопределимости системы. В данной конструкции имеем три неизвестные продольные силы в стержнях. Число уравнений статики, которые можно составить для системы сил, сходящихся в одной точке, равно двум. Таким образом, число неизвестных больше числа уравнений равновесия на единицу, и система является один раз статически неопределимой. Можно определить степень статической неопределимости и по-другому. Шарнир (модель которого - точка) для неподвижного закрепления на плоскости требует наложения двух линейных связей. Такими необходимыми связями являются любые два стержня из имеющихся трех стержней системы. Следовательно, оставшийся третий стержень становится лишней кинематической связью (лишним стержнем), а система является один раз статически неопределимой.



Рис. 1.16. План перемещений при расчете по упругой стадии
Для раскрытия статической неопределимости требуется составить уравнения статики, одно (по числу лишних связей) кинематическое соотношение (условие совместности деформаций) и физические уравнения. Рекомендуем начинать решение задачи с записи условия совместности деформаций, построив предполагаемый план перемещений. Для составления уравнений равновесия строим план сил, направления усилий на котором должны быть согласованы с планом перемещений.

1. Уравнение совместности деформаций. Построим предполагаемый план перемещений (рис. 1.16). Величины двух абсолютных деформаций задаем произвольно (например, считаем, что стержни 2 и 3 удлиняются, и откладываем произвольные отрезки и вдоль стержней). На пересечении траекторий поворота концов двух стержней (перпендикуляров к направлениям стержней) получаем новое положение шарнира – точку Сў на рис. 1.16. Опустив из этой точки перпендикуляр на направление оси стержня 1, найдем величину его абсолютной деформации .

Разложим полное перемещение шарнира – отрезок – на составляющие и . Найдем абсолютные деформации стержней, выразив их через и , используя их геометрическую связь:

,

,

.

Исключив из этих выражений и , получим искомое соотношение между абсолютными деформациями

.

Допускается составлять уравнение совместности деформаций приближенно, измеряя отношения между абсолютными деформациями по построенному в масштабе плану перемещений. Для приближенного определения связи между абсолютными деформациями представим эту связь в виде

.

Неизвестные параметры данной зависимости и определим из двух планов перемещений. При построении первого плана перемещений предположим, что . Измерим деформации первого и третьего стержней. Тогда

.

Построив второй план перемещений в предположении, что , найдем отношение деформаций первого и второго стержней и получим

.

2. Уравнения равновесия. Составим их на основании плана сил. Нарисуем план сил, вырезав узел и заменив отброшенные части стержней внутренними усилиями, причем направления усилий покажем в соответствии с планом перемещений растягивающими (рис. 1.17). Запишем два независимых уравнения статики. Для данной системы таковыми являются:

; ;

; .




Рис. 1.17. План сил в упругой

стадии работы
3. Физические соотношения. Поскольку расчет ведется по упругой стадии деформаций, то материал конструкции подчиняется закону Гука (1.3) и для каждого стержня записываем физические уравнения:

; ; .

Полученную систему уравнений решаем относительно усилий , , . Например, при , это решение имеет вид

,,.

Найденное решение показывает, что усилие в первом стержне отрицательно, т. е. стержень не растянут, как мы предполагали, а сжат. Полученные положительные знаки и подтверждают предположение о том, что эти стержни растянуты.

Для проверки прочности конструкции определим напряжения в стержнях системы:

;

;

.

При расчете по упругой стадии деформации считаем, что предельное состояние конструкции наступит тогда, когда потечет один, наиболее напряженный, стержень. Поскольку пластичный материал имеет одинаковые пределы текучести при сжатии и растяжении, то знак напряжения не имеет значения и первым потечет стержень, в сечении которого возникают наибольшие по модулю напряжения. В данном случае это третий стержень. Из условия его текучести находим предельную нагрузку:

, ;

а из условия прочности - допускаемую нагрузку на конструкцию:

, .

Отметим, что при расчете по упругой стадии деформаций нагрузка и напряжения на всем участке деформирования связаны прямой пропорциональной зависимостью, а потому коэффициенты запаса по напряжениям и по нагрузке равны между собой.

  1. Определение предельной грузоподъемности системы

расчетом по упругопластической стадии




Рис. 1.18. Диаграмма Прандтля
Проследим за дальнейшим развитием процесса нагружения – деформирования системы после того, как напряжения в третьем стержне достигли предела текучести. Примем, что материал конструкции работает в соответствии с идеализированной диаграммой упругопластического тела – диаграммой Прандтля (рис. 1.18). При продолжении роста нагрузки напряжения в третьем стержне будут оставаться постоянными и равными . При работе конструкции в упругопластической стадии напряжения в остальных стержнях будут расти в соответствии с упругим законом, но при изменившихся параметрах линейной зависимости от нагрузки. Эти изменения связаны с перераспределением нагрузки только на упругие стержни, обеспечивающие неизменяемость системы в этой стадии ее работы.

Поскольку усилие в стержне 3 уже известно, задача становится статически определимой и усилия в стержнях 1 и 2 находим из уравнений равновесия узла (план сил на рис. 1.19):

; ;

; .

Решение этой системы уравнений при , :

, .

Зависимости напряжений от нагрузки на данной стадии работы системы:

, .

Предельное пластическое состояние конструкции достигается тогда, когда напряжения в одном из упругих стержней 1 и 2 достигнут предела текучести и конструкция превратится в механизм. Определим, какой из стержней потечет первым, приравняв напряжения в стержнях пределу текучести и найдя, при каком значении нагрузки стержни потекут:

, ;

, .




Рис. 1.19. План сил

в упругопластической стадии работы

Видно, что нагрузка, при которой , меньше и первый стержень потечет раньше второго. Нагрузка, при которой будут течь два стержня (3 и 1), и есть предельная нагрузка для всей конструкции

.

Заметим, что в предельном состоянии напряжения в первом и третьем стержнях достигли предела текучести. При этом первый стержень потек вслед за третьим, хотя к концу упругой стадии напряжения в нем были меньше, чем во втором стержне. Зависимость между напряжениями и нагрузкой с начала деформирования в упругопластической стадии уже не является линейной, а потому одинаковым коэффициентам запаса по нагрузке и по напряжениям в наиболее напряженном упругом стержне будут соответствовать различные значения допускаемой нагрузки. Так, в нашем случае допускаемая нагрузка с коэффициентом запаса по напряжениям определяется из условия

; ; .

Если же исходить из коэффициента запаса по нагрузке, то

; ; .

Очевидно, что расчет по допускаемой нагрузке приводит к повышенному запасу прочности в отдельных стержнях системы, а расчет по допускаемым напряжениям не обеспечивает заданного коэффициента запаса по нагрузке. Поэтому значение допускаемой нагрузки принимаем из условия прочности по нагрузке: .

Следует отметить, что современными строительными нормами проектирования предусматривается раздельное применение коэффициентов надежности по нагрузке и по материалу. Условие прочности в этом случае приняло бы вид

,

где и - коэффициенты надежности (запаса) по нагрузке и по материалу соответственно.

  1. Определение предельной грузоподъемности системы

расчетом по предельному пластическому состоянию

Заданная система имеет три деформируемых стержня, один из которых является лишним, так как система один раз статически неопределима. В предельном состоянии, когда конструкция превращается в механизм, должны потечь два стержня (один лишний и один необходимый). В рассмотренных ранее способах решения этой задачи рассматривался порядок перехода материала стержней в пластическую стадию работы, было выяснено, какой стержень потечет первым, какой – вторым. При этом конструкция сначала работает в упругой стадии (материал всех стержней подчиняется закону Гука), затем переходит в упругопластическую стадию работы. Решение вопроса о предельной нагрузке на конструкцию, при которой последняя переходит в механизм, может быть получено и без рассмотрения упругой и упругопластической стадий работы конструкции. Для этого достаточно исследовать равновесие системы в момент перехода в предельное пластическое состояние, т. е. в так называемое предельное равновесие. Сложность состоит в том, что конкретный механизм перехода системы в предельное пластическое состояние заранее неизвестен. Поэтому приходится рассматривать все кинематически возможные варианты перехода к предельному равновесию и для каждого из них вычислять предельную нагрузку. Фактически будет иметь место тот вариант предельного состояния, которому соответствует минимальное значение предельной нагрузки.

В данной задаче возможны три варианта предельного равновесия конструкции: 1) текут стержни 1 и 3; 2) текут стержни 2 и 3 и, наконец, 3) текут стержни 2 и 1.

В качестве примера рассмотрим два варианта предельного пластического состояния в нашей задаче. Согласно первому варианту допустим, что напряжения в стержнях 1 и 3 равны , а стержень 2 работает упруго. Для определения направления усилий в стержнях 1 и 3 построим план перемещений, используя те же правила построения плана перемещений, которые описаны при решении задач № 3 и 5. Поскольку упругие деформации стержня 2 много меньше пластических деформаций стержней 1 и 3, то при построении плана перемещений стержень 2 можно считать абсолютно жестким. Под действием нагрузки жесткий стержень 2 повернется вокруг шарнира А, и этот поворот вызовет укорочение стержня 1 на Dl1 и удлинение стержня 3 на Dl3 (рис. 1.20, а). Соответствующий плану перемещений план сил для первого варианта перехода в предельное состояние показан на рис. 1.20, б.

Чтобы неизвестное усилие N2 не входило в уравнение, в качестве условия предельного равновесия выберем уравнение "сумма моментов относительно шарнира равна нулю" (см. рис. 1.20, б):

;.




Рис. 1.20. Вариант 1 предельного пластического состояния:

а – план перемещений;

б – план сил

Из этого уравнения при , найдем .

Во втором варианте предельного пластического состояния напряжения в стержнях 2 и 3 равны sт, а первый стержень работает в упругой стадии. Планы сил и перемещений показаны на рис. 1.21. Запишем уравнение предельного равновесия для узла С (такое уравнение равновесие, в которое не входит неизвестное усилие N1):

; .

Отсюда .

Аналогично можно определить предельную нагрузку для третьего варианта, в котором пластически деформироваться будут стержни 1 и 2. Фактической предельной нагрузкой будет минимальное значение из трех полученных. В нашей задаче это (первый вариант предельного состояния), что совпадает со значением, найденным ранее расчетом по упругопластической стадии.



Рис. 1.21. Вариант 2 предельного пластического состояния:

а – план перемещений;

б – план сил
Надо отметить, что число кинематически возможных вариантов предельного состояния может уменьшиться, если ось какого-либо стержня совпадает с линией действия нагрузки (в этом случае поворота этого стержня не происходит и механизма не образуется).

Допускаемое значение нагрузки определяем как отношение предельного значения нагрузки к коэффициенту запаса прочности n.

IV. Определение остаточных напряжений

Процесс нагружения конструкции в упругой и упругопластической стадиях, рассмотренный в пп. I и II, можно отобразить на диаграмме в осях (рис. 1. 22). Характерные точки этой диаграммы получены по соответствующим зависимостям для трех стержней конструкции.




Рассмотрим процесс полной разгрузки системы из положения предельного равновесия (на диаграмме это соответствует вертикальной прямой с абсциссой ). Процесс разгрузки можно трактовать как наложение на существующие напряжения напряжений от отрицательного приращения нагрузки. Закон изменения последних определяется упругим решением задачи до тех пор, пока величина напряжения в одном из стержней не достигнет , поэтому линии разгрузки каждого стержня будут направлены параллельно линиям упругого нагружения (левый участок диаграммы). Если одно из напряжений при разгрузке достигнет величины (как это имеет место в нашем случае), то законы изменения напряжений станут соответствовать упругопластической стадии, а их графики будут параллельны соответствующим линиям нагружения (правый участок диаграммы).

Зависимости можно записать, пользуясь уравнением прямой с известным угловым коэффициентом, проходящей через заданную точку:

,

где - угловой коэффициент прямой линии нагружения, параллельной рассматриваемой линии разгрузки; и - начальные параметры (напряжение и нагрузка в начале участка). В нашем случае , для стержней 1 и 3, а для стержня 2 .

Запишем эти зависимости непосредственно после начала разгрузки:

,

,

.

Напряжение , как легко вычислить, достигнет значения при снижении нагрузки до . При этом напряжения в остальных стержнях будут , .

Пользуясь найденными значениями как начальными параметрами, запишем зависимости для напряжений на втором участке разгрузки, проходящей в упругопластической стадии:

,

,

.

При полной разгрузке () получаем следующие значения остаточных напряжений: , , . В заключение следует проверить равновесие узла при полученных значениях остаточных напряжений.
1   2   3   4   5   6   7   8


1.2. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации