Ларина Т.А., Абрамов С.П. и др. Руководство по инженерным изысканиям для строительства - файл n1.doc

приобрести
Ларина Т.А., Абрамов С.П. и др. Руководство по инженерным изысканиям для строительства
скачать (1324.5 kb.)
Доступные файлы (1):
n1.doc1325kb.08.07.2012 00:20скачать
Победи орков

Доступно в Google Play

n1.doc

1   ...   5   6   7   8   9   10   11   12   13
3.153. При определении сферы взаимодействия в условиях распространения специфических грунтов или физико-геологических процессов и явлений следует принимать во внимание следующее:

в районах распространения просадочных грунтов сфера взаимодействия сооружения с геологической средой включает весь разрез, сложенный просадочными грунтами. Нижняя граница этой сферы совпадает или с положением уровня грунтовых вод, или с кровлей непросадочных грунтов, подстилающих просадочные;

нижняя граница сферы взаимодействия в районах распространения вечномерзлых грунтов определяется расчетом (см. главу СНиП II-18-76). Однако ее положение не может быть выше подошвы слоя сезонных колебаний температуры грунтов;

в районах распространения набухающих и засоленных грунтов положение нижней границы сферы взаимодействия проектируемого сооружения с геологической средой определяется положением в разрезе этих грунтов и водным режимом грунтовой толщи как существующим, так и прогнозируемым;

в районах развития карста положение нижней границы сферы взаимодействия определяется, как правило, глубиной залегания зоны активного развития карстового процесса;

при проектировании сооружения на оползневом склоне в сферу взаимодействия его с геологической средой практически должен включаться весь оползневой склон на глубину развития оползневого процесса. Если сооружение располагается вблизи оползневого склона, то границы сферы взаимодействия устанавливаются на основе прогноза;

на перерабатываемых берегах морей, озер и водохранилищ границы сферы взаимодействия проектируемого сооружения с геологической средой по площади устанавливаются расчетными методами;

если в геологическом разрезе участка проектируемого строительства вскрыты водоносные горизонты, обладающие напором, то нижняя граница сферы взаимодействия устанавливается расчетом в зависимости от величины напора и глубины заложения фундаментов или величины заглубления подземных частей проектируемого сооружения.

3.154 (3.27). Горные выработки при инженерно-геологической разведке следует проходить в целях уточнения геологического разреза в сфере взаимодействия проектируемых зданий и сооружений с геологической средой, расчленения массива грунтов на инженерно-геологические элементы, изучения гидрогеологических условий, физико-геологических процессов и явлений, отбора образцов грунтов и проб подземных вод для лабораторных исследований, производства полевых исследований свойств грунтов и опытно-фильтрационных работ, а также стационарных наблюдений.

3.155 (3.28). Выбор вида горных выработок и способа проходки буровых скважин при инженерно-геологической разведке следует производить в соответствии с прил. 2 (5) и 3 (6) исходя из целей проходки их, а также инженерно-геологических и гидрогеологических условий.

3.156. Основными типами горных выработок при инженерно-геологической разведке являются скважины и шурфы. В сложных геологических условиях при изысканиях для обоснования проектов особо ответственных и уникальных сооружений могут также использоваться шахты и штольни.

Особенно тщательно обосновываются способ проходки и размеры горных выработок, проходимых специально для уточнения геологического разреза и отбора образцов грунта на лабораторные определения их свойств. Опыт инженерно-геологических изысканий показывает, что минимальные диаметры скважин, мм, проходимых для этих целей, должны быть:

в песчано-глинистых грунтах - 108;

в скальных грунтах - 89.

3.157. Высокая точность установления границ слоев грунтов различного литологического состава достигается при описании геологического разреза в шурфах, проходимых горным или буровым способом. При бурении скважин малого диаметра, когда невозможно непосредственно осматривать стенки скважины, точность фиксирования границ слоев может существенно колебаться. В качестве примера в табл. 14 приведены величины колебания положения границ слоев, полученных при разных способах бурения.

Таблица 14

Способ бурения

Соотношение слоев по плотности1

Точность фиксации контактов слоев, м

Средняя мощность одного пропущенного слоя, м

Вибрационный

I

± 0,11

0,1

II

± 0,12

III

± 0,1

Ударно-канатный кольцевым забоем (забивной)

I

± 0,19

0,18

II

± 0,29

III

± 0,19

То же, клюющий

I

± 0,22

0,17

II

± 0,15

III

± 0,31

Колонковый «всухую»

I

± 0,22

0,22

II

± 0,24

III

± 0,24

То же, безнасосный

I

± 0,27

0,3

II

± 0,36

III

± 0,38

Шнековый поточный

I

± 0,43

0,38

II

± 0,66

III

± 0,47

То же, рейсовый

I

± 0,33

0,2

II

± 0,41

III

± 0,33

1 I - верхний слой плотнее нижнего; II - плотность слоев примерно одинаковая; III - верхний слой менее плотный, чем нижний.

3.158 (3.29). Инженерно-геологическое опробование грунтов при выполнении разведки следует производить для получения нормативных и расчетных значений показателей физико-механических свойств грунтов применительно к расчетным схемам сооружений и их оснований. Для этого необходимо проводить отбор образцов грунтов из предварительно выделенных инженерно-геологических элементов, типизацию и обобщение результатов определения свойств грунтов и окончательное выделение инженерно-геологических элементов, вычисление нормативных и расчетных значений показателей по каждому инженерно-геологическому элементу.

3.159. Составной частью системы инженерно-геологической разведки является система инженерно-геологического опробования, под которой следует понимать расположение в пространстве точек отбора образцов для изучения свойств грунтов и точек непосредственного проведения полевых определений показателей свойств грунтов. Числовой характеристикой плотности расположения этих точек являются интервал и шаг опробования.

3.160. Система пространственного размещения точек отбора образцов грунтов при определении прямых показателей их свойств в стационарных лабораториях и пунктов проведения этих определений полевыми методами определяется необходимостью получения нормативных и расчетных характеристик каждого используемого в расчетах показателя по каждому инженерно-геологическому элементу, выделенному в расчетной схеме основания, а в районах развития физико-геологических процессов и явлений - в сфере взаимодействия проектируемых зданий и сооружений с геологической средой.

Для составления прогноза изменений физико-механических свойств грунтов могут выполняться специальные, главным образом лабораторные, исследования.

3.161. Обработку, анализ и обобщение материалов опробования необходимо проводить по мере их получения с самого начала полевых работ, поскольку это позволит своевременно скорректировать или изменить системы опробования, составленные на основе рабочих гипотез.

При обработке материалов опробования, полученных в процессе проведения инженерно-геологической съемки и разведки, их анализа и обобщения, должны широко использоваться методы математической статистики (по ГОСТ 20522-75 и прил. 1 главы СНиП II-15-74).

3.162 (3.30). Полевые и лабораторные исследования свойств грунтов при инженерно-геологической разведке следует проводить с учетом условий работы грунтов в сфере их взаимодействия со зданием и сооружением. Выбор методов полевых и лабораторных исследований свойств грунтов необходимо проводить в соответствии с требованиями нормативных документов и государственных стандартов, указанных в прил. 7 (7) и 5 (13).

3.163. Выбор метода определения показателей свойств грунтов при инженерно-геологической разведке зависит от заданной (или установленной) точности этого определения, от инженерно-геологических условий участка проектируемого строительства, в первую очередь состава и состояния грунтов, от конструкции проектируемого сооружения, главным образом конструкции фундаментов и заглубляемой ниже поверхности земли части сооружения, а также режима его эксплуатации.

3.164. При выборе методов определения показателей свойств грунтов следует учитывать также следующее.

Полевые методы дают возможность изучения свойств грунтов в больших объемах и в условиях их естественного залегания, но требуют относительно сложного оборудования и значительных объемов подготовительных работ. Кроме того, в большинстве случаев полевые определения не позволяют моделировать условия работы грунтов в процессе строительства и эксплуатации сооружений, что осложняет прогнозную оценку поведения грунтов как среды или основания сооружения.

Лабораторные методы наряду с возможностью изучения свойств грунтов естественного сложения (из монолитов) позволяют изучать эти свойства в заданном режиме давлений, влажности и температуры и создавать условия, в которых грунт может находиться как в процессе строительства, так и в процессе эксплуатации сооружения, т.е. существенно упростить инженерно-геологический прогноз. Низкие трудовые и материальные затраты на одно определение позволяют увеличивать их количество и путем статистической обработки частных значений показателей повысить точность конечного результата.

Поскольку полевые и лабораторные методы имеют свои преимущества и недостатки, их следует применять в комплексе.

3.165. Некоторые методы определения свойств грунтов стандартизированы, и технология их проведения регламентирована. В случаях расхождения природных условий и режима эксплуатации сооружений с требованиями государственных стандартов необходимо проводить опытно-экспериментальные работы с привлечением в качестве консультантов представителей научно-исследовательских организаций, а выбор метода или способа определения свойств грунтов обосновывать в программах работ.

3.166. В состав лабораторных исследований грунтов должны включаться те методы, которые позволяют непосредственно определять используемые в расчетах проектировщиков показатели физико-механических свойств грунтов, в том числе и опытные замачивания грунтов в котлованах, замеры порового давления, определение напряженного состояния массива грунтов и т.д., а также испытания свай, выполняемые в порядке, установленном Госстроем СССР.

3.167. В целях обеспечения разработки прогноза изменения физико-механических свойств грунтов в процессе строительства и эксплуатации зданий и сооружений следует широко использовать методы инженерно-геологического моделирования.

3.168. При планировании состава исследований следует иметь в виду, что надежное определение деформационных свойств грунтов может быть осуществлено только полевыми методами. Применение лабораторных методов может быть оправдано для частичного сокращения объема более дорогих полевых испытаний, в случаях необходимости проведения специальных исследований с целью выявления характера изменений деформационных свойств грунтов во времени и т.п.

3.169. Объем исследований грунтов при выполнении разведки зависит от капитальности, объемно-планировочных и конструктивных особенностей проектируемых зданий и сооружений, а также сложности грунтовых условий в сфере взаимодействия зданий и сооружений с геологической средой, оцениваемой по результатам съемки.

3.170. Применительно к промышленному и гражданскому строительству планирование объема исследований грунтов рекомендуется осуществлять, используя следующую классификацию.

Выделяются три категории зданий или сооружений в зависимости от их капитальности и конструктивных особенностей.

К первой категории относятся гражданские здания до 9 этажей и промышленные сооружения с нагрузками на колонну каркаса не более 300 тс/см2, ко второй - гражданские здания до 16 этажей и промышленные сооружения с нагрузками на колонну не более 2000 тс/см2, к третьей - высокие здания и сооружения (более 16 этажей), промышленные сооружения с нагрузками на колонну каркаса более 2000 тс/см2, а также тяжелые сооружения со сравнительно небольшими габаритами в плане (дымовые трубы, доменные печи, силосные корпуса и т.п.).

Для зданий и сооружений I категории и при I категории сложности грунтовых условий (см. табл. 6) исследования грунтов следует проводить в минимальном объеме, но в то же время достаточном для получения статистически обоснованных показателей свойств грунтов. Так, при строительстве одиночных зданий или сооружений в пределах сферы взаимодействия с геологической средой каждого из них должны быть пройдены хотя бы две скважины с отбором образцов грунта для последующих лабораторных исследований и выполнено не менее чем в пяти точках зондирование (когда проведение его возможно по грунтовым условиям).

При возрастании той или иной категории на одну ступень объем исследований грунтов следует увеличивать примерно в 1,5 раза, а на две ступени - в 2 раза. Таким образом, применительно к одиночным зданиям и сооружениям третьей категории и при третьей категории сложности грунтовых условий требуемое число скважин возрастет до 8, а точек зондирования - до 20 (включая пройденные ранее, в том числе при рекогносцировке и съемке).

3.171. При назначении объема исследований следует иметь в виду, что с целью получения статистически обоснованных нормативных и расчетных значений тех или иных показателей физико-механических свойств грунтов, требующихся при проектировании, для каждого инженерно-геологического элемента, выделенного в сфере взаимодействия сооружения (или группы сооружений) с геологической средой, необходимо иметь данные о частных значениях этих показателей не менее чем в шести пунктах, достаточно равномерно расположенных в пределах инженерно-геологического элемента.

3.172. При проведении инженерно-геологической разведки в районах распространения специфических по составу, состоянию и свойствам грунтов, а также физико-геологических процессов следует учитывать дополнительные требования, связанные с особенностями указанных грунтов и процессов.

3.173. По каждому типу или виду специфических грунтов изучению подлежат следующие характеристики:

для лессовых просадочных грунтов - величина относительной просадочности грунтов с учетом дополнительного давления от сооружения, общее содержание и состав воднорастворимых солей, содержание гумуса и рН среды;

для вечномерзлых грунтов - температура, литологический состав, влажность (суммарная Wс, минеральных прослоев грунта Wг), льдистость (за счет ледяных включений Лс, за счет порового льда Лу), степень заполнения льдом и незамерзшей водой пор мерзлого грунта G1, объемная масса мерзлого грунта и скелета мерзлого грунта, засоленность (и состав солей), теплофизические свойства (объемная и удельная теплоемкости, коэффициент теплопроводности), величина относительной осадки при протаивании грунта, величина сцепления мерзлого грунта, сопротивление мерзлых грунтов сдвигу (значения отдельных показателей свойств мерзлых грунтов ввиду трудностей их определения в полевых условиях можно принимать по таблицам приложений к главе СНиП II-18-76);

для заторфованных грунтов и торфов - величина деформаций уплотнения поверхностных и погребенных грунтов и торфов во времени с учетом дополнительного давления от сооружения, количественное содержание органического вещества, степень заторфованности, зольность, степень разложения и волокнистости, величина рН, параллельные характеристики компрессионных и консолидационных испытаний, коэффициент консолидации, величины конечного сжатия и конечной осадки и длительности осадки с учетом нагрузки от сооружения, величина структурной прочности, изменение прочностных характеристик с учетом фактора времени по мере уплотнения грунтов;

для набухающих грунтов - величина относительного набухания или усадки с учетом дополнительного давления от сооружения, влажность и давление набухания, горизонтальное давление при набухании, нижняя зона набухания, микроагрегатный и дисперсный зерновой состав, минеральный состав, состав поглощенных оснований и емкость поглощения, свободное набухание, водопроницаемость набухающих грунтов;

для засоленных грунтов - величина суффозионной осадки для горизонтов засоленных грунтов, качественный состав и количественное содержание легко- и среднерастворимых, а по особому заданию - труднорастворимых солей;

для элювиальных грунтов - коэффициенты выветрелости и структурной прочности, стойкость к процессам выветривания, временные сопротивления сжатию, зерновой состав;

для скальных трещиноватых грунтов - ориентировка, густота, ширина, длина и заполнитель трещин с выделением блоков по параметрам трещиноватости.

3.174. В районах развития физико-геологических процессов должны быть изучены:

в районах развития карста - растворимость и скорость растворения карстующихся грунтов; содержание свободной углекислоты, агрессивной углекислоты и рН подземных и поверхностных вод;

в районах развития оползней - изменение величины сопротивления сдвигу от нагрузки для оползней, возникающих при изменении напряженного состояния; изменение величины сопротивления сдвигу от влажности для оползней, возникающих при увлажнении грунтов; изменение прочности при выщелачивании глинистых грунтов для оползней выдавливания; изменение величины сопротивления сдвигу при полном водонасыщении в стадии просадочных и послепросадочных деформаций для оползней в лессовых грунтах; изменение величины критического гидравлического градиента для оползней, возникающих при выплывании песчаных грунтов; изменение величины сопротивления сдвигу по плоскостям напластования, трещинам и другим поверхностям ослабления для оползней скольжения; реологические свойства грунтов для оползней типа «крип»;

в районах повышенной сейсмической активности - изменения свойств грунтов под воздействием динамических нагрузок;

в районах развития подтопления на застраиваемых территориях - прочностные и деформационные характеристики грунтов при естественной влажности и в состоянии полного влагонасыщения жидкостями, близкими по составу к стокам проектируемых предприятий.

3.175 (3.31). Геофизические методы при инженерно-геологической разведке следует применять в комплексе с лабораторными и полевыми исследованиями в целях уточнения геологического разреза и определения показателей свойств массива грунтов.

Выбор методов выполнения геофизических исследований следует производить в соответствии с прил. 4 (11).

3.176. Геофизические работы в составе инженерно-геологической разведки проводятся, как правило, для решения специфических задач, решение которых другими методами затруднено или невозможно. К таким задачам относятся:

поиск и оконтуривание естественных (карстовые пещеры и другие карстовые формы) и искусственных (подземные горные выработки) пустот в массиве грунтов;

прослеживание зон повышенной трещиноватости в скальных массивах;

определение упругих характеристик грунтов на отдельных образцах и в массиве;

наблюдения за движением оползневых масс на оползневых склонах;

определение коррозионной активности грунтов и измерения величин естественных и блуждающих токов и т.д.

3.177. Поиск и оконтуривание пустот в зависимости от предполагаемой глубины их расположения в массиве грунтов следует осуществлять комплексом геофизических методов (электропрофилирование и эманационная съемка, комбинация различных модификаций метода заряда в варианте скважинной электроразведки и т.п.) с последующим вскрытием выявленных аномалий физических полей буровыми скважинами.

3.178. Движение оползневых масс следует фиксировать положением магнитных реперов, коррозионную активность грунтов - комплексом методов в соответствии с требованиями ГОСТ 9.015-74*.

Другие задачи решаются комплексом геофизических методов, указанных в табл. 13.

3.179 (3.32). Гидрогеологические исследования следует выполнять с целью детализации гидрогеологических условий и обеспечения прогноза их изменения при строительстве и эксплуатации зданий и сооружений, в том числе возможного подтопления территории, загрязнения и изменения химического состава подземных вод.

Выбор методов гидрогеологических исследований следует производить в соответствии с прил. 6 (14).

3.180. Под детализацией гидрогеологических условий следует понимать составление фильтрационной схемы, включающей все гидрогеологические закономерности, характер протекания гидрогеологического процесса во времени, структуру потока, граничные условия, определяемые закономерностями изменения гидрогеологических параметров.

При составлении фильтрационной схемы по признаку напора следует выделять:

напорные подземные воды, изолированные от атмосферы водоупорными породами;

безнапорные подземные воды со свободной поверхностью, связанные с атмосферой;

напорно-безнапорные воды.

В общем случае при изменении уровня подземных вод режим фильтрации является неустановившимся (нестационарным). Для напорных водоносных горизонтов в соответствии с теорией упругого режима неустановившееся движение обусловливается происходящим при снижении напоров расширением воды и сжатием самого пласта. В безнапорных водоносных горизонтах причиной неустановившегося движения являются осушение части горизонта в процессе водоотбора и, кроме того, постоянные изменения в интенсивности питания и разгрузки. Если составляющие фильтрационного потока за рассматриваемый период времени изменяются незначительно, фильтрационный режим можно рассматривать как установившийся (стационарный).

При гидрогеологических расчетах и моделировании чаще всего используют две формы потока: плановый и профильный. В плановых потоках (плоские потоки в плане) деформации линий тока происходят, в основном, в плане, а в вертикальном сечении поток принимается плоскопараллельным. Такие условия характерны для потоков большой протяженности, длина которых значительно превышает их мощность, что, в свою очередь, позволяет пренебречь изменением напоров по глубине. При фильтрации в слоистой системе (при существующей разнице в проницаемости водоносных и слабопроницаемых слоев) структура потока должна рассматриваться на основе предпосылок перетекания: движение в водоносных слоях подчинено предпосылке Дюпюи о горизонтальном характере фильтрации, а в разделяющих слабопроницаемых слоях рассматривается в вертикальном направлении.

В профильных потоках (плоские потоки в вертикальном сечении) рассматриваются деформации линий тока в вертикальной плоскости, а в плане поток имеет плоскопараллельный характер, т.е. линии тока практически параллельны друг другу.

Далее схематизируется строение фильтрационного потока: оценивается фильтрационная неоднородность водоносных горизонтов в плане и вертикальном разрезе по геолого-литологическому строению, анализу данных опытно-фильтрационных работ и режиму подземных вод.

При инженерных изысканиях чаще всего объектом изучения являются породы четвертичного возраста различного генезиса, характеризующиеся структурной, фациальной, литологической неоднородностью, что соответственно обусловливает их фильтрационную неоднородность. Решающее влияние трещиноватости и степени закарстованности на характер распределения фильтрационных свойств пород общеизвестно.

Отражением такой неоднородности является вертикальная и плановая изменчивость гидрогеологических параметров. При этом необходимо иметь в виду, что изменчивость гидрогеологических параметров определяется не только геологической неоднородностью горных пород, но и масштабом опробования. Все это усложняет интерпретацию опытно-фильтрационных работ и выбор расчетных параметров для прогноза.

Возможность осреднения гидрогеологических параметров методами математической статистики должна оцениваться с учетом следующих требований: должна быть проверена и доказана случайность и независимость локальных определений; необходимо убедиться в выполнении условия равномасштабности и равноточности единичных определений (в противном случае необходимо дополнительное обоснование весовых коэффициентов), в которых должны также отсутствовать серьезные систематические ошибки; должна быть оценена представительность выборки.

Схематизация внешних и внутренних границ исследуемой области фильтрации осуществляется путем задания их геометрических контуров, рода граничного условия и закономерности изменения уровня и расхода на границе, интенсивности внутренних источников питания или разгрузки.

Требования достоверной количественной оценки природных и техногенных режимообразующих факторов обусловливают целесообразность применения методов математического моделирования в сложных природных условиях и для ответственных объектов не только для окончательного прогноза изменения уровня грунтовых вод, но и в процессе геофильтрационной схематизации для решения следующих задач:

уточнения схемы расположения наблюдательных пунктов при проектировании стационарной сети;

обоснования участков проведения опытно-фильтрационных работ;

предварительной оценки значений гидрогеологических параметров водонасыщенных пород и грунтов зоны аэрации;

выполнения предварительного прогноза подъема уровня грунтовых вод;

обоснования расчетных значений гидрогеологических параметров;

количественной оценки основных режимообразующих природных и техногенных факторов, внутренних и внешних граничных условий области фильтрации.

3.181. Для обоснования проектов строительства гидротехнических, промышленных, гражданских и других инженерных сооружений проводится сложный комплекс инженерных изысканий, включающий: изучение геологического строения, гидрогеологических и инженерно-геологических условий района; специальную оценку условий намеченного строительства по всем возможным вариантам его осуществления и выбор на этой основе наиболее благоприятного по сумме всех показателей варианта; получение необходимой для оптимального проектирования объекта исходной гидрогеологической и инженерно-геологической информации; инженерный прогноз и оценку возможного влияния проектируемых инженерных сооружений и мероприятий на различные элементы природных условий и другие инженерные сооружения; получение всей необходимой информации для разработки системы мероприятий, обеспечивающих наиболее рациональные условия строительства и эксплуатации проектируемых объектов и предотвращения (или уменьшения) их неблагоприятного воздействия на природные условия и другие виды строительства.

Успешное решение перечисленных и других задач проектирования и строительства инженерных сооружений возможно лишь при постоянной и тесной увязке изысканий и проектирования, которые должны планироваться и осуществляться как единый технологический процесс, в ходе которого изыскатели, обеспечивая эффективное выполнение задач проектирования, своими рекомендациями активно влияют и способствуют выбору и обоснованию наиболее рациональных проектных решений.

3.182. Основным видом гидрогеологических исследований при инженерно-геологической разведке являются помимо стационарных наблюдений опытно-фильтрационные работы, производимые на участках размещения отдельных зданий и сооружений. При фильтрационном опробовании водоносных грунтов предпочтение следует отдавать кустовым откачкам из скважин, а грунтов зоны аэрации - наливам воды в шурфы.

3.183. При необходимости обоснования проектов дренажных сооружений, оценки возможного загрязнения подземных вод, оценки суффозионной устойчивости строительной площадки и т.п. необходимо производить опытные работы по определению направления и скорости движения подземных вод.

3.184. Прогноз загрязнения подземных вод на территории изысканий обязателен:

а) в условиях инфильтрации промышленных стоков в водоносный горизонт, воды которого используются для хозяйственно-питьевого водоснабжения;

б) при наличии гидравлической связи загрязняемого водоносного горизонта с водоносным горизонтом, являющимся источником водоснабжения района;

в) при дренировании открытыми водоемами загрязняемого водоносного горизонта при использовании поверхностных вод для водоснабжения;

г) при отсутствии естественного экранирующего слоя пород зоны аэрации с низкими фильтрационными свойствами (глины, суглинки);

д) при наличии или возможности образования обратных уклонов зеркала подземных вод на участке изысканий в результате развития депрессионных воронок близко расположенными водозаборами;

е) при наличии в стоках высокотоксичных ингредиентов с низкими предельно допустимыми концентрациями (ПДК);

ж) при наличии в сточных водах компонентов, агрессивных к материалам оснований и фундаментов инженерных сооружений;

з) при химической «несовместимости» сточных и фоновых подземных вод.

Прогноз загрязнения подземных вод основывается на результатах полученных параметров массопереноса, применяя для этого методическое руководство ПНИИИС Госстроя СССР «Прогноз качества подземных вод и охрана их от загрязнения», изд. 1978 г. и «Методические рекомендации по прогнозу распространения промстоков в водоносных пластах» ВНИИВОДГЕО Госстроя СССР, изд. 1974 г.

1   ...   5   6   7   8   9   10   11   12   13


Учебный материал
© nashaucheba.ru
При копировании укажите ссылку.
обратиться к администрации