Лекции - Цифровая обработка сигналов - файл n1.rtf

Лекции - Цифровая обработка сигналов
скачать (11631.6 kb.)
Доступные файлы (1):
n1.rtf11632kb.01.06.2012 13:26скачать

n1.rtf

1   2   3   4

Определение. Система называется физически реализуемой, если сигнал на выходе в момент времени t зависит от входных сигналов в моменты времени .

Пусть имеется ЛИС . Рассмотрим сосредоточенную в одной точке последовательность . Пусть , а по определению . Для произвольной последовательности справедливо разложение . В силу линейности а в силу инвариантности . Окончательно, если , то

(1)

Другими словами, реакция на любую последовательность получается с помощью свертки этой последовательности и последовательности , называемой импульсной реакцией, или функцией отклика.







Если имеются две последовательно соединенных ЛИС, то в силу ассоциативности операции свертки, результирующая функция отклика получается как свертка функций отклика отдельных систем. Отсюда следует неожиданный вывод о коммутативности последовательного соединения. При параллельном соединении в качестве функции отклика получаем сумму функций, отвечающих отдельным слагаемым.

Вообще говоря, сумма в (1) бесконечная. Чтобы она имела смысл, надо ввести дополнительные ограничения.

Определение. Система (1) называется устойчивой, если она переводит любую ограниченную последовательность в ограниченную.

Предложение. Система устойчива тогда и т.т., когда

.

Доказательство. Достаточность условия очевидна. Для доказательства необходимости заметим, что функция отклика ограничена, поскольку это реакция на ограниченную последовательность. Возьмем в качестве входной последовательности , если . Реакция в нуле на эту последовательность имеет вид .

Рекуррентные системы

Предыдущие примеры ЛИС давали явные выражения выходных сигналов через входные. Предположим теперь, что входная последовательность обладает свойством: . Пусть

,

, (2)

где - натуральное, а - любые целые числа.. Эта система будет инвариантна, если соблюдены описанные выше ограничения. Имеется в виду, что вместе со сдвигом входной последовательности сдвигается и .Она будет линейной, если число одно и тоже для обеих входных последовательностей. Она будет физически реализуемой, если . Последовательность, заданная соотношениями (2) называется рекуррентной, или последовательностью с бесконечным временем отклика. Для такой ЛИС также можно построить функцию отклика. Вопрос об устойчивости в терминах (2) будет рассмотрен ниже.

Фильтры

Пусть имеется ЛИС с функция отклика , на вход которой подается , а на выходе получается последовательность . Переходя в (1) к преобразованиям Фурье, получим

(3).

Уравнение (3) является основным в теории фильтрации. Функция называется передаточной функцией фильтра. Если выборка велась с частотой , то будет периодической функцией с периодом . Если последовательность - вещественная, то . Отсюда следует, функция является симметричной. В этой связи эту функцию рассматривают лишь на интервале и изображают модуль, так как он определяет коэффициент усиления на каждой из частот.

Фильтры с конечным временем отклика.

Предположим, что в последовательности лишь конечное число элементов отличны от нуля. В этом случае фильтр называется фильтром с конечным временем отклика (FIR). В этом случае
. Переходя к преобразованиям Фурье и учитывая, что , получим, что . Другими словами, передаточная функция фильтра имеет вид

(4)

Фильтры с бесконечным временем отклика

Фильтром с бесконечным временем отклика (IIR) называется фильтр, определенный с помощью рекуррентного соотношения (2). Как было отмечено выше, это ЛИС, поэтому она может быть задана с помощью функции отклика . Последняя будет иметь бесконечное число ненулевых элементов, хотя и не может быть произвольной сходящейся последовательностью. Передаточную функцию находим, переходя в (2) к преобразованиям Фурье.



IIR фильтр является линейной инвариантной системой, а его функцию отклика можно найти формальным представлением в виде ряда: где , с последующим суммированием коэффициентов при одинаковых степенях .
Лекция 6. Z-преобразование. Фильтры первого порядка

Z-преобразование

Иногда вместо преобразования Фурье используют Z-преобразование. Оно определяется формулой

(1)

В формуле (1) ряд является формальным, если же он сходится, то определяет аналитическую функцию. Для Z -преобразования справедливы аналоги свойств, доказанных для преобразования Фурье. Это же относится и к передаточной функции фильтра. В случае фильтра с бесконечным временем отклика

(2)

Формула (2) удобна в том случае, когда переменная Z может принимать любые значения на комплексной плоскости. Еще раз обратим внимание на то, что в формуле (2) предполагается , что ряд для имеет лишь конечное число ненулевых коэффициентов при положительных степенях. В этом случае мы можем в явной форме получить члены выходной последовательности.

Пример.

Пусть . Будем предполагать, что Легко видеть, что решением является неограниченная последовательность . С другой стороны, согласно (2)



Формально возводя ряд в квадрат, получим тот же результат.

Условие устойчивости фильтра сводится к сходимости ряда для при Z=1.




Идеальный фильтр

Под идеальным фильтром понимается фильтр, у которого передаточная функция имеет прямоугольную форму. Покажем, что такой фильтр не является физически реализуемым. Действительно, если , то , откуда вытекает, что бесконечное число слагаемых отличны от нуля как с отрицательными, так и с положительными индексами. Это означает, что в передаточной функции присутствуют слагаемые, как до момента измерения, так и после. Если бы число слагаемых "после" было бы конечным, то дело свелось бы лишь к временной задержке.

Фильтр первого порядка

Рассмотрим фильтр вида



Это общий вид фильтра первого порядка. Его передаточная функция имеет вид

(3)
Первый вопрос связан с устойчивостью фильтра. Переходя к Z -преобразованию видим, что все сводится к сходимости ряда при Z=1, которая имеет место тогда и только тогда, когда . В простейшем случае при передаточная функция фильтра принимает вид . В зависимости от знака график модуля имеет вид фильтра низких или высоких частот. (Фильтр низких частот пропускает низкие частоты).
Лекция 7. Фильтры второго и высших порядков

Определение фильтра второго порядка

Примером фильтра вторго порядка является фильтр . Рассматриваем только вещественный случай. Переходя к Z- преобразованию, получим: . Найдя корни многочлена в знаменателе, перепишем



. Это означает, что фильтр есть последовательное соединение двух фильтров первого порядка. Для устойчивости достаточно потребовать, чтобы все корни были по модулю меньше единицы. Это означает, что . Рассмотрим вещественный случай: . Это область под параболой. Условие на модуль первого корня имеет вид . Возводя второе неравенство в квадрат, получим . Для выполнения первого из неравенств достаточно чтобы . Аналогичное рассмотрение условия на второй корень дает . Окончательно, область имеет форму. Для комплексных корней . Кроме того, квадрат модуля корня равен , откуда вытекает, что . Объединяя обе области, получаем треугольник устойчивости.



Другими словами, если точка с координатами попадает внутрь треугольника, соответствующий фильтр будет устойчивым.
Фильтры высших порядков

Предположим, что передаточная функция фильтра имеет вид

, где в числителе и знаменателе стоят вещественные многочлены, причем имеет степень выше двух. В этом случае имеет место разложение на неприводимые многочлены первой и второй степеней с вещественными коэффициентами, а сам фильтр можно заменить последовательным соединением фильтров. Если и сомножители взаимно простые, то для некоторых многочленов . Отсюда следует, что . Другими словами, фильтр можно представить как праллельное соединение двух фильтров. Построив базисные фильтры второго и первого порядка, можно с их помощью реализовать фильтр любого порядка.

Фильтр Баттеруорта (Butterworth)

Это один из базисных фильтров. Фильтр низких частот имеет передаточную функцию

, (1)

Это фильтр порядка М . В зависимости от значений меняются характеристики фильтра. Задача заключается в отыскании вещественных коэффициентов фильтра по заданным параметрам. Будем искать фильтр в виде

. Передаточная функция имеет вид . Положим . Тогда и Должно быть выполнено равенство . Слева и справа находятся аналитические функции от z. Если они совпадают на какой-либо линии, они равны всюду, где имеют смысл.
Лекция 8. Фильтры Баттеруорта

Отыскание параметров фильтра

В левой и правой частях в знаменателе находятся многочлены от переменной z. Найдем корни этих многочленов. Множество корней по построению инвариантно относительно замены . Для устойчивости фильтра нужно, чтобы корни находились внутри единичного круга. Для отыскания нулей знаменателя в правой части получим уравнение

, откуда , где - корень степени из -1. Каждое из этих уравнений сводится к квадратному уравнению. Найдем корни этих уравнений и выберем те из них, которые по модулю меньше единицы. Составим произведение . Проблема может возникнуть лишь в случае, когда среди корней окажется корень равный по модулю 1. Такая ситуация не возможна, так как в противном случае для некоторого .

Упражнение

Рассмотреть пример для . Для отыскания коэффициента достаточно положить . Тогда .

Какие изменения произойдут в случае ?

Фильтр высоких частот

Рассмотрим функцию . Она получена заменой из предыдущей . Это передаточная функция фильтра высоких частот. С другой стороны, из выражения при указанной замене получим . Это означает, что фильтр высоких частот можно получить из фильтра низких частот заменой знака у коэффициентов с нечетными индексами.

Полосовой фильтр

Рассмотри выражение , где . Очевидно, что эта функция достигает своего максимума при . Это означает, что передаточная функция изображает полосовой фильтр. При замене в выражении получим фильтр с комплексными коэффициентами. Формально - это решение задачи, однако использование комплексного фильтра для фильтрации вещественного сигнала не очень удобно. Поэтому используют выражение вида . Для четного . Оно снова достигает максимума при . Используя ту же технику, что и в предыдущем случае, после замены снова сведем задачу к отысканию корней квадратного уравнения.

Полосовой фильтра как последовательное соединение фильтров высоких и низких частот

При последовательном соединении фильтров высоких и низких частот их передаточные функции перемножаются. В результате получаем передаточную функцию полосового фильтра. Это наиболее простой способ получения полосового фильтра, но при этом повышается размерность.

Задача. Написать фильтр 4-ого порядка, полученного указанным способом из двух фильтров 2-ого порядка.

Тангенциальный фильтр

Для случай фильтра низких частот в синусоидальном фильтре на конце интервала не достигался 0. Рассмотрим функцию

. Теперь получается передаточная функция с нулем при . Если , то . Используя тот же прием, получим, что . Для отскания коэффициентов многочленов в числителе и знаменателе рассматривают нули и полюса передаточной функции.


Лекция 9. Осциллятор. FIR фильтры

Полосовой фильтр на основе фильтра низких частот

В предыдущей лекции было показано, каким образом можно построить различные фильтры. Оказывается, любой из таких фильтров можно получить на основе фильтра низких частот с помощью универсальной процедуры.



Пусть имеется сигнал с преобразованием Фурье . Рассмотрим новую последовательность . По определению . Если нам нужен полосовой фильтр, можем поступить следующим образом. Сдвиг осуществляется генератором на основе осциллятора, о котором будет сказано ниже. Обратный сдвиг осуществляется так же.

Непосредственное применение указанного способа не удобно, поскольку приходится работать с комплексными числами, и в результате обратного сдвига получается, как правило, комплексный сигнал. Выход заключается в преобразовании . В результате . Если исходный сигнал имеет ограниченный спектр и выбран так, что носители и не пресекаются, задача решается без применения комплексных чисел. Например, пусть спектр находится в интервале 2kHz-4kHz, и требуется получить лишь часть сигнала в диапазоне 2.5kHz-3.5kHz. Выбираем =3kHz и используем фильтр низких частот с полосой пропускания 0.5kHz. После обратного сдвига придется использовать еще один фильтр низких частот с полосой пропускания 3.5kHz.

Фильтр как осциллятор

Выше отмечалось, что для сдвига спектра последовательности требуется источник, генерирующий последовательности вида . Обычный способ генерирования таких последовательностей не годится, поскольку возникает проблема подсчета фукнции от большого аргумента. Существует альтернативный способ генерации, основанный на теории фильтров.

Для устойчивости фильтра достаточно, чтобы все корни находились внутри единичной окружности. Если корни лежат на окружности, фильтр можно использовать для генерации. Рассмотрим уравнение

(1)

Уравнение имеет два корня , поэтому (1) можно записать в виде . Из полученного равенства следуют два рекуррентных соотношения: . Вычитая из первого уравнения второе, получим



Полагая , получим . Аналогично, взяв , найдем, что .

Фазовый сдвиг сигнала в результате фильтрации

При проектировании фильтра учитывался лишь модуль передаточной функции. В общем случае . Здесь аргумент передаточной функции. Если спектр исходного сигнала сосредоточен в точке , то в результате фильтрации, кроме изменения интенсивности, происходит сдвиг фильтрованного сигнала на величину по отношению к исходному. При сравнении исходного сигнала с соредоточенным спектром и результирующего наблюдается сдвиг одного относительно другого. В общем случае наблюдается фазовое искажение сигнала, однако, одно не улавливается ухом. В то же время, когда важна фаза сигнала, приходится использовать методы компенсации или фильтр с вещественной передаточной функцией. Для компенсации фазового искажения можно использовать, например, фильтры вида

, где -любое число,. Это устойчивый фильтр, а его передаточная фукнция имеет вид . Модуль этой передаточной функции равен 1, а аргумент меняется вместе с частотой.

Фильтры с конечным временем отклика

Рассмотрим фильтр, заданный равенством

(2)

Это фильтр с конечным временем отклика (FIR). После преобразования Фурье получим . Если дополнительно предположим, что , то получим симметрический фильтр. Для него передаточная функция будет вещественной, и фильтр не вносит фазовых искажений.

Проектирование FIR фильтров. Сглаживающие окна

Предположим, что функция задана на интервале . Представим ее в виде ряда . Для получения FIR фильтра с аппроксимирующей передаточной функцией можно оставить лишь конечное число слагаемых в этой сумме. Если выбираются максимальные по модулю коэффициенты, то результирующая передаточная функция будет наилучшей аппроксимацией в смысле наименьших квадратов при заданном числе слагаемых. Оказывается, что такой подход не всегда приемлем. Выясним, что происходит при обрезании ряда. Введем функцию равную 1 при и 0 в остальных точках. Тогда . Непосредственно находим, что . График этой функции изображен на рисунке.




Она напоминает функцию, но содержит и боковые лепестки. В результате свертки с оригиналом при вычислении участвуют как значения , так и значения этой функции в окрестности лепестков функции .

Чтобы снизит указанный эффект вместо прямоугольных окон используются другие окна: треугольные окна, окно Хэмминга , Хэнинга и некоторые другие. Эти окна отличаются тем, что для их преобразований Фурье боковые лепестки выражены менее ярко. На рисунке показано преобразование Фурье от функции Хэмминга.

Лекция 10. Квадратурный зеркальный фильтр

Проектирование FIR фильтра на основе аппроксимации

Рассмотрим симметрический фильтр с передаточной функцией

. (1)

Пусть задана вещественная передаточная функция . Положим . В результате замены имеем взаимно однозначное соответствие между точками интервалов и . Функции. , преобразуются в функции соответственно. Известно, что существует разложение . В результате получаем задачу аппроксимации вещественной функции с помощью многочлена степени не выше, чем . Построив многочлен, можем вернуться к представлению (1) заменой переменных и разложением в ряд Фурье.

Аппроксимацию указанного вида используют в случае, когда критерием является не средне квадратическое отклонение, а критерий типа . В этом случае применяется теория аналогичная теории многочленов Чебышева с наименьшими отклонениями. Задача решается приближенно. После того, как многочлен найден, возвращаемся к представлению (1).

Квадратурный зеркальный фильтр

Если спектр сигнала находится в интервале , то при переходе к дискретному сигналу частота выборки должна удовлетворять неравенству . Следующая схема позволяет снизить частоту выборки при передаче по каналу связи, заменив один канал парой каналов с меньшей пропускной способностью.

Пусть имеются сигнал и его преобразование Фурье . Положим . Его преобразование Фурье , или в форме z-преобразования . Рассмотрим следующую схему, изображенную на рисунке. Входной сигнал подается на два фильтра. Стрелки вниз означают выбрасывание сигнала с нечетными номерами, а стрелки вверх - включение нулевого сигнала между двумя приинятыми. После этого полученные сигналы фильтруются двумя фильтрами и складываются.



Передаточные функции фильтров будем обозначать теми же буквами, что и сами фильтры. Рассмотрим результат работы данной схемы. Обозначим через выходной сигнал, а через - его z-преобразование. В терминах z- преобразований сигнал по верхней линии после прохода через первый фильтр превращается в , затем после прохода по каналу и вставки нулей на сумматор подается сигнал . Аналогично, рассматривая прохождение сигнала по нижней линии и суммируя результаты, получимПока мы не накладывали условий на фильтры. Теперь выберем их таким образом, чтобы второе слагаемое обратилось в 0. Для этого положим , . Этих условий достаточно, чтобы второе слагаемое стало нулевым. Теперь . Поставим задачу: выбрать таким образом, чтобы выражение в квадратных скобках было как можно более близким к единичной функции. Обычно этого не удается достичь, вместо этого довольствуются аппроксимацией. Однако, если полученный сигнал отфильтровать специально подобранным фильтром, то в результате получим первоначальный сигнал. В качестве примера рассмотрим . Тогда . Поставим на выходе системы еще один фильтр, определяемый формулой . Его передаточная функция имеет вид . В результате вся система имеет передаточную функцию равную , что равносильно сдвигу сигнала.

Задача. Применить тот же подход к случаю

Замечание. Указанный подход оказывается полезным в качестве альтернативного подхода к сжатию сигнала, когда используется результат передачи только по одной линии.
Лекция 11. WaveLet- преобразования

WaveLet-преобразование является альтернативой преобразованию Фурье в тех случаях, когда сигнал не носит периодического характера. Различают непрерывное и дискретное WaveLet-преобразования. Предполагается, что все интегралы, рассмотренные ниже, существуют

Непрерывное преобразование.

Пусть имеется функция и некоторая функция - материнская функция. Рассмотрим числа вида

(1)

Если , то в результате получаем обычное преобразование Фурье ( параметр не используется по понятной причине). Формула (1) определяет общее Wavelet преобразование. Существует формула обратного преобразования, позволяющая в некоторых случаях восстановить исходную функцию по ее преобразованию. Однако основной смысл преобразования (1) заключается в другом. Величина не зависит от параметров. Это означает, что вектор, заданный функцией , имеет постоянную длину в смысле пространства . Предположим, что удалось найти такие значения параметров, для которых достигает локального максимума. Это означает, что проекция функции на соответствующую функцию имеет максимальное значение, поэтому графики этих функций аналогичны. Положив , получим невязку, для которой решается такая же задача. В результате получаем приближение исходной функции функциями, порожденными с помощью функций . Это дает альтернативное описание исходной функции. В зависимости от того, какого рода особенности требуется обнаружить, выбирают вид материнской функции. При цифровой обработке, когда исходная функция задана лишь в отдельных точках, используется дискретное преобразование. Оказалось, что и в общем случае удается построить теорию, напоминающую теорию преобразования Фурье.


На практике, в качестве материнской фуекции при указанном подходе часто используют функцию ( мексиканская шляпа). Константу определяют из условия нормировки

Шкалирование

Рассмотрим множество функций на вещественной оси. Пусть , причем функции образуют ортонормированную систему. Это означает, что

(2)

Такую функцию назовем шкалирующей. Например, любая функция, имеющая носитель внутри единичного интервала и норму равную 1, удовлетворяет условию (2). Обозначим через

Предложение. Имеет место формула

(3).

Обратно, из (3) следует (2)

Доказательство. Имеем . Поскольку преобразование Фурье является ортогональным преобразованием, . С учетом (2) это означает, что . Далее, пусть . Преобразование Фурье этой функции есть . Теперь , так как остальные слагаемы равны нулю в силу (2). Заменим сумму интегралом и продолжим равенство . Заменим преобразование Фурье от произведения сверткой их образов. Преобразование от первого сомножителя есть он сам. Таким образом, равенство продолжается . Обратное утверждение доказывается переписыванием формул в обратном порядке.

Важным примером материнской функции является функция, равная 1 на интервале и 0 в остальных точках. Такую функцию обозначим через .

Задача. Найти явный вид формулы (2) для функции .

Лекция 12 Wavelet фильтрация

Детализация сигнала

Введем обозначение: для любой функции . Положим .
1   2   3   4


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации