Ответы на экзаменационные вопросы по Электротехническим материалам - файл n1.docx

приобрести
Ответы на экзаменационные вопросы по Электротехническим материалам
скачать (221.9 kb.)
Доступные файлы (1):
n1.docx222kb.08.07.2012 17:08скачать

n1.docx

1   2   3   4   5   6
Диамагнетики имеют магнитную проницаемость чуть меньше 1. Отличаются тем, что выталкиваются из области магнитного поля. Парамагнетики имеют магнитную проницаемость чуть более 1. Подавляющее количество материалов являются диа- и пара- магнетиками. Ферромагнетики обладают исключительно большой магнитной проницаемостью, доходящей до миллиона. Начальная магнитная проницаемостьmн - значение магнитной проницаемости при малой напряженности поля. Максимальная магнитная проницаемость mmax - максимальное значение магнитной проницаемости, которое достигается обычно в средних магнитных полях. Намагниченность насыщения - максимальная намагниченность, которая достигается в сильных полях, когда все магнитные моменты доменов ориентированы вдоль магнитного поля. Петля гистерезиса - зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение, переход через нуль, после достижения того же значения с обратным знаком - рост и т.п. Максимальная петля гистерезиса- достигающая максимальной намагниченности насыщения. Коэрцитивная сила Нс - напряженность поля на обратном ходе петли гистерезиса при которой достигается нулевая индукция.

При каждом цикле перемагничивания часть магнитной энергии, запасаемой в материале (W = BH/2) теряется, т.е. переходит в тепло. Эти потери называются потерями на перемагничивание и они пропорциональны площади кривой гистерезиса. Для материалов, используемых в энергетике, в особенности для трансформаторов, потери энергии желательно уменьшить, т.е. уменьшить площадь кривой. Это может быть достигнуто, если коэрцитивная сила будет как можно меньше. Материалы с малой коэрцитивной силой, меньше 40 А/м называются магнитомягкими материалами. Мощность потерь на перемагничивание в таких материалах можно оценить по выражению PH =Чh BnmaxЧfЧV, где h - коэффициент, зависящий от материала, Bmax- максимальная индукция за цикл, f- частота, V - объем тела, n, - показатель, меняющийся в диапазоне от 1.6 до 2.. Другая составляющая потерь связана с вихревыми токами, возникающими в переменных магнитных полях: PH=Чx B2maxЧf2ЧV. Материалы с большой коэрцититивной силой (более 1000 А/м) называются магнитотвердыми материалами. Они используются в качестве постоянных магнитов.

601_621-33.jpg

Рис.1 Петля Гистерезиса. Кривые намагничивания и размагничивания ферромагнетика: Н - напряженность внешнего магнитного поля; М -намагниченность образца; Нc - коэрцитивная сила; Мr - остаточная намагниченность; Мs - намагниченность насыщения; 1 - предельная петля гистерезиса; 2 - непредельная (частная) петля; 3 - начальная кривая намагничивания.

  1. Классификация магнитных материалов.

Различают следующие виды магнитных материалов: Магнитомягкие материалы способны намагничиваться до насыщения в слабых полях, обладают высокой магнитной проницаемостью и малыми потерями на перемагничивание. Условно к магнитомягким относят материалы с Нс>800 А/м. Применяются в основном в качестве магнитопроводов дросселей, трансформаторов, электромагнитов, электрических машин и т.д. Магнитотвердые материалы отличаются большой удельной энергией, которые тем больше, чем больше остаточная индукция Br и коэрцитивная сила Нс материала. К магнитотвердым относят материалы с Нс>4 кА/м. Используются главным образом для постоянных магнитов.

Основой наиболее широко используемых в электротехнике магнитных материалов является низкоуглеродистая электротехническая сталь. Она выпускается в виде листов, толщиной от 0.2 мм до 4 мм, содержит не выше 0.04% углерода и не выше 0.6% других примесей. Максимальное значение магнитной проницаемости mmax~ 4000, коэрцитивной силы Нс~ 65-100 А/м. Наблюдается интересная закономерность: чем чище железо и чем лучше оно отожжено - тем выше магнитная проницаемость и тем ниже коэрцитивная сила.

Если к железу добавить никель, то полученные материалы будут обладать повышенной магнитной проницаемостью (до 100000 у 79НМ, 79% никеля и небольшое количество марганца). Такие сплавы называются пермаллои, они используются для изготовления сердечников малогабаритных силовых и импульсных трансформаторов. Практически такие же результаты по магнитной проницаемости можно получить, добавляя к железу кремний (9.5%) и алюминий(5.6%). Такие сплавы называются альсиферами. Добавки к железу и никелю молибдена, хрома, меди приводит к еще большему росту начальной магнитной проницаемости, более 100 тысяч. Такие материалы используются в миниатюрных магнитных устройствах.

Практически отсутствуют потери на вихревые токи в ферритах. Дело в том, что ферриты представляют собой оксидную керамику МеО+Fe2O3, которая является диэлектриком, либо полупроводником. Типичное удельное сопротивление феррита 103-104 Ом.м. Это на 9-10 порядков превышает сопротивление металлов. Ясно, что вихревые токи в таком материале не возникнут. Применение в энергетике магнитомягких ферритов - высокочастотные трансформаторы, в ряде материалов потери малы вплоть до частот гигагерцового диапазона. Большую роль играют ферриты с прямоугольной петлей гистерезиса (ППГ). Они используются в качестве логических элементов в ЗУ, в качестве термодатчиков. Основной параметр - коэффициент прямоугольности петли гистерезиса, представляющий собой отношение остаточной индукции к максимальной, измеренной при Н = 5 Нс. Желательно, чтобы этот коэффициент был ближе к 1.



  1. Магнитомягкие материалы.

Металлические магнитные материалы – это в основном материалы на основе железа (низкоуглеродная сталь, листовая электротехническая сталь и др.), а также сплавы пермаллой, пермендюр, альсифер. По своим свойствам они относятся к магнитомягким и используются в остро динамических ситуациях в условиях быстро изменяющихся полей в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах, где нужно при наименьших затратах энергии достигнуть наибольшей индукции.

Технически чистое железо содержит небольшие количества (в сумме 0,08 – 0,1 %) С, S, Mn, Si. Эти примеси ухудшают магнитные свойства. Магнитные свойства технически чистого железа значительно улучшаются при легировании кремнием и (или) алюминием. Низкоуглеродистая электротехническая листовая сталь содержит примесей больше, чем технически чистое железо: менее 0,04 % С и менее 0,6 % других примесей. Оно выпускается в виде листов толщиной от 0,05 до 4 мм. Особо чистое железо содержит примесей менее 0,05 %, получают электролитическим методом и методом карбонильной металлургии. Основным магнитомягким материалом массового применения является кремнистая электротехническая сталь. Кремний (до 4%) в сталь вводят для повышения удельного сопротивления и, соответственно, снижения потерь на вихревые токи Pf = ? f2 B2max V, где ? – коэффициент, зависящий от типа ферромагнетика и, главным образом, от его удельного сопротивления. Кремний также увеличивает ?н, уменьшает Нс и снижает потери на гистерезис, но, одновременно, ухудшаются механические свойства – растёт хрупкость, снижается точка Кюри с 770 оС до 740 оС. Применяется для изготовления сердечников трансформаторов. Пермаллои – это железоникелевые сплавы со структурой твёрдых растворов, обладающие большой начальной магнитной проницаемостью в области слабых полей. Различают высоконикелевые (70 - 83 % Ni) и низконикелевые (40 - 50 % Ni) пермаллои. Наибольшее значение максимальной магнитной проницаемости имеет сплав, содержащий 78,5 % Ni: ?н = 8000, ?макс = 100000. Для модификации пермаллоев в них вводят легирующие добавки – Mo, Cr, Cu, Si, Mn. Разработан супермаллой с очень высокой ?н в слабых полях = 100000 и ?макс = 1500000, содержащий 79 % Ni, 5 % Mo, 0,5 % Mn и 15 % Fe. Точка Кюри пермаллоев в зависимости от состава изменяется от 360 до 450 оС. Пермаллои очень чувствительны к механическим напряжениям. Железо-кобальтовые сплавы имеют самую высокую индукцию насыщения Вs из всех известных ферромагнетиков – до 2,43 Тл. У железа Вs не превышает 2,1 Тл. Сплавы, содержащие 50 – 70 % Со называются пермендюры. Однако железо-кобальтовые сплавы имеют невысокое ?v и высокую стоимость, поэтому их применяются только в специальной аппаратуре: - в динамических репродукторах, осциллографах, телефонных мембранах, сердечниках магнитных линз электронных микроскопов и др. Альсиферы – сплавы железа с кремнием и алюминием. Оптимальный состав альсифера: 9,5 % Si, 5,6 % Al, остальное – Fe. Магнитные свойства не уступают высоконикелевым пермаллоям: ?н = 35500, ?макс = 120000, Нс = 1,8 А/м, ? = 0,8 мкОм.м. Альсиферы обладают твёрдостью и хрупкостью, поэтому перерабатываются в изделия главным образом литьём. Благодаря хрупкости альсиферы можно размалывать в порошок и использовать, как и карбонильное железо, для изготовления выскочастотных магнитодиэлектриков.

Магнитодиэлектрики – это композиционные материалы, в которых дисперсионной средой служат диэлектрики (полимеры, стекло, керамика), а дисперсной фазой – порошкообразные ферромагнетики (альсиферы, карбонильное железо, аморфные магнитные сплавы и др.). Магнитодиэлектрики не обладают электропроводимостью, поэтому в них нет вихревых токов и их можно использовать при повышенных и высоких частотах. Используя в качестве дисперсионной среды (связующего) эластомеры или высокопластифицированные полимеры удаётся изготавливать эластичные магнитные материалы, применяемые, в частности, для защиты от электромагнитных излучении (ЭМИ).

Потребность в высокочастотных магнитомягких материалах побудило разработку ферритов, представляющих собой магнитную керамику с незначительной электронной проводимостью. Ферриты относятся к ферримагнетикам. Химический состав ферритов описывается общей формулой МеFе2О4, где Ме – символ двухвалентного металла. Чаще общую формулу ферритов изображают в виде оксидов МеО.2О3, тем самым подчёркивая технологию их изготовления, заключающуюся в спекании соответствующих оксидов. Ферриты имеют кубическую кристаллическую решётку. Ферриты, обладающие наиболее интересными магнитными свойствами и нашедшие техническое применение, представляют собой, как правило, твёрдые растворы замещения нескольких простейших соединений, в том числе и немагнитных.

 

  1. Магнитотвёрдые материалы.

Магнитно-твёрдые материалы, магнитно-жёсткие (высококоэрцитивные) материалы, которые намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях напряжённостью в тысячи и десятки тысяч а/м (102-103 э). Характеризуются высокими значениями коэрцитивной силы Hc, остаточной индукции Br, магнитной энергии (BH) max на участке размагничивания - спинке петли гистерезиса. После намагничивания остаются магнитами постоянными из-за высоких значений Br и Hc. Большая коэрцитивная сила может быть обусловлена следующими причинами: 1) задержкой смещения границ доменов благодаря наличию посторонних включений или сильной деформации кристаллической решётки; 2) выпадением в слабомагнитной матрице мелких однодоменных ферромагнитных частиц, имеющих или сильную кристаллическую анизотропию, или анизотропию формы.

Магнитно-твёрдые материалы классифицируют по разным признакам, например, по физической природе коэрцитивной силы, по технологическим признакам и другим. Наибольшее значение в технике приобрели: литые и порошковые (недеформируемые) магнитные материалы типа Fe — Al — Ni — Со; деформируемые сплавы типа Fe — Со — Mo, Fe — Со — V, Pt — Со; ферриты (гексаферриты и кобальтовый феррит). В качестве Магнитно-твёрдых материалов используются также соединения редкоземельных элементов (особенно лёгких) с кобальтом; магнитопласты и магнитоэласты из порошков ални, альнико, ферритов со связкой из пластмасс и резины, материалы из порошков Fe, Fe — Со, Mn — Bi, SmCo5.

Высокая коэрцитивная сила литых и порошковых магнитно-твёрдых материалов (к ним относятся материалы типа альнико, магнико и другие) объясняется наличием мелкодисперсных сильномагнитных частиц вытянутой формы в слабомагнитной матрице. Повышенными магнитными свойствами обладают подобные магнитно-твёрдые материалы, представляющие собой монокристаллы или сплавы, созданные путём направленной кристаллизации. Магнитно-твёрдые материалы типа Fe — Al — Ni — Со очень тверды, обрабатываются только абразивным инструментом или электроискровым методом, при высоких температурах их можно изгибать.

Деформируемые сплавы (важнейшие из них - комолы и викаллои) более пластичны и значительно легче поддаются механической обработке. Дисперсионно-твердеющие сплавы типа Fe — Со — Mo (комолы) приобретают высококоэрцитивное состояние (магнитную твёрдость) в результате отпуска после закалки, при котором происходит распад твёрдого раствора и выделяется фаза, богатая молибденом. Сплавы типа Fe — Со — V (викаллои) для придания им свойств магнитно-твёрдых материалов, подвергают холодной пластической деформации с большим обжатием и последующему отпуску. Из литых, порошковых и деформируемых магнитно-твёрдых материалов изготавливают постоянные магниты, используемые в измерительных приборах (например, амперметрах и вольтметрах постоянного тока), в микродвигателях и гистерезисных электрических двигателях, в часовых механизмах и др. К магнитно-твёрдым материалам относятся гексаферриты, то есть ферриты с гексагональной кристаллической решёткой (например, BaO·6Fe2O3, SrO·6Fe2O3), феррит кобальта CoO·Fe2O3 со структурой шпинели, в котором после термической обработки в магнитном поле формируется одноосевая анизотропия, что и является причиной его высокой коэрцитивной силы. Магнитно-твёрдые ферриты применяются для работы в условиях рассеянных магнитных полей и в СВЧ-диапазоне. Изделия из ферритов изготовляют методами порошковой металлургии.


1   2   3   4   5   6


Диамагнетики
Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации